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Abstract: This review is devoted to the modern understanding of the two-color QCD phase diagram
at finite baryon density and low temperatures. First, we consider the theoretical picture of this
phase diagram. It is believed that at low baryon density, two-color QCD can be described by chiral
perturbation theory (ChPT), which predicts a second-order phase transition with Bose-Einstein
condensation of diquarks at µ = mπ/2. At larger baryon chemical potentials, the interactions
between baryons become important, and ChPT is not applicable anymore. At sufficiently large
baryon chemical potential, the Fermi sphere composed of quarks is formed, and diquarks are
condensed on the surface of this sphere. In this region, two-color baryon matter reveals properties
similar to those of the Quarkyonic phase. Particular attention in this review is paid to lattice studies
of dense two-color QCD phase diagram. In the low-density region, the results of lattice studies are in
agreement with ChPT predictions. At sufficiently large baryon densities, lattice studies observe a
Fermi sphere composed of quarks and condensation of diquarks on its surface. Thus, available lattice
studies support most of the theoretical predictions. Finally, we discuss the status of the deconfinement
in cold dense two-color matter, which was observed in lattice simulation with staggered fermions.

Keywords: QCD phase diagram; sign problem; QCD-like theories; two-color QCD; baryon density;
lattice simulation of QCD

1. Introduction

Despite decades of continuous study, the QCD phase diagram attracts considerable
attention from various theoretical and experimental groups. The phase diagram in the
temperature—baryon density plane is very interesting in itself and particularly important
for different astrophysical applications. In addition to theoretical studies, QCD at finite
baryon density can be explored in modern heavy ion collision experiments. In particular,
the region of the phase diagram with high temperature and small baryon density is well
explored at the Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC),
while the physical programs of the future Facility for Antiproton and Ion Research (FAIR)
and Nuclotron-based Ion Collider Facility (NICA) are focused on large baryon density and
small temperature.

QCD is a very complicated, strongly correlated system, and the first-principles the-
oretical study of its properties is not possible today (the current status of different QCD
studies can be found in the modern review [1]). Numerous theoretical works use some
simplifying approximations, which lead to uncontrolled systematic uncertainties [1–11].
As a result, lattice simulation has become the most promising method for studying QCD.
This approach is based on the first-principles of quantum field theory. The uncertainties of
lattice simulation are under control, and they can be systematically reduced.

Due to the substantial contribution of lattice simulation, one has reached a rather good
understanding of QCD properties at zero and finite temperatures. Unfortunately, lattice
studies of QCD at finite baryon density are plagued by the sign problem. The essence of
this problem is that the fermion determinant that accounts for dynamical quarks becomes
complex, and the method of importance sampling cannot be applied directly in this region
of the phase diagram. There are few possibilities to overcome the sign problem. For instance,
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lattice simulation with imaginary chemical potential [12], complex Langevin [13], Lefschetz
thimble [14], and density of states method [15]. Some of these approaches allow the study
of QCD at small baryon densities, leaving the region of larger densities inaccessible, while
others cannot be considered reliable. Due to this, we have a poor understanding of QCD
properties at moderate and large baryon densities.

Since direct lattice simulation of QCD at finite baryon density is impossible today, one
can try to study QCD-like theories where there is no sign problem. Among such theories,
one could mention QCD at finite isospin density [16–18], two-color QCD with fundamental
quarks [19,20], QCD with an arbitrary number of colors but adjoint quarks [20], and QCD
with the G2 gauge group [21,22]. In this paper, we are going to focus on two-color QCD
with fundamental quarks at finite baryon density. Due to the pseudo-reality of the quark
fields, the fermion determinant is positive for an even number of flavors, and there is no
sign problem in this case.

Two-color and tree-color QCD have important distinctions. For instance, the chiral
symmetry groups (see below) of both theories are different. Consequently, one can ex-
pect different phases and phase transitions in these theories. In addition, the baryons
in two-color QCD are bosons, in contrast to three-color QCD, where they are fermions.
Nevertheless, in spite of these distinctions, both theories have a lot of common proper-
ties, and lattice simulation of two-color QCD can give important information about the
properties of dense tree-color QCD. Specifically, in both theories, there are confinement
and chiral symmetry-breaking phenomena at low temperatures, which turn to decon-
finement and restoration of chiral symmetry at higher temperatures. Furthermore, the
values of some physical observables in both theories agree within a few dozen percent,
implying that the characteristic scales of the theories are close to each other. For instance,
ΛMS/

√
σ, glueball masses, topological susceptibility, and critical temperatures of the con-

finement/deconfinement transition [23]. The meson spectrum measured on the lattice is
close to each other in both theories [24].

Besides the measurements of different observables, lattice simulation of dense two-
color QCD can provide us with some clues about phenomena that are believed to take
place in dense three-color cases. As an example, let us consider the condensation of
diquarks in dense matter. In both theories, at sufficiently large densities, the Fermi sphere
composed of quarks is formed. This sphere is unstable with respect to the formation of the
diquark condensate [25–27]. In the tree-color QCD, this condensate is not a color singlet,
which differs from two-color QCD. In spite of this difference, the mechanism for BCS
gap formation at high density is the same in both theories [27,28]. The other phenomena
that might take place in dense mater under both theories are the condensation of the
ρ-meson [29,30] and the restoration of the UA(1) symmetry [31,32].

In recent years, there have been a lot of lattice studies devoted to different aspects
of dense two-color QCD. As examples, one could mention the studies of the equation of
state [33–35], the interaction potential of static quarks [36–41], quark propagator and gluon
correlation functions [42–44], the velocity of sound in dense matter [45], electromagnetic
conductivity [46], the chiral separation effect at finite density [47], etc. It is worth men-
tioning that in addition to numerous lattice studies of dense QC2D, QCD at finite isospin
density was studied on the lattice very intensively. In particular, the phase diagram of this
QCD-like theory was studied in papers [48–56]. Furthermore, there are recent studies of the
equation of state [57], anomalous transport phenomena [58], and the velocity of sound [57].
In this review, we are going to focus on modern theoretical and lattice results concerning

our understanding of the phase diagram of dense two-color QCD at low temperatures.
This paper is organized as follows. The next section is devoted to theoretical predic-

tions on the dense two-color QCD phase diagram. Conditionally, one can divide the phase
diagram into low, moderate, and large density regions. The low baryon density region
is believed to be described by chiral perturbation theory (ChPT). At moderate densities,
ChPT is not applicable because of the strong interaction between diquarks. To study dense
matter in this region, one applies different effective models that give consistent results. In
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particular, they predict the formation of the Fermi sphere and the condensation of diquarks
on the surface of the Fermi sphere. In this region, the system under consideration has a
number of properties similar to the Quarkyonic Phase [59]. Finally, at very large density the
Fermi sphere has already been formed, one can find the energy gap in the fermion spectrum
and the spectrum of the lightest boson excitations. Because the diquark condensate is a
color singlet, theory predicts that the system under study stays in the confinement phase
for arbitrary baryon density.

In Section 3, we review the results of lattice studies of dense two-color QCD phase
diagrams. Recent studies employ staggered and Wilson discretizations for lattice fermion
action. We discuss and compare the lattice results on the phase diagrams which were
obtained within both approaches. It is found that most lattice results are consistent with
each other and with the results of theoretical studies. The only disagreement with the
theory is the deconfinement at large baryon densites observed in lattice simulations with
staggered fermions. In Section 3, we discuss a possible explanation for this disagreement.

2. Theoretical Study of the Dense QC2D Phase Diagram
2.1. QC2D at Low Densities

The low-energy properties of quantum field theory are determined by the lightest
degrees of freedom in this theory. In three-color QCD, the lightest degrees of freedom
are Goldstone bosons, which can be described by ChPT [60–62]. This effective theory is
model-independent and based on the symmetry properties of the quark action. In tree-color
QCD, the baryons cannot be described by ChPT since the mass of the lightest baryon is of
the order of the scale of the chiral symmetry breaking. This is not the case for two-color
QCD (QC2D). Due to the pseudo-reality of the quark fields, the chiral group is larger than
that in the case of three colors. It contains the generator related to the baryon charge, which
makes the lightest baryons, the Goldstone bosons. For this reason, it is possible to carry
out the study of low-density QC2D within model-independent symmetry-based effective
theory [18–20]. In this subsection, we review this effective theory and its predictions.

We start from the QC2D Lagrangian with N f -fundamental fermions. (In this section,
we follow [20]. Notice also that throughout this paper, it is assumed that the number of
quark flavors is even. QC2D with an odd number of quark flavors might have a different
phase diagram).

L = q̄γµDµq = i
(

q∗L
q∗R

)T(
σµDµ 0

0 −σ+
µ Dµ

)(
qL
qR

)
, (1)

where the following designations were used: σµ = (−i, σk) with the Pauli matrices
σk, k = 1, 2, 3 acting on the spinor indices, Dµ = ∂µ + iAµ with Aµ = Aa

µτa/2 are the
matrices of color algebra, q̄ = q+γ0, the quark flavor and color indices are suppressed.
Notice that we work in Euclidean space with hermitian γ-matrices.

In the tree-color QCD, the chiral symmetry of the Lagrangian (1) is U(N f )×U(N f ) =
SU(N f )× SU(N f )×UV(1)×UA(1). The UA(1) is explicitly broken by the axial anomaly,
whereas the baryon symmetry UB(1) remains. Due to pseudo-reality, the chiral group in
QC2D is larger than U(N f )×U(N f ). This can be shown as follows. For two fundamental
colors, the complex conjugate field q̃R = σ2τ2q∗R transforms similarly to the qL. This allows
us to rewrite the Lagrangian as

L = i
(

q∗L
q̃∗R

)T(
σµDµ 0

0 σµDµ

)(
qL
q̃R

)
= Q+σµDµQ, (2)

where we have introduced the 2N f -components spinor

Q =

(
qL

σ2τ2q∗R

)
=

(
qL
q̃R

)
(3)
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It is seen from Equation (2) that the chiral symmetry of QC2D is SU(2N f )×UA(1).
As in the case of three colors, the axial anomaly breaks the axial symmetry UA(1) and we
are left with the SU(2N f ).

The chiral condensate 〈q̄q〉 plays an important role. In the case of two or three col-
ors, the chiral condensate is not zero in vacuum, leading to chiral symmetry breaking.
The transformation properties of the chiral condensate with respect to the chiral group
SU(2N f ) can be understood if one rewrites the condensate in terms of the field Q

q̄q =

(
q∗L
q∗R

)T(0 1
1 0

)(
qL
qR

)
=

1
2

QTτ2σ2

(
0 −1
1 0

)
Q + h.c. (4)

It is seen from this formula that the chiral condensate is invariant only if the transformation
of the quark fields belongs to the Sp(2N f ) group. The number of broken generators of the
SU(2N f ) is 2N2

f − N f − 1 which, according to Goldstone’s theorem, equals the number of
the Goldstone bosons. The theory with two flavors is important for some lattice applications.
In this case, there are five Goldstone bosons: three pions, one diquark, and one antidiquark.
The last two particles are baryon and antibaryon in QC2D.

The effective theory for the Goldstone bosons can be built if one introduces the
condensate Σij ∼ QiQj. Let us Σc is the condensate in the thermodynamic equilibrium.
The SU(2N f ) group transformation U modifies this condensate as

Σ = UΣcUT . (5)

The U transformation can be represented in the following form

U = exp
(

i
Φ
2F

)
, Φ =

φaTa√
2N f

, (6)

where φa are the Goldstone modes, the Ta are the generators which belong to the coset space
SU(N f )/Sp(2N f ): TaΣc = ΣcTT

a . In the normalization of the generators we follow [20].
The requirement that the effective action should be invariant under the action of

the SU(2N f ) transformations fixes its form to the leading order approximation in the
derivatives expansion

L =
F2

2
Tr(∂µΣ+)(∂µΣ). (7)

It causes no difficulties to extend our study to the QC2D Lagrangian which contains
the fermion mass m and the chemical potential µ

L = q̄γµDµq− µq̄γ0q + mq̄q. (8)

In terms of the N f -components spinor (3) this Lagrangian has the following form

L = iQ+σµ(Dµ − µBµ)Q−m
(1

2
QTσ2τ2M̂Q + h.c.

)
, (9)

where we used the designation Bµ = (B, 0),

M̂ =

(
0 1
−1 0

)
, B =

(
1 0
0 −1

)
(10)

One can see from (9) that the mass term breaks the SU(2N f ) to Sp(N f ) explicitly.
However, the SU(2N f ) can be restored if in addition to the transformation: Q → VQ,
Σ→ VΣVT , the mass term transforms as M̂→ V∗M̂V+.
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Furthermore, let us focus on the term that introduces nonzero baryon density to the
system. It is clear that the B accounts the baryon charge of the ψL and ψ̃R fields and it
is the generator of the SU(2N f ) group. So the baryon density term is not a singlet, and
it transforms in the adjoint representation of SU(2N f ) group. For m = 0 case baryon
density operator explicitly breaks SU(2N f ) to SUL(N f )× SUR(N f )×UV(1). In the case of
nonzero fermion masses, the symmetry breaking pattern is SU(2N f ) to SUV(N f )×UV(1).

The effective action for the Lagrangian (9) can be built if one extends the global
symmetry of the mass term to the local one.

Q→ VQ, Bµ → VBµV+ − 1
µ

V∂µV+, M̂→ V∗M̂V+ (11)

One can check that this is the symmetry of the Lagrangian (9), and it can be used to
construct the effective theory at nonzero chemical potential. To do this, we replace the
usual derivatives with the covariant ones.

∇µΣ = ∂µΣ− µ(BµΣ + ΣBT
µ )

∇µΣ+ = ∂µΣ+ − µ(Σ+Bµ + BT
µ Σ+) (12)

With these derivatives the effective Lagrangian can be written in the following from

L =
F2

2
Tr(∇µΣ+)(∇µΣ+)−mGReTr(M̂Σ) (13)

As a result of explicit chiral symmetry breaking, the mass term gives nonzero masses
to the Goldstone bosons. The expression for these masses can be derived if one accounts for
the fluctuations of the condensate Σ over the directions, which modifies the Σc. A simple
calculation gives the mass m2

π = mG/F2 for all 2N2
f − N f − 1 Goldstone bosos. Taking into

account the last expression, the effective Lagrangian can be written as

L =
F2

2
[
Tr(∇µΣ+)(∇µΣ+)− 2m2

π ReTr(M̂Σ)
]

(14)

In order to study the phase transitions in the system under investigation one can
consider the static part of the Lagrangian (14)

Lstat =
F2m2

π

2
(−x2Tr[ΣBΣB + BB]− 2ReTr(M̂Σ)) (15)

In the last formula we have used the designation x = 2µ/mπ .
At zero chemical potential, i.e., x = 0, the minimum of the static potential (15) is

realized at Σ = Σc = M̂+. At large chemical potential, i.e., x = ∞, the Σ at the minimum
can be written as

Σd =

(
iI 0
0 iI

)
, (16)

where I is the antisymmetric N f × N f matrix

I =
(

0 −1
1 0

)
(17)

From the static part of the action (15), it is clear that the minimum has a degeneracy.
For the N f = 2 case, the condensate can be rotated by the generator B. Furthermore,
the condensate Σd violates the UV(1) and gives rise to the massless Goldstone mode.
In the case N f > 2, more than one generator changes the condensate, and there are
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additional massless Goldstone modes. For m = 0 the SUL(N f )× SUR(N f ) is broken to
SpL(N f )× SpR(N f ). For m 6= 0 the symmetry breaking pattern is SUV(N f )→ SpV(n f ).

For arbitrary values of the chemical potential, the condensate can be written in the
following form:

Σ = Σc cos α + Σd sin α (18)

With this form of the condensate the static part of the Lagrangian can be written as

Lstat = F2m2
π N f

[
x2

2
(cos 2α− 1)− 2 cos α

]
(19)

The minimum of this action is realized at

α =

{
0, if x < 1
arccos 1

x2 , if x > 1
(20)

It is seen from these formulas that in the region µ > mπ/2 the variation of the µ leads to the
rotation of the condensate from Σc to Σd. The Σd dynamically breaks the baryon symmetry
of the system. So there is a second-order phase transition in the system under investigation
at µ = mπ/2. At this value of chemical potential, the lightest baryon, which is composed of
two quarks (diquark), becomes massless, and Bose-Eistein condensate (BEC) of diquark is
formed. For N f > 2 there are N f (N f − 1)/2 baryons that become massless after the phase
transition. It has become commonplace to call the region of the phase diagram µ < mπ/2
the hadronic phase, while the region µ > mπ/2 the BEC phase.

In QC2D, it is possible to introduce a gauge-invariant diquark source term

−i
j
2

qTCγ5τ2 Iq + h.c. = − j
2

QTσ2τ2

(
iI 0
0 iI

)
Q + h.c., (21)

where the matrix I is defined in formula (16). This term plays a role similar to the external
field in the Landau theory of second-order phase transitions. In lattice simulations, the
inclusion of the diquark source into the quark action is important since it allows one to
study the phase transitions in a finite volume.

The mass term and the diquark source term belong to the same multiplet of the
SU(2N f ) group, and the sum of these two terms can be written in the following form:

mq̄q− i
j
2
(
qTCγ5τ2 Iq + h.c.

)
= −1

2
QTσ2τ2MφQ, (22)

where

Mφ = mM̂ + jJ =
√

j2 + m2(M̂ cos φ + J sin φ), tan φ =
j

m
(23)

With the diquark source the effective Lagrangian is given by the Equations (14) but with the
replacements M̂→ Mφ, m2

π →
√

j2 + m2G/F2. Similarly to the j = 0 case the condensate
at the minimum can be represented in the form (18). The Lagrangian for this ansatz is

L = F2m2
π N f

[
x2

2
(cos 2α− 1)− 2 cos(α− φ)

]
, (24)

One can find the minimum of this action with respect to the α angle and write the equation

x2 cos α sin α = sin(α− φ). (25)

At zero φ this equation is reduced to Equation (20). Nonzero value of the j leads to a
nonzero value of the α for arbitrary chemical potential, i.e., there is a contribution of the
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Σd even at µ = 0. The diquark source term breaks SUV(N f )×UV(1) to SpV(N f ) explicitly,
and there is no phase transition in such a theory.

The results shown in this section allow us to calculate the dependence of the chiral
condensate, the diquark condensate, and the quark number density. Differentiating the
vacuum energy Ev one gets

〈q̄q〉 = −∂Ev

∂m
, 〈qq〉 = −∂Ev

∂j
, nq = −∂Ev

∂µ
(26)

Usually, these quantities are used to study the phase diagram of dense QC2D. In addition,
to study possible confinement/deconfinement transitions in dense matter, one employs the
Polyakov loop and the string tension.

The vacuum energy can be calculated if one substitutes the condensate (18) to the
static part of the action. Thus, one gets

〈q̄q〉 = 2N f G cos α, 〈qq〉 = 2N f G sin α, nq = 8N f F2µ sin2 α (27)

These formulas have a quite simple form if one ignores the diquark source term. In the
region µ < mπ/2 the chiral condensate does not depend on µ and the diquark condensate
as well as the quark number density are zero. In the region µ > mπ/2

〈q̄q〉 = 〈q̄q〉0
(

mπ

2µ

)2

, 〈qq〉 = 〈q̄q〉0

√
1−

(
mπ

2µ

)4

, n = 8µN f F2
(

1−
(

mπ

2µ

)4)
(28)

In Figure 1, we plot the dependence of the chiral condensate, the diquark condensate, and
the quark number density on chemical potential. It is seen from this plot that the diquark
condensate and the quark number density are zero before the phase transition and develop
a nonzero value in the BEC phase. The chiral condensate does not depend on chemical
potential in the hadronic phase and drops with chemical potential in the BEC phase.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
2µ/mπ

0.0

0.2

0.4

0.6

0.8

1.0

〈q̄q〉
〈q̄q〉0
〈qq〉
〈q̄q〉0

nq
16NfF 2mπ

Figure 1. The dependence of the chiral condensate, the diquark condensate, the quark number
density on chemical potential in mπ/2 units.

In this section, we have considered the N f -fundamental femions, but it is possible to
carry out a similar analysis for adjoint fermions [20]. There are some differences into the
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analysis for adjoint fermions. In particular, the symmetry-breaking patterns differ from
those of the fundamental fermions. However, most of the results remain the same.

2.2. QC2D at Moderate Densities

The predictions of ChPT reviewed in the previous subsection are valid for sufficiently
small values of chemical potential. After the phase transition µ > mπ/2 two-color dense
matter consists of weakly interacting dilute diquark gas. If one increases the baryon density,
the interactions between diquarks become stronger, and one should include higher-order
corrections to the leading-order ChPT results. The next-to-leading order corrections were
considered in paper [63]. The results concerning the phase transition in dense QC2D are
similar to those presented in the last section. In particular, there is a second order phase
transition that takes place at µ = mπ/2. After the phase transition the diquark condensate
and baryon density develop nonzero values, whereas the chiral condensate drops. At the
next-to-leading order, the formulas for the observables (26) become rather cumbersome,
and we do not show them here.

The calculation of higher-order corrections within ChPT is a very complicated task.
In addition to the loop corrections, one has to account for higher-order terms in the ChPT
Lagrangian (14). The number of these terms quickly grows with the order of the correction.
Consequently, one can draw the conclusion that ChPT is inappropriate to study QC2D
matter at moderate and large densities. Thus, one needs other theoretical models to study
the theory in this regions.

An interesting perspective on the phase structure of dense QCD at large Nc was
proposed in paper [59]. At small chemical potentials, the baryon density is zero, the chiral
symmetry is broken, and the system is in the confinement phase. At µ ∼ MN/Nc, where
MN is the baryon mass, the baryon density acquires a nonzero value, and the system reveals
the properties of weakly interacting dilute baryon gas. However, since the interaction
between baryons is strong ∼ Nc, the region in µ, where the baryon gas is dilute and weakly
interacting, is narrow, and with increasing chemical potential the system becomes dense
matter. In the region µ > MN/Nc the Fermi sphere composed of baryons is forming,
the chiral symmetry is broken, and the system is in confinement phase. At µ > ΛQCD the
matter is very dense. The authors argued that in these region there appears a Quarkyonic
phase. In this phase, the wave functions of baryons considerably overlap between each
other. Hence, an individual quark no longer belongs to a particular baryon, and the baryon
Fermi sphere turns into the quark Fermi sphere. It is expected that in this region, chiral
symmetry is restored, but the system is in the confinement phase. Due to the confinement,
one can expect that the core of the Fermi sphere is composed of quarks while the surface
of the sphere is composed of baryons. Finally, at very large chemical potentials, there is
deconfinement transition in dense matter. Clearly, Nc = 2 is far from the large Nc limit,
but the picture proposed in [59] might be qualitatively valid for dense QC2D.

The properties of QC2D at moderate densities were studied theoretically within the
following approaches: the NJL model (Here we would like to mention the NJL studies of
QC2D at various chemical potentials [64–67]) [32,68–70], the Functional Renormalization
Group [71,72], and random matrix theory [73,74]. These theoretical works and CHPT
predictions at low densities give a picture of the phase diagram that is partly consistent
with the predictions of the paper [59]. In particular, at low density, the system under
investigation is in the hadronic phase. An important difference between the two theories
results from the fact that baryons, which are diquarks in QC2D, are bosons, whereas they
were assumed to be fermions in paper [59]. Due to this difference, there is a second-
order phase transition and condensation of baryons in QC2D at µ = mπ/2. In the region
µ > mπ/2 the system is in the BEC phase, which is similar to the dilute baryon gas at
sufficiently low densities. Notice that the statistics of baryons might not be so important
for some properties of quark matter at sufficiently large densities. One can expect that
two-color quark matter at sufficiently large density reveals the properties of the Quarkyonic
phase. Specifically, in QC2D, instead of the Fermi sphere composed of baryons, there is a
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condensate of diquarks. For sufficiently large densities, the wave functions of diquarks
start to overlap, and an individual quark no longer belongs to a particular diquark (baryon).
In this region the Fermi sphere composed of quarks is forming. As in the case of large Nc
quarks located inside the Fermi sphere and baryons, which are diquarks in QC2D, are on its
surface. These diquarks form a condensate, and the theory has a lot of common properties
with the Bardeen-Cooper-Schrieffer theory. Usually, the phase of two-color dense matter
in this region is called the BCS phase. The chiral symmetry breaking in the BCS phase is
expected to exist due to the nonzero quark mass m. In the chiral limit m → 0 there is no
chiral symmetry breaking in QC2D at sufficiently large densities. Effective theories predict
that dense two-color quark matter in this region is in the confinement phase. However,
some lattice studies observed deconfinement at sufficiently large densities. The question
of confinement/deconfinement transition in dense QC2D observed in some lattice studies
will be discussed in the next section. Schematically, the phase diagram of dense two-color
QCD is shown in Figure 2.

Figure 2. Low temperature phase diagram of dense two-color QCD. At low density the system
is in hadronic phase. At µ = mπ/2 the system undergoes a second order phase transition with
Bose-Eistein condensation of diquarks. At larger density quark matter becomes sufficiently dense
and turns to the BCS phase.

2.3. QC2D at Large Densities

Finally, let us consider the region of large baryon density: µ� ΛQCD. In this region,
the strong coupling constant αs(µ) is small, the Fermi sphere has been formed, the system
is in BCS phase, and quarks near the Fermi surface acquire a mass gap ∆. It is expected that
quarks on this surface form a scalar condensate, which coincides with the diquark source
operator: 〈qq〉 = 〈qTCγ5τ2 Iq〉 [74]. The symmetry breaking pattern in this case has already
been discussed in Section 2.1. In the massless limit, the symmetry-breaking pattern is

SUL(N f )× SUR(N f )×UV(1)×UA(1)→ SpL(N f )× SpR(N f ), (29)

while for nonzero quark mass m it is

SUV(N f )×UV(1)→ SpV(N f ). (30)

The Goldstone theorem demonstrates that for N f > 2 in the massless case, there are
N2

f − N f − 2 massless bosons due to the SUL,R(N f )→ SpL,R(N f ) symmetry breaking and
one massless boson due to the UV(1) symmetry breaking. At small density, the UA(1)
symmetry is broken due to the anomaly, and η′ meson becomes massive. At large density
µ� ΛQC2D the anomaly does not play an important role [75] and η′ can be considered as
pseudo-Goldstone boson. In the case of nonzero quark mass, there are (N2

f − N f − 2)/2
massless Goldstone bosons due to the SUV(N f )→ SpV(N f ) symmetry breaking and one
massless boson due to the UV(1) symmetry breaking. The rest (N2

f − N f − 2)/2 bosons
and the pseudo-Goldstone boson η′ acquire a mass ∼ m∆/µ [74]. In the case N f = 2 there
is one massless mode due to the UV(1) symmetry breaking and one pseudo-Goldstone
boson η′ with the mass ∼ m∆/µ. Based on the symmetry arguments, it is possible to build
an effective theory that describes the dynamics of the Goldstone/pseudo-Goldstone bosons
at high density [74]. In this paper, we are not going to review this question since it does not
give us new information about the QC2D phase diagram.
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Furthermore, let us consider the mass gap of quarks near the Fermi surface. The mass
gap ∆ was calculated in paper [27]. For the two-color case [28], it can be written as

∆ ∼ cµ
1

g5(µ)
exp

(
− 2π2

g(µ)

)
(31)

where g(µ) is the running coupling constant. This formula determines the hierarchy of
scales at large densities

ΛQC2D � ∆� µ (32)

Since ∆� ΛQC2D quarks become heavy and the gluon sector of the theory decouples from
the quark one. Taking into account the fact that the diquark condensate is a color singlet,
in QC2D, the gluons do not acquire mass due to their interaction with the condensate.
The interactions of gluons with the Goldstone bosons appear because of higher-order QCD
corrections, which are suppressed due to the small value of the αs(µ). Consequently, the
low-energy-effective theory in this case is the two-color Yang-Mills theory, which is in the
confinement phase at low temperatures.

3. Lattice Study of Dense QC2D Phase Diagram

QCD is a very complicated, strongly interacting theory. Therefore, all theoretical
approaches to QCD are based on some approximations, leading to uncontrollable sys-
temic uncertainties in their results. This problem is absent in lattice simulation of QCD,
which proved to be an efficient and reliable approach to studying of QCD at zero and
final temperature. Unfortunately, numerical simulations at finite baryon density are spoilt
by a well-known sign problem. The essence of this problem is that in three-color QCD
at nonzero baryon density, which is introduced to the theory through chemical potential,
the fermion determinant becomes complex. Lattice simulation algorithms based on impor-
tance sampling do not work in this case. It is possible to overcome the sign problem if the
baryon density is small [76]. However, lattice study of sufficiently dense baryon matter for
three-color QCD is not possible today.

Contrary to the three-color case, QC2D is free from the sign problem, because of the
pseudo-reality of the SU(2), the fermion determinant is real in this theory. This can be
shown as follows. In QC2D, the Dirac operator D(µ) = γνDν + µγ0 obeys the property:
D(µ)τ2Cγ5 = τ2Cγ5D∗(µ). In addition, the inclusion of chemical potential does not spoil
the chiral symmetry: D(µ)γ5 + γ5D(µ) = 0. As a result, if λ is the eigenvalue of the Dirac
operator, than the −λ, λ∗,−λ∗ are its eigenvalues also. Hence the fermion determinant is
real. Notice, however, that if λ is real and degenerate, the fermion determinant might be
negative, and this leads to a sign problem as well. Nevertheless, if one considers an even
number of fermions, there is no sign problem, and one can apply lattice simulation to study
dense QC2D.

The first lattice study of dense QC2D was carried out in [77]. Later works can be
divided into two groups. The works in the first group were carried out with staggered
fermion action, whereas the other works used Wilson fermions. In this section, the results
of both approaches will be reviewed.

There are important advantages and disadvantages inherited to both approaches.
Let us review some of them. An important shortcoming of staggered fermions is that at
finite lattice spacing, the chiral symmetry breaking pattern in this case corresponds to
adjoint fermions rather than to the fundamental ones [78,79]. However, it seems that in the
continuum limit, staggered fermions reproduce correct chiral symmetry (see discussion
below). Notice that the low-density phases predicted by ChPT and formulas (27) are valid
both for fundamental and adjoint fermions. Accordingly, even at finite lattice spacing, one
can study the BEC phase transition and describe lattice data using formulas (27). What
concerns Wilson fermions is that the chiral symmetry is explicitly broken and restored only
in the continuum limit. Explicitly broken chiral symmetry leads to lattice artifacts and



Symmetry 2023, 15, 1466 11 of 24

difficulty in studying the BEC transition with Wilson fermions. In particular, there is a
problem with the measurement of the chiral condensate, and the application of formulas (27)
to lattice data. An important advantage of staggered as compared with Wilson fermions is
more rapid numerical calculations in the former case. This allows us to study dense QC2D
at smaller lattice spacing. Due to the saturation effect, one can expect significant lattice
artifacts in the region aµ > 0.5. Consequently, in addition to closeness to the continuum
limit, smaller lattice spacing accessible to staggered fermions gives the opportunity to study
QC2D at larger chemical potentials without lattice artifacts. For instance, a recent lattice
study with staggered femions [34] allows reaching the chemical potentials up to µ ∼ 2 GeV,
while recent simulations with Wilson fermions [35,80] cover the region up to µ ∼ 1 GeV.

Before we proceed to the review of lattice results, it is worth mentioning that the data
to be shown below were obtained in lattice simulations with different lattice parameters
and different lattice actions. Therefore, the numerical values of different observables might
not coincide in their numerical values. However, probably at this stage of lattice studies,
the qualitative phase structure of dense QC2D is more important than the exact values of
these observables.

3.1. Lattice Study of Dense QC2D Phase Diagram with Staggered Fermions

The lattice action used in the simulations can be written as a sum of S = SG + SF,
where SG is the action for gluon fields and SF is the staggered fermion action. Typically, for
the SG one uses the Wilson action or one of its improvements. What concerns the staggered
fermion action can be written in the form

SF = ∑
x,y

ψx M(µ, m)x,yψy +
j
2 ∑

x

(
ψT

x τ2ψx + ψxτ2ψ
T
x

)
, (33)

Mxy = maδxy +
1
2

4

∑
µ=1

ηµ(x)
[
Ux,µδx+µ̂,yeµaδµ,4

− U†
x−µ̂,µδx−µ̂,ye−µaδµ,4

]
. (34)

where ψ, ψ are staggered fermion fields, a is the lattice spacing, m is the bare quark mass,
and ηµ(x) are the standard staggered phase factors: η1(x) = 1, ηµ(x) = (−1)x1+...+xµ−1 ,
µ = 2, 3, 4. The chemical potential µ is introduced into equation (34) through the multipli-
cation of the links along and opposite to the temporal direction by factors e±µa respectively.
This way of introducing the chemical potential makes it possible to avoid additional
divergences and reproduce well-known continuum results [81].

In addition to the standard staggered fermion action, one adds the diquark source
term to the Equation (33). The diquark source term explicitly violates UV(1) and allows
to observe diquark condensation even on finite lattices. Usually the results of numerical
simulations are obtained as follows: one carries out simulations at a small but nonzero
parameter j � ma, and then extrapolates the obtained data to j → 0. Some studies are
carried out at one value of the j which is close to the limit j→ 0.

Integrating out the fermion fields the partition function for the theory with the action
S = SG + SF can be written in the form

Z =
∫

DUe−SG · P f
(

jτ2 M
−MT jτ2

)
(35)

=
∫

DUe−SG ·
(
det(M† M + j2)

) 1
2 .

Note that the pfaffian P f is strictly positive, and one can use Hybrid Monte-Carlo methods
to study this system.

In the form (36) the partition function corresponds to N f = 4 fermions in the contin-
uum limit. Lattice simulation of dense QC2D with the partition function (36) was carried
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out in papers [82–85]. The authors of paper [79] studied fundamental and adjoint fernions
with N f = 4 and N f = 8 in the continuum. More recent studies of dense QC2D phase
diagrams [34,86–88] were carried out with the partition function

Z =
∫

DUe−SG ·
(
det(M† M + j2)

) 1
4 , (36)

which corresponds to N f = 2 fermions in the continuum limit.
It is known that the symmetries of the staggered fermion action are different from

those of two-color QCD with fundamental quarks [78,79]. In particular, the symmetry-
breaking pattern of QC2D with fundamental quarks is SU(2N f )→ Sp(2N f ), whereas for
staggered quarks it is SU(2N f )→ O(2N f ). However, in the naive continuum limit a→ 0
the partition function (36) corresponds to N f = 2 dynamical fermions in the fundamental
representation. This can be shown as follows. Without the diquark source term, the quark
action for staggered fermions has the following form [89]:

∑
x,y

ψx M(µ, m)x,yψy

∣∣∣∣
a→0

=
∫

d4x q̄i
(
γµDµ + m+µγ4

)
qk ×

(
1̂ 0
0 1̂

)
ik
+ O(a) , (37)

where q̄, q are quark fields, the color and Dirac indices are suppressed, whereas the taste
indices i, k are shown explicitly, 1̂ is the 2× 2 unity matrix and the summation over indices
i, k is tacitly assumed. The formula (37) implies that in the continuum limit there are
four copies of fermions, i.e., all tastes are degenerate up to O(a) correction. Using the
standard staggered technic [89] it is straightforward to obtain the diquark source term in
the continuum limit

j
2 ∑

x

(
ψT

x τ2ψx + ψxτ2ψ
T
x

)∣∣∣∣
a→0

=
j
2

∫
d4x

(
qT

i Cγ5τ2qk + q̄iCγ5τ2q̄T
k
)
×
(

σ2 0
0 σ2

)
ik

.

It may be seen that in the naive continuum limit for the diquark source term, we have two
copies of N f = 2 fundamental fermions. Thus, one can expect that in the naive continuum
limit, the partition function (36) corresponds to QC2D with N f = 2 fundamental fermions.

In addition to the naive continuum limit, one can study the β-function, which depends
on the symmetries and degrees of freedom in the system. In paper [86], it was shown that
for sufficiently small lattice spacing, the dependence of the lattice spacing-a on the inverse
coupling constant β = 4/g2 can be well described by the two-loop β-function of QC2D
with two fundamental flavors (see Figure 3).

Finally, the spectrum of the lightest excitations depends on the symmetry-breaking
pattern. The authors of paper [88] conducted a study of the spectroscopy of dense QC2D
with staggered femions. They found that at sufficiently small coupling constants, i.e., in the
continuum limit, lattice theory reproduces the correct spectrum for fundamental fermions.
Taking into account all these facts, one can expect that the partition function (36) in the
continuum limit describes QC2D with N f = 2 fundamental fermions.

Furthermore, let us proceed to lattice studies of the QC2D phase diagram. The authors
of papers [79,82–85,87,88] conducted lattice studies in the region where ChPT is applicable.
The common feature of all these papers is that there is a phase transition at µ = mπ/2.
Before the phase transition, the chiral symmetry is broken; the chiral condensate is not
zero and does not depend on chemical potential. After the phase transition, the diquark
condensate as well as baryon density are not zero, the chiral condensate drops. The de-
pendence of the chiral condensate, diquark condensate, and baryon density on chemical
potential measured in lattice simulations is in good agreement with ChPT. In addition to the
low-density region of the phase diagram, the authors of papers [34,86] studied moderate
densities. Below, the results of ref. [34] will be reviewed.
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Figure 3. The dependence of the lattice spacing-a on the inverse coupling constant β = 4/g2. The data
are fitted by two-loop β-function of QC2D with two fundamental flavors. This figure was taken from
paper [86].

The simulations of [34] were carried out on the lattice 324, at the lattice spacing
a = 0.044 fm, and the pion mass is mπ ∼ 740 MeV. In order to study the properties of dense
matter, the authors measured the following observables:

• The diquark condensate:

a3〈qq〉 = 1
N3

s Nt

∂(log Z)
∂j

, (38)

• The chiral condensate:

a3〈q̄q〉 = 1
N3

s Nt

∂(log Z)
∂(ma)

; (39)

• The quark number density:

a3nq =
1

N3
s Nt

∂(log Z)
∂(µa)

; (40)

The baryon density is a conserved quantity and it does not require renormalization, while
the chiral and diquark condensates require renormalization. It can be shown [34] that
instead of bare formulas for the diquark and the chiral condensates (38), (39) one can use
the following renormalized expressions

Σq̄q =
m

4m2
π F2

[
〈q̄q〉µ − 〈q̄q〉0

]
+ 1 (41)

Σqq =
m

4m2
π F2

[
〈qq〉µ − 〈qq〉0

]
(42)

The value of the parameter F was found from the fit of the lattice data F = 60.8± 1.6 MeV.
The low density results for the renormalized diquark condensate Σqq, the chiral

condensate Σq̄q and the quark number density nq found in paper [34] are presented in
Figures 4–6 correspondingly. In order to study if the results of [34] are in agreement with
ChPT predictions, the lattice data were simultaneously fitted by formulas (25) and (27).
The results of this fit are shown in Figures 4–6. From these figures, one sees that lattice data
are in good agreement with ChPT predictions in the region µ ∈ (0, 540) MeV. The position
of the BEC phase transition can be found from the fitting of the lattice date. Independently,
it can be determined from the measurement of the pion mass mπ and the calculation of
the critical chemical potential according to the CHPT formula µ = mπ/2. In paper [34], it
was shown that both approaches give the same position of the critical chemical potential.
Thus, lattice study of [34] confirms the phase transition with Bose-Einstein condensation of
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diquarks, which takes place at µ = mπ/2 and the applicability of ChPT in the low density
region. Similar results were obtained in papers [79,82–88].

From Figures 4 and 6, it may be observed that in the region µ > 540 MeV the lattice
data for the diquark condensate and quark number density start to deviate from the
leading-order ChPT predictions. The disagreement between lattice results and the leading-
order ChPT predictions is expected. If baryon density is sufficiently large, the interactions
between diquarks cannot be ignored, and the leading order of ChPT is not valid anymore.
The deviation of lattice data from ChPT predictions can be considered as the transition of
the system from a dilute baryon gas to dense quark matter [34].

0.000 0.025 0.050 0.075 0.100 0.125 0.150
µa

0.0

0.2

0.4

0.6

0.8

Σ
qq

0 100 200 300 400 500 600
µ, MeV

Figure 4. The renormalized diquark condensate (42) as a function of chemical potential. Dashed red
line represents the fit by the ChPT formula (27). This figure was taken from paper [34].
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Σ
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Figure 5. The renormalized chiral condensate (41) as a function of chemical potential. Dashed red
line represents the fit by the ChPT formula (27). This figure was taken from paper [34].
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Figure 6. The quark number density as a function of chemical potential. Dashed red line represents
the fit by the ChPT formula (27). This figure was taken from paper [34].

As was written above, for sufficiently large densities, the wave functions of different
diquarks start to overlap. If the density is increased further, an individual quark no longer
belongs to a particular baryon. One can expect that in this region, in some properties, the
system under study is similar to the Bardeen-Cooper-Schrieffer theory [34]. In the BCS
phase, the relevant degrees of freedom are quarks forming a Fermi sphere with the baryon
density given by the expression for relativistic non-interacting quarks n0 = 4µ3/3π2 [34].
The diquarks, which are baryons in QC2D, live on the surface of the Fermi sphere and
form a diquark condensate. So, it is reasonable to expect that in this region, the diqaurk
condensate scales as the surface of the Fermi sphere Σqq ∼ µ2.

In order to find the value of the chemical potential where the BCS phase is formed,
in Figures 7 and 8 the ratios nq/n0 and m2

πΣqq/µ2 are shown. Firstly, let us consider the
ratio nq/n0. In the calculation, the lattice and the continuum expressions for n0 were used.
From Figure 7, it may be observed that in the region µ ∈ (900, 1800) MeV, the ratio nq/n0
goes to a plateau. For the continuum n0 the deviation of the nq/n0 from unity is not more
than 10 %, whereas for the lattice n0 the deviation of the n/n0 from unity amounts to
20 %. The difference between lattice and continuum results for the free baryon density can
be attributed to finite lattice spacing and finite volume effects. What concerns the ratio
m2

πΣqq/µ2, it goes to a plateau in the same region, i.e., the condensation of diquarks takes
place on the surface of the Fermi sphere [34]. From these observations, one can conclude
that in the region µ > 900 MeV, the system under study is in the BCS phase [34]. Notice that
because of different parameters of lattice simulations, other lattice studies might observe
the BCS phase in the region, which is numerically different from that found in paper [34].
For instance, in paper [86], the BCS phase was observed in the region µ > 500–600 MeV.
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Figure 7. The ratio nq/n0 as a function of chemical potential, where n0 = 4µ3/3π2 is the quark num-
ber density for free relativistic quarks in continuum limit (red circles) or on the lattice (blue diamonds).
This figure was taken from paper [34].
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Figure 8. The ratio m2
πΣqq/µ2 as a function of chemical potential, where Σqq is defined in (42). This

figure was taken from paper [34].

At the end of this section, let us consider the chiral symmetry breaking in the chiral
limit for different regions of chemical potential. This question was studied in paper [86].
The bare condensate (41) is more appropriate for this study than the renormalized one (39).
In Figure 9, the bare chiral condensate (39) is plotted as a function of bare quark mass for
different values of chemical potential. The authors of [86] took few values of chemical
potential before the phase transition at µ = mπ/2 (µ = 0, 70, 141 MeV, after the phase
transition (µ = 246, 281, 352 MeV), and one value in the BCS phase (µ = 615 MeV). At these
fixed values of the chemical potential, the data were extrapolated to the chiral limit. It is
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seen from Figure 9 that dynamical chiral symmetry breaking exists before the BEC phase
transition, whereas there is no chiral symmetry breaking in the chiral limit after the BEC
phase transition.
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Figure 9. The chiral limit of the bare chiral condensate 〈q̄q〉/T3, calculated for different values of
the chemical potential. The quark mass is expressed in lattice units. This figure was taken from
paper [86].

3.2. Lattice Study of Dense QC2D Phase Diagram with Wilson Fermions

In this section, the results of the lattice simulation of dense QC2D with Wilson fermions
will be considered. The study of QC2D phase diagrams with Wilson fermions was carried
out in papers [33,35,80,90,91]. The lattice action used in these simulations can be written
as a sum of gauge and fermion actions: S = SG + SF. The action for the gauge fields was
taken either in the Wilson [33,35,90,91] or Iwasaki form [80]. Two flavor Wilson action can
be written as

SF = ψ̄1Mψ1 + ψ̄2Mψ2 + jκ
(
ψT

2 (Cγ5)τ2ψ1 − ψ̄1(Cγ5)τ2ψ̄T
2
)

(43)

Mxy = δxy − κ ∑
ν

(
(1− γν)eµδν4Uν(x)δy,x+ν̂ + (1 + γν)e−µδν4U+

ν (x)δy,x−ν̂

)
, (44)

where ψ1, ψ2 are fermions fields, κ is the hopping parameter.
The phase structure observed through lattice simulation with Wilson fermions is

similar to that with staggered fermions. In particular, the authors observe hadronic phase
µ < mπ/2, BEC phase in the region µ > mπ/2, and BCS phase at sufficiently large density.

As an illustration, let us consider the results of paper [35] obtained on the lattice
163 × 32 with a ' 0.14 fm and the pion mass mπ ' 640 MeV. The ratio 〈qq〉/µ2 as a
function of chemical potential calculated in paper [35] is shown in Figure 10. Analyzing this
plot, one can draw the conclusion that close to the phase transition at µ = mπ/2 the diquark
condensate develops nonzero values. Notice, however, that the diquark condensate is not
zero before the phase transition. This behavior results from the fact that the calculations
were carried out at a finite diquark source j, and it is difficult to extrapolate j → 0 close
to the phase transition. This problem exists for staggered fermions as well, but it seems
that in the latter case it is milder. In the region µ > 500 MeV, there is a plateau, which
signals the onset of the BCS phase. In Figure 11, it is shown the ratio nq/nlat where nq is
the quark number density and nlat is the quark number density calculated on the lattice for
non-interacting quarks. In Figure 11, one sees the same phases as in Figure 10. It is difficult
to take the chiral limit with Wilson fermions since the fermions action in this case breaks
the chiral symmetry explicitly. However, one can confirm that the chiral condensate does
not depend on chemical potential before the BEC phase transition and drops after the BEC
phase transition [80].
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Figure 10. The ratio 〈qq〉/µ2 as a function of chemical potential. The data were taken from paper [35].
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Figure 11. The quark density nq/nlat as a function of chemical potential. The nlat is the quark density
calculated on lattice for the quarks without interactions. The data were taken from paper [35].

3.3. The Quarkyonic Phase and the Deconfinement in Dense Two-Color Quark Matter

The results presented in this section imply that lattice studies carried out with stag-
gered and Wilson fermions give an agreed picture of a dense QC2D phase diagram. In partic-
ular, at low density, the system resides in the hadronic phase. At µ = mπ/2 a condensation
of diquarks takes place, and in the region µ > mπ/2 the system is in the BEC phase. In the
hadronic phase, chiral symmetry is dynamically broken, and it is restored after the BEC
phase transition. At higher baryon density, the system passes into BCS phase. Similarly to
the BEC phase, in the BCS phase the breaking of chiral symmetry can appear due to nonzero
quark mass, i.e., there is no chiral symmetry breaking in the chiral limit. The quark matter
in the BCS phase manifests properties similar to those of the Quarkyonic phase. Indeed,
in this region, the Fermi sphere of quarks is formed, the baryons, which are diquarks in
QC2D, live on the surface of the Fermi sphere, and the chiral symmetry will be restored
in the chiral limit. Notice that up until now, the lattice picture of the dense QC2D phase
diagram is in agreement with the theoretical studies considered in the previous section.

The last property of the Quarkyonic phase is the confinement of quark matter. Theo-
retical works predict that the two-color dense matter reside in the confinement phase at
moderate and high densities (see previous section). Lattice studies with Wilson fermions of
possible confinement/deconfinement phase transitions in dense matter were undertaken
in papers [33,35,36,80,90,91]. Although the authors of papers [90,91] observed the sign of
deconfiement, which consisted in the raising of the Polyakov loop at large baryon density.
More recent studies [35,80] did not confirm this finding, and the Polyakov loop rise was
attributed to lattice artifacts related to saturation. It has been discussed above that one can
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expect such lattice artifacts in the region aµ > 0.5. Taking into account the fact that the
simulations in papers [33,35,36,80,90,91] were conducted at a > 0.1 fm, one can state that
lattice studies with Wilson fermions have not found deconfinement in dense matter in the
region µ < 1 GeV.

Lattice studies with staggered fermions aimed at searching for the deconfinement in
dense matter were conducted in papers [37,38]. These simulations were carried out on
the lattice 322 with a lattice spacing a ' 0.044 fm, which allowed to reach the chemical
potentials up to µ ∼ 2 GeV. The authors of [37,38] observed an increase in the Polyakov
loop with chemical potential and a decrease in the string tension at sufficiently large baryon
densities (see Figures 12 and 13). It is seen from Figure 13 that the string tension becomes
zero in the region µ > 800 MeV, which is the sign of deconfinement.

Figure 12. The Polyakov loop L as a function of chemical potential µ. This figure was taken from
paper [37].

Figure 13. The string tension σ as a function of chemical potential. The σ0 is the string tension at
µ = 0. This figure was taken from paper [37].
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In this study, one comment is in order. The temperature on the lattice 324 used in [37]
is rather large: T = 1/(aNt) = 140 MeV. Nevertheless, at zero chemical potential, there is
an energy gap in the fermion spectrum that is larger than this temperature. As a result, the
fermion fluctuations are exponentially suppressed, and the real temperature is close to zero.
Notice, however, that finite temperature corrections are possible. Due to the Fermi sphere,
at large chemical potentials, the ground state of the system is highly degenerate, and there
is no large energy gap in the fermion spectrum. Hence, even on the lattice 324, there are
thermal fluctuations. Consequently, at large chemical potentials, the temperature on the
symmetric lattice is not zero. Due to this fact, the deconfinement observed in papers [37,92]
might be due to finite temperature effects. This assumption was partially confirmed in
paper [40]. In Figure 14, the results of this paper are shown. It is seen that decreasing
the temperature shifts the confinement/deconfinement transition to larger values of the
chemical potential.
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Figure 14. The string tension σ(µ) as a function of chemical potential calculated at temperatures
T = 103, 124, 140 MeV. The σ0 is the string tension at µ = 0. This figure was taken from paper [40].

To summarize, despite the observation of the confinement/deconfinement transition
at large baryon densities, this transition might be related to finite temperature effects.
To clarify this question, further study is required.

4. Discussion and Conclusions

The study of QCD at finite baryon density is interesting in itself and important for
different astrophysical applications. Lattice simulation of QCD is a very efficient approach,
which has given us a lot of present knowledge about QCD properties. Unfortunately, lattice
simulation cannot be applied in the region of moderate and large baryon densities because
of a well-known sign problem. One of the possible ways to overcome this problem and
gain important information about dense QCD is lattice simulation of QCD-like theories,
which are free from the sign problem. In this paper, we review modern understanding of
dense two-color QCD phase diagrams at low temperatures from a theoretical perspective
and compare theoretical results with recent lattice studies of dense two-color QCD.

From the theory point of view the phase diagram of dense two-color QCD at low
temperatures looks as follows. Conditionally, one can divide the phase diagram into
low, moderate, and large density regions. At low density, the system is in the hadronic
phase. At µ = mπ/2 there is Bose-Einstein condensation of diquarks. In this region,
two-color QCD is well described by chiral perturbation theory. At moderate densities
chiral perturbation theory is not applicable because of the strong interaction between
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diquarks. To study dense matter in this region, one applies different effective models that
give consistent results. In particular, they predict the formation of the Fermi sphere and
the condensation of diquarks on the surface of the Fermi sphere. In this region, the system
under consideration has a number of properties similar to the Quarkyonic Phase. Finally,
at very large densities, the Fermi sphere has already been formed, and one can find the
energy gap in the fermion spectrum and the spectrum of the lightest boson excitations. For
the reason that the diquark condensate is a color singlet, theory predicts that the system
under study stays in the confinement phase for arbitrary baryon density.

Recent studies employ staggered and Wilson fermions to carry out lattice simulations
of two-color QCD. We discussed and compared the lattice results on the phase diagrams
that were obtained with both approaches. It is found that most lattice results are consistent
with each other and with the results of theoretical studies. The only disagreement with the
theory is the deconfinement at large baryon densities observed in lattice simulations with
staggered fermions. A possible source of this disagreement arises from the fact that lattice
simulations are carried out at a finite temperature. This might lead to deconfinement at
large baryon densities. However, to clarify this question, further study is required.
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