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Abstract: The prediction of high-speed traffic flow around the city is affected by multiple factors,
which have certain particularity and difficulty. This study devised an asymmetric Bayesian opti-
mization extreme gradient boosting (BO-XGBoost) model based on Bayesian optimization for the
spatiotemporal and multigranularity prediction of high-speed traffic flow around a city. First, a traffic
flow dataset for a ring expressway was constructed, and the data features were processed based on
the original data. The data were then visualized, and their spatiotemporal distribution exhibited
characteristics such as randomness, continuity, periodicity, and rising fluctuations. Secondly, a feature
matrix was constructed monthly for the dataset, and the BO-XGBoost model was used for traffic flow
prediction. The proposed model BO-XGBoost was compared with the symmetric model bidirectional
long short-term memory and integrated models (random forest, extreme gradient boosting, and
categorical boosting) that directly input temporal data. The R-squared (R2) of the BO XGBoost model
for predicting TF and PCU reached 0.90 and 0.87, respectively, with an average absolute percentage
error of 2.88% and 3.12%, respectively. Thus, the proposed model achieved an accurate prediction of
high-speed traffic flow around the province, providing a theoretical basis and data support for the
development of central-city planning.

Keywords: traffic flow prediction; spatiotemporal characteristics; XGBoost algorithm; bayesian
optimization; Bi-LSTM

1. Introduction

Traffic flow is an important indicator of traffic congestion in transportation, particularly
in densely populated central cities. Predicting traffic flow around urban highways is
essential for economic development planning and cargo transportation in a city. Accurate
prediction of bypass highway traffic flow is crucial for urban economic development
planning, traffic resource utilization, and cargo transportation development; therefore,
bypass highway traffic flow prediction in central cities has become a topic that must
be studied [1–3]. Traffic flow data are influenced by several factors and exhibit strong
randomness and uncertainty [4].

Compared with other traffic flow prediction studies, such as predicting the long- and
short-term traffic flow at a certain intersection or predicting the traffic flow on general
highways [5,6], the difficulty in analyzing traffic flow around urban highways lies in the
following points:

(1) The distribution of entry and exit stations on up-and-down highways is dense, and
the traffic flow varies significantly within short spatial distances.

Symmetry 2023, 15, 1453. https://doi.org/10.3390/sym15071453 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15071453
https://doi.org/10.3390/sym15071453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0002-4634-9446
https://doi.org/10.3390/sym15071453
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15071453?type=check_update&version=1


Symmetry 2023, 15, 1453 2 of 17

(2) Owing to the uneven economic development of central cities and different regional
functional positionings, significant differences exist in the composition of traffic
components and traffic flow between different stations.

(3) Traffic flow around urban highways is easily influenced by various policies and
important urban activities in the central city, and the traffic flow at the same station
varies considerably at different times.

Therefore, several prediction models have been proposed based on the improvement
of evaluation models. To improve the prediction accuracy of traffic flow, this study entailed
the development of an asymmetric Bayesian optimization extreme gradient boosting (BO-
XGBoost) model for the spatiotemporal and multigranularity prediction of high-speed
traffic flow around a key city. The overall framework is shown in Figure 1, highlighting the
following contributions:

(1) First, a dataset of high-speed traffic flow around a city was constructed, and the
data were dimensionalized to expand the data features. By combining the inherent
attributes of randomness, continuity, periodicity, and volatility of high-speed traffic
flow around the city, the data were visualized and their spatiotemporal distribution
characteristics were studied. Different spatial (stations and high-speed entire lines)
and temporal granularities (monthly and annually) were analyzed using annual
periodicity and the intra-year variability of time characteristics of the dataset.

(2) Second, different feature matrices were constructed for traffic flow data and then
input into symmetric bidirectional long short-term memory (Bi-LSTM) and integrated
extreme gradient boosting (XGBoost) models. The prediction accuracy of inputting
time series data into the ensemble learning model after a monthly feature-matrix
analysis was higher than that of directly inputting time series data into the symmetric
Bi-LSTM model. To further improve the prediction accuracy of the integrated XGBoost
model, a Bayesian algorithm was used to optimize the model and obtain optimal
network parameters.
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Prediction analysis was conducted using the proposed model for several traffic dis-
patch stations in Xi’an, a central city in Shaanxi Province in central China, and finally
compared with that by the symmetric Bi-LSTM and ensemble learning models (random
forest, XGBoost, and categorical boosting (Catboost)). The proposed model can provide a
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theoretical basis and data support for the prediction and development planning of high-
speed traffic flows around a central city.

The remainder of this paper is organized as follows. Section 2 presents the literature
review. Section 3 introduces the datasets used in this study. Section 4 introduces the
methods employed in this study, including the XGBoost algorithm, Bayesian optimization,
and the BO-XGBoost models. Section 5 analyzes the results, and Section 6 presents the
conclusions and future work.

2. Literature Review

Several studies have contributed to the field of traffic flow prediction [7–9]. Traditional
machine learning methods have been used [10,11]. Polson et al. developed an architec-
ture that uses a combination of linear models fitted with L1 regularization and tanh layer
sequences to efficiently handle special events, Chicago Bear soccer games, and traffic fore-
casting during snowstorms. The results indicated that the proposed deep learning approach
can capture these nonlinear spatiotemporal effects well [12]. Alajali et al. accurately pre-
dicted intersection traffic by introducing additional data sources to road-traffic volume data
into the prediction model and investigating two types of learning schemes: batch learning
and online learning. They performed their evaluations using publicly available datasets
published by the Victorian government in Australia. They indicated that their proposed
method can improve the accuracy of intersection-traffic prediction by combining infor-
mation on accidents and roads near intersections [13]. These analyses can reflect changes
through quantitative indicators, which are more convincing than subjective experience.

With an increasing focus on machine learning technology in the field of traffic flow
prediction, numerous new methods and techniques have been applied to prediction [14–16].
Based on the established results, further explorations have been conducted based on practi-
cal situations. Using neural network models trained on a significant amount of historical
data, data fluctuations can be accurately learned and data features can be better extracted,
vastly improving prediction accuracy [17]. Wang et al. proposed a short-term traffic flow
prediction method based on a genetic algorithm (GA)-optimized back-propagation neural
network (BPNN); they processed the weights and thresholds of the BP neural network
using a GA and applied the BP neural network to optimally adjust the real-time data
prediction values [18]. Zhang et al. proposed a hybrid prediction framework based on
support vector regression (SVR), which uses random forest (RF) to select the feature subset
with the largest amount of information and enhanced GA with chaotic characteristics
to identify the optimal prediction-model parameters [19]. Wang et al. used SVR as the
main regression model for traffic flow prediction and Bayesian optimization for parameter
selection. They proposed a short-term traffic flow prediction regression framework with
automatic parameter adjustment. Their experimental results indicated that the accuracy
of this method is superior to classic seasonal autoregressive integrated moving average
(SARIMA), multi-layer perceptron neural network (MLP NN), and Adaboost methods [20].
Lu et al. formulated the road network as a dynamically weighted graph through the atten-
tion mechanism, searching for spatial and semantic neighbors to establish more connections
between road nodes, thus proposing a new spatiotemporal adaptive gated graph convolu-
tional network (STAG-GCN) to predict future traffic conditions at several time-steps [21].
However, the graph convolutional network is highly suitable for predicting urban traffic
flow and traffic flow with origin–destination (OD) data.

Time series forecasting models have been used for traffic flow predictions using
historical data with time series characteristics [22]. Fang et al. relaxed the assumption of
prediction error to an arbitrary distribution using a negative bootstrap mixed correlation
entropy criterion and constructed a long short-term memory (LSTM), equipped with a
robust loss function called a free-LSTM network, for short-term traffic flow prediction [23].
Lan Tianhe et al. proposed a prediction model (GWO Attention LSTM) based on the
combination of the optimized attention mechanism and LSTM. The results indicate that
the GWO attention LSTM model has good model performance and can provide effective



Symmetry 2023, 15, 1453 4 of 17

assistance for traffic management control and traffic flow theory research [24]. Symmetry-
based Bi-LSTM networks can overcome the drawback of one-way LSTM networks of
being only able to learn unidirectional information [25,26]. Zhuang et al. proposed a
multistep prediction model based on a convolutional neural network and the Bi-LSTM
model. Experimental results indicated that the Bi-LSTM model improved the prediction
accuracy and reduced the mean absolute error, mean absolute percentage error, and root
mean square error by 30.4%, 32.2%, and 39.6%, respectively, compared with the SVR and
gated recurrent unit models [27].

In the field of integrated learning, recently, XGBoost has performed well in many research
areas because of its good performance and generalization capabilities [28]. Du et al. proposed a
feature-enhanced XGBoost based on LSTM (XGBoost-LSTM) for base-station traffic prediction.
By observing the predicted values, they observed that a simple combination of XGBoost
and LSTM could achieve significant improvements [29]. Sun et al. proposed and improved
their prediction of high-resolution traffic states using the OD relationship of flow data from
upstream and downstream sections of highways. Two improved models were proposed,
namely independent XGBoost (XGBoost-I) with different interval independent adjustment
parameters and static XGBoost-S with overall parameter adjustment [30].

Several research methods have been adopted to solve traffic flow prediction problems. Dif-
ferent models have their own merits and limitations, while the spatial and temporal distribution
characteristics of traffic flow and the change patterns of different regions and different levels
of roads also vary. The aforementioned studies on traffic flow prediction are summarized in
Table 1. These methods provide good solutions for traffic flow prediction [31,32].

Table 1. Comparison of traffic flow prediction methods.

Literature Method Overall Evaluation of the Method

[9] ST-3DGMR Compared with the state-of-the-art, ST-3DGMR has significantly lower
RMSE on the BikeNYC, TaxiBJ, and TaxiCQ datasets.

[18] GA-BPNN
Experimental results indicated that the GA-BPNN algorithm had a
better prediction effect and provided a certain reference value for

short-time traffic-flow prediction.

[22] RFCGASVR The results indicated that the proposed RFCGASVR model performed
better than other methods.

[23] SVR The experimental results indicated that the accuracy of this method is
superior to classic SARIMA, MLP NN, ERT, and Adaboost methods.

[24] GWO-attention-LSTM It has better performance and can provide effective help for traffic
management control and traffic flow theory research.

[26] Bi-LSTM- Attention Bidirectional long short-term memory (Bi-LSTM)—Attention models
can effectively improve the prediction accuracy of traffic flow.

[30] XGBoost-LSTM The XGBoost-LSTM model was used to predict base-station traffic and
performed better than competing algorithms.

[31] XGBoost-I
XGBoost-S

Two improved models have been proposed: independent XGBoost
(XGBoost-I) with different interval independent adjustment parameters

and static XGBoost-S with overall parameter adjustment.

3. Materials
3.1. Data Characteristic Analysis

This study focused on the prediction of Xi’an bypass traffic flow data obtained from
the Xi’an Traffic Management Department. Twelve major sites were selected for the study:
FangJiaCun, FangJiaCunLiJiao, HeChiZhaiLiJiaoDong, HeChiZhaiLiJiaoXi, LiuCunBaoLi-
Jiao, LvXiaoZhaiLiJiaoXi, MaoErLiuLiJiaoNan, QuJiangLiJiaoDong, QuJiangLiJiaoXi, Xi-
GaoXin, XiangWangLiJiao, and XieWangLiJiao. In the follow-up study, we used A, B, C, D,
E, F, G, H, I, J, K, and L to denote the individual sites. Owing to the impact of the global
pandemic in 2020, most urban residents in China were quarantined at home, and traffic
flow in major central cities declined rapidly. Therefore, the traffic data from January 2020
to December 2022 are different from the spatiotemporal-characteristic distribution of the
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data under normal conditions and do not have the cyclical and representative nature of
the past. Therefore, we used data from January 2016 to December 2019, and each site had
approximately 4 × 12 × 15 = 720 (year ×month × indicators) data counts; therefore, the
data contained 720 × 12 = 8640 samples.

The dataset contains multiple feature data for 12 months per year. The primary
classification node for the original intermodulation data was time (year, month), and the
secondary classification node was the location (different sites).

The feature abbreviations and their meanings in the original data are listed in Table 2.
The raw sample data are presented in Table 3.

Table 2. Explanations of abbreviations.

Abbreviation Full Name Type of
Information Abbreviation Full Name Type of

Information

ObName Observatory Name position
information PCTF Passenger Car

Traffic Flow
real statistical

indicators

NO. Start Stake
Number

position
information TTF Truck Traffic Flow real statistical

indicators

SMPTF
Small and Medium
Passenger Traffic

Flow

real statistical
indicators TF Traffic Flow real statistical

indicators

LBTF Large Bus Traffic
Flow

real statistical
indicators PU Passenger Unit calculated

indicators

STTF Small Truck Traffic
Flow

real statistical
indicators TU Truck Unit indicators

calculated

MTTF Medium Truck
Traffic Flow

real statistical
indicators PCU Passenger Car Unit indicators

calculated

LTTF Large Truck Traffic
Flow

real statistical
indicators Speed Motor Vehicle

Speed
real statistical

indicators

ELCTF Extra Large Cargo
Traffic Flow

real statistical
indicators TVR Traffic Volume

Ratio
indicators
calculated

CTF Container Traffic
Flow

real statistical
indicators / / /

Table 3. January 2016 original dataset (sample).

Year Month Ob Name NO. SMPTF LBTF STTF MTTF LTTF ELCTF CTF PCTF TTF TF PU TU PCU * Speed TVR *

2016 01 FangJiaCun 0 10,655 150 401 976 571 2125 130 10,805 4203 15,008 10,880 12,598 23,478 79.9 0.293
2016 01 FangJiaCunLiJiao 77.5 16,448 352 1061 786 911 2901 567 16,800 6226 23,026 16,976 18,845 35,821 83.7 0.448

2016 01 HeChi
ZhaiLiJiao 46.8 38,904 4871 4320 3242 876 335 3043 43,775 11,816 55,591 46,211 25,323 71,534 70.8 0.894

2016 01 HeChi
ZhaiLiJiaoXi 39.6 30,513 2375 3389 1581 459 342 1376 32,888 7147 40,035 34,076 14,010 48,085 64.9 0.601

2016 01 LiuCunBaoLiJiao 18.6 22,160 641 2185 946 1254 2252 427 22,801 7064 29,865 23,122 18,082 41,204 72.8 0.515

2016 01 LvXiao
ZhaiLiJiaoXi 15.6 24,602 3351 4101 2888 6058 903 2083 27,953 16,033 43,986 29,629 38,551 68,180 71.7 0.852

2016 01 MaoEr
LiuLiJiaoNan 34 26,393 310 2030 975 778 1637 203 26,703 5623 32,326 26,858 13,187 40,045 77.8 0.501

2016 01
Qu

Jiang
LiJiaoDong

57.5 42,650 554 3261 1539 970 2156 515 43,204 8441 51,645 43,481 19,164 62,645 66.8 0.783

2016 01
Qu

Jiang
LIJiaoXi

63.1 37,747 423 1831 1274 1211 3003 751 38,170 8070 46,240 38,382 22,391 60,773 81 0.76

2016 01 XiGao
Xin 52.7 24,659 430 1748 680 457 1155 191 25,089 4231 29,320 25,304 9523 34,827 61.7 0.435

2016 01 Xiang
WangLiJiao 73 33,517 1325 3721 5288 812 412 3728 34,842 13,961 48,803 35,505 30,649 66,154 74.4 0.827

2016 01 XieWangLiJiao 4.96 19,106 3326 4775 5410 1029 7871 3064 22,432 22,149 44,581 24,095 59,717 83,812 73.1 1.048

* Passenger Car Unit (PCU): standard vehicle equivalent, also known as equivalent traffic, is the equivalent traffic
volume of a standard model that converts the actual motor and non-motor vehicle traffic volume into a certain
standard model based on a certain conversion. TVR: ratio of the total traffic volume of the road network to the
total allowable capacity of the road network.

Table 3 lists the passenger unit, truck unit, passenger car unit, and congestion as
indicators calculated using a formula based on real indicators.

To conduct time series-related research, datasets from different years and months
should be integrated to form a training dataset that can be input into the model. Considering
space (different stations) as the primary key identification, the spatial position was first
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aligned, and then the spatial-location data from January 2016 to December 2019 were
arranged in time series order to obtain the traffic flow time series data of the 12 stations
of the central city ring expressway. Using stations I and J as examples, we visualized the
changes in their traffic flow and passenger car unit (PCU), as shown in Figure 2. Stations
I and J had significant differences in traffic volume around the city expressway. From
Figure 2, it can be seen that the data waveforms of different stations are different; however,
recently, they have exhibited a fluctuating upward trend, which is noticeable. For station I,
although the monthly granularity data have a certain randomness and volatility, they have
a certain periodicity and continuity. For example, troughs occur annually between May
and July. However, owing to the influence of policies, economic development, and road
maintenance, a significant gap occurred between the traffic data change curves of stations J
and I, which primarily indicate a stepwise upward distribution.
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Figure 2. Trend of traffic flow and PCU monthly granularity data from 2016 to 2019.

To analyze the annual changes in the expressway traffic around the city, the data from
each station were averaged, and the traffic equivalent PCU and ratio of the total traffic
volume of the road network to the total allowable capacity of the road network (TVR) time
series data were visualized by monthly and annual granularities, respectively, as shown in
Figure 3. Figure 3a demonstrates that the traffic flow changes around the urban expressway
have the characteristics of continuity, randomness, periodicity, and a fluctuating rise. From
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the annual granularity data in Figure 3b, the PCU can be observed to steadily increase from
2016 to 2018, which can be characterized by a linear model. The PCU rate significantly
increased in 2019.
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3.2. Data Feature Processing
3.2.1. Removing Invalid Features

Each determined time and location had 15 attributes. The attributes that were irrele-
vant to this data prediction, such as “No.”, “station”, and “speed”, were deleted during
data pre-processing.

3.2.2. Removing Strongly Correlated Features

Some comprehensive attributes were calculated from the basic attributes, and a strong
correlation occurred between the features. The symmetrical correlation matrix between the
various features is shown in Figure 4.
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As shown in Figure 4, the symmetrical correlation between many features was greater
than 0.6. For example, the correlation between the PCU and TVP was 1, while the correlation
between the MTTF and TU was 0.74, the correlation between the TTF and TU was 0.79,
the correlation between the TF and TU was 0.93, and the correlation between the TVR
and TU was 0.82. If attributes with high correlation coefficients are input into the model,
its accuracy is significantly affected. Therefore, these basic attributes were removed. The
removed features were MTTF, TTF, TF, TVR, and TU.

3.2.3. Fusing Features

Considering that the study objectives are in time series, the features “year” and
“month” in the original table were combined and modified to “time”. Sequential arrange-
ment was used to characterize the traffic flow detection time; however, it was not used as
the feature input for the subsequent model and did not participate in the network training.

4. Methodology
4.1. XGBoost

XGBoost trees are similar to random forests in that they are based on multiple decision
trees; however, unlike random forests, multiple decision trees are assembled using a
boosting method [33]. The basic idea of modeling pavement service performance evolution
prediction based on XGBoost is to improve the overall prediction accuracy by constructing
a new function to learn the residuals of the previous round, that is, by generating a new
decision tree to compensate for the error of the previous tree until the error of the objective
function is less than the predetermined error. Combined with a gradient boosting algorithm
to improve the objective function, parallel processing and regularization are supported.
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The objective function of each round is defined as the loss function + regularization term,
as in Equation (1).

L(y, f (x)) = ∑
i

l(yi, ŷi) + ∑
k

Ω( fk), (1)

where yi represents the true output of the sample xi, ŷi the predicted output of the sample
xi, fk the k-th boosted decision tree, and l(yi, ŷi) the loss function representing the difference
between the predicted and true outputs. Ω( fk) is the canonical term for the function. The
objective function is analyzed to obtain the base learner with the best performance. The
most critical aspect is the selection of the split node function, which is used to determine the
split node of the decision tree by calculating the loss reduction after splitting. Controlling
the complexity of the tree when splitting and setting a certain threshold value to select
splitting only when the score is greater than this threshold value, which plays a role in
pre-pruning, is necessary.

4.2. Bayesian Optimization Algorithm

The Bayesian optimization (BO) algorithm consists of two main steps: (i) employing a
probabilistic model to replace the evaluation scores of the hyperparameters in the original
objective function and (ii) constructing the payoff function using the posterior probability
information transformed from the prior probabilities of the probabilistic agent model. The
choice of the probabilistic model must be generally determined on a case-by-case basis [34].

Because the probability distribution of the hyperparameters in the objective function
of the algorithm used in this study was unknown, the commonly used Gaussian agent
model was chosen for parameter optimization. Assuming that the objective function f (x)
optimized by hyperparameter combination x obeys the Gaussian stochastic process, the
posterior distribution p( f (x)|x) of f (x) is calculated to estimate f (x) as follows:

p( f (x)|x) = p( f (x))p(x| f (x))/p(x), (2)

where p( f (x)) is the prior probability distribution of f (x); p(x| f (x)) the likelihood dis-
tribution of hyperparameter combination x on the objective function f (x); and p(x) the
normalization factor. Therefore, when the optimized objective function f (x) obeys the
Gaussian stochastic process, the posterior probability distribution is obtained using Bayes’
theorem, that is, the confidence level of the objective function after adjusting the correction
for the prior probability.

The cost of calculating the objective function corresponding to the hyperparameter
combination in hyperparameter optimization is high. To make the corrected p( f (x)|x)
rapidly approach the true distribution of the objective function, the payoff function is
constructed through the posterior probability distribution, and the payoff function is
calculated and maximized to obtain the next hyperparameter combination that can better
improve the objective function [35].

The gain function searches for the global optimal solution that maximizes the gain of
the gain function α(x) based on the current search point in the new parameter space and
near the local optimal solution. The set of optimal solutions x∗ in the hyperparameter full
set A is given by the following equation:

x∗ = argmax(α(x)), x ∈ A. (3)

Commonly used gain functions include the probability of improvement (PI), expected
improvement (EI), and Gaussian process upper confidence bounds (GP-UCB). Among
them, the GP-UCB has a gain function in Set A as

α(x, θ, A) = µ(x, θ, A) + κσ(x, θ, A), (4)

where µ(x) and σ(x) are the mean and variance, respectively, of the objective function
obeying the Gaussian process, κ the upper confidence bound, and θ the hyperparameter.
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4.3. BO-XGBoost Model

The combination of the Bayesian and XGBoost networks was used to search for the
optimal parameter combination of the XGBoost model using BO. BO can calculate the
gain function based on the mean and variance of the objective function corresponding
to the current search point, add a new hyperparameter search point with the maximum
gain function to the evaluation point set, and update the probabilistic surrogate model
through a new set until the number of iterations to obtain the optimal combination of
the hyperparameter of XGBoost is reached. The proposed hyperparameter optimization
method was optimized throughout the entire model training process, rather than during
the model testing process. Training data were input into the network and the training data
were trained using the set network parameters. The loss function value of the validation
data was used for feedback, and the model parameters were constantly adjusted. Finally,
the model parameters with the highest accuracy in the training set were obtained, and then
the model parameters were output. The test set data were input into the trained model for
testing, and the accuracy of the test set was obtained. The specific process is illustrated in
Figure 5.
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The XGBoost model must set more parameters, and each parameter has a certain
connection with the others, which is not suitable for manual repeated tuning of parameters
to train the comparison. With more continuous parameters, such as gamma, subsample,
colsample_bytree, reg_alpha, and reg_lambda, its optimal solution may be decimal with an
accuracy of 0.01, which is difficult for the grid-search algorithm by enumeration because
continuous values can be infinitely subdivided; therefore, a BO algorithm can be used to
iteratively find the optimal solution for the hyperparameters of the XGBoost model.

After optimizing the main parameters of the XGBoost-based pavement service per-
formance prediction model using Bayesian methods, the optimal parameter values of the
model were obtained, as listed in Table 4.
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Table 4. Bo-XGBoost model parameters table.

Model Parameters Parameter Explanation Optimal Values

max_depth Limiting the maximum depth of a tree 4

gamma Penalty term coefficient, the minimum loss
function reduction required to split the node 0.3

min_child_weight Minimum leaf node sample weights sum 1

subsample The rate at which samples are sampled when the
decision tree is built 0.8

colsample_bytree The rate at which features are sampled when
building a decision tree 0.8

reg_alpha L1 regularization parameters 0.2
reg_lambda L2 regularization parameters 0.7

learning_rate The learning rate, which is the model learning step 0.035
n_estimators The number of iterations raised 300

5. Traffic Data Prediction Based on the BO-XGBoost
5.1. Experimental Setup
5.1.1. Experimental Datasets

In the experiment, we used the dataset after it had undergone the processing stage
described in Section 3. Before inputting the BO-XGBoost model, performing feature recon-
struction on the monthly data was necessary. Subsequently, using historical traffic data
from 2016 to 2018 as features, the TF and PCU were predicted for 2019. Eighty per cent of
the 2019 data were used as the training set input model, and the remaining 20% were used
as test data. After the model training was completed, the model was input for testing.

Because the comparative experiments were conducted using different models that
have different requirements, the input and output variables must be set to data that
satisfy the requirements of the model. The models used to solve traffic flow prediction
problems generally include those that handle time series and those that handle multiple
regression problems.

Therefore, two datasets were established for this experiment.
Dataset 1: The input was a time series variable composed of time-steps and indepen-

dent variables (TF and PCU), and the output was a target prediction value composed of a
one-dimensional array.

Dataset 2: The input was a multivariate feature set composed of multiple features (TF,
PCU, and other selected feathers for the same month over the years), and the output was a
target prediction value composed of a one-dimensional array.

Dataset 1 was used as an input for the symmetric Bi-LSTM model. Dataset 2 was used
as an input for the proposed asymmetric model and other comparative models.

5.1.2. Experimental Environment

The environment configurations used for the experiments are presented in Table 5.

Table 5. Experimental environment.

Items Configuration

Software Anaconda, Jupyter Notebook

Hardware Win11, 12th Gen Intel(R) Core (TM) i5-12500
3.00 GHz, 16 GB of memory

Language and Frames Python and TensorFlow

5.1.3. Evaluating Indicator

Based on the measured and predicted traffic values, the prediction results of the model
were evaluated based on commonly used prediction metrics such as the mean absolute
error (MAE), mean absolute percentage error (MAPE), and linear correlation coefficient
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(R2) [36]. The formulas, meanings, and evaluation criteria for each metric are shown
in Equations (5)–(7), where n is the total number of measured values, yi the traffic flow
predicted measurement,

∼
yi the predicted value of the temperature prediction, and yi the

average value of yi.

MAE =
1
n

n

∑
i=1
|
(

yi −
∼
yi

)
| (5)

APE =
100%

n

n

∑
i=1
|yi −

∼
yi

yi
| (6)

R2 = 1−
∑n

i

(
yi −

∼
yi

)2

∑n
i (yi − yi)

2 (7)

5.2. Result Comparison and Analysis

To evaluate the effectiveness of the BO-XGBoost model, the prediction–evaluation
indices of the other models were compared. The optimal parameters of each model were
adjusted using a step-based grid-search method, and the optimal parameters of each
comparative model were obtained as shown in Table 6. Hyperparametric optimization was
performed to determine the optimal parameters suitable for the objectives of this research,
rather than adjusting parameters based on other methods. The comparison of evaluation
indicators for TF and PCU for different models on the training and testing sets is shown in
Tables 7 and 8, respectively. Notably, the evaluation indicators here refer to the average
indicator values of the 12 station experiments.

Table 6. Optimal parameters of each model.

Model Parameter Settings

DNN shuffle = True, epochs = 1000, batch_size = 16, verbose = 1

RF n_estimators = 50, max_depth = 2, min_samples_split = 4,
min_samples_leaf’ = 1, max_features = 7, oob_score = False

XGBoost
max_depth = 4, gamma = 0.5, min_child_weight = 1, subsample = 0.6,

colsample_bytree = 0.8, reg_alpha = 0.2, reg_lambda = 0.6, learning_rate = 0.05,
n_estimators = 300

GA-XGBoost Pc = 0.6, Pm = 0.01, T = 100, M = 50

Bi-LSTM
epochs = 100, batch_size = 64, validation_split = 0.15, INPUT_DIMS = 1,

TIME_STEPS = 12,
lstm_units = 64

CatBoost iterations = 400, learning_rate = 0.05, depth = 5, l2_leaf_reg = 1

Table 7. Analysis of evaluation indicators for various models of monthly granularity TF.

Model
Training Set Test Set

R2 MAE MAPE% R2 MAE MAPE%

DNN 0.99 13.38 0.0169 0. 13 5289 5.98
RF 0.87 2758.24 3.56 0.84 2967.42 3.83

CatBoost 0.99 1.55 0.0001 0.22 5228.98 4.25
Bi-LSTM 0.90 2254.21 2.91 0.88 2596.44 3.35
XGBoost 0.91 2196.56 2.83 0.88 2238.15 2.89

GA-XGBoost 0.91 2048.63 2.71 0.89 2213.57 2.87
BO-XGBoost 0.92 1963.26 2.53 0.90 2231.65 2.88
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Table 8. Analysis of evaluation indicators for various models of monthly granularity PCU.

Contrast Model
Training Set Test Set

R2 MAE MAPE% R2 MAE MAPE%

DNN 0.99 5.56 0.0089 0.12 6352 6.81
RF 0.79 4448 4.02 0.78 4691.42 4.24

Catboost 0.99 0.248 0.0002 0.42 5353.74 4.84
Bi-LSTM 0.85 3652.73 3.22 0.81 4356.12 3.93
XGBoost 0.87 3885.32 3.51 0.86 3712.91 3.35

GA-XGBoost 0.88 3562.62 3.12 0.86 3521.66 3.41
BO-XGBoost 0.89 3125.51 2.82 0.87 3447.14 3.12

Tables 7 and 8 demonstrate that the prediction accuracy of the symmetric Bi-LSTM is
higher than that of RF, indicating that the performance of this symmetric time series model
is superior to the classical machine learning RF model in predicting TF and PCU.

Catboost and DNN models have an overfitting phenomenon when training TF and
PCU data; that is, the fitting accuracy is significantly high on the training set and consid-
erably low on the test set (below 0.5). Especially when the DNN model predicts TF and
PCU, the accuracy of the test set is less than 0.15 on both types of targets. Probably owing
to the slightly complex construction of neural network models, complex models have a
strong fitting ability to data and a strong learning ability for noise, making it easier to cause
overfitting. For the Catboost model, it may be because it is more suitable for the training set,
whose input features are categorical. No categorical features were present in the dataset in
this study, and the amount of data was not large, which caused the overfitting of the model.

In the prediction of TF, the difference in accuracy between XGBoost and symmetric
LSTM models was insignificant, and XGBoost prediction results indicated a decrease in
error. In terms of accuracy and error on the PCU test set, XGBoost outperformed the Bi
LSTM model in all aspects. Compared with XGBoost, the proposed BO-XGBoost improved
the prediction accuracy of TF and PCU while the error decreased. Especially on the training
set of PCU, the accuracy was significantly improved and the error was significantly reduced.
In terms of test sets, the accuracy was slightly improved compared with XGBoost. This
may be because of the limited searchable range of parameter combinations in the fixed-step
grid-search method. Compared with the prediction accuracy of GA-XGBoost, BO-XGBoost
had a higher R2 and slightly lower overall error.

To compare the accuracy of the models, we plotted the average R2 and MAPE of
each model (excluding overfitting models) for TF and PCU testing sets, as shown in
Figures 6 and 7.

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 18 
 

 

Table 8. Analysis of evaluation indicators for various models of monthly granularity PCU. 

Contrast  

Model 

Training Set Test Set 

R2 MAE MAPE% R2 MAE MAPE% 

DNN 0.99 5.56 0.0089 0.12 6352 6.81 

RF 0.79 4448 4.02 0.78 4691.42 4.24 

Catboost 0.99 0.248 0.0002 0.42 5353.74 4.84 

Bi-LSTM 0.85 3652.73 3.22 0.81 4356.12 3.93 

XGBoost 0.87 3885.32 3.51 0.86 3712.91 3.35 

GA-XGBoost 0.88 3562.62 3.12 0.86 3521.66 3.41 

BO-XGBoost 0.89 3125.51 2.82 0.87 3447.14 3.12 

Tables 7 and 8 demonstrate that the prediction accuracy of the symmetric Bi-LSTM is 
higher than that of RF, indicating that the performance of this symmetric time series model 

is superior to the classical machine learning RF model in predicting TF and PCU. 
Catboost and DNN models have an overfitting phenomenon when training TF and 

PCU data; that is, the fitting accuracy is significantly high on the training set and 
considerably low on the test set (below 0.5). Especially when the DNN model predicts TF 
and PCU, the accuracy of the test set is less than 0.15 on both types of targets. Probably 

owing to the slightly complex construction of neural network models, complex models 
have a strong fitting ability to data and a strong learning ability for noise, making it easier 

to cause overfitting. For the Catboost model, it may be because it is more suitable for the 
training set, whose input features are categorical. No categorical features were present in 
the dataset in this study, and the amount of data was not large, which caused the 

overfitting of the model. 
In the prediction of TF, the difference in accuracy between XGBoost and symmetric 

LSTM models was insignificant, and XGBoost prediction results indicated a decrease in 
error. In terms of accuracy and error on the PCU test set, XGBoost outperformed the Bi 
LSTM model in all aspects. Compared with XGBoost, the proposed BO-XGBoost 

improved the prediction accuracy of TF and PCU while the error decreased. Especially on 
the training set of PCU, the accuracy was significantly improved and the error was 

significantly reduced. In terms of test sets, the accuracy was slightly improved compared 
with XGBoost. This may be because of the limited searchable range of parameter 
combinations in the fixed-step grid-search method. Compared with the prediction 

accuracy of GA-XGBoost, BO-XGBoost had a higher R2 and slightly lower overall error. 
To compare the accuracy of the models, we plotted the average R2 and MAPE of each 

model (excluding overfitting models) for TF and PCU testing sets, as shown in Figures 6 
and 7. 

 

Figure 6. Comparison of R2 and MAPE% metrics of TF by different models. Figure 6. Comparison of R2 and MAPE% metrics of TF by different models.



Symmetry 2023, 15, 1453 14 of 17Symmetry 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 7. Comparison of R2 and MAPE% metrics of PCU by different models. 

5.3. Feature Importance Analysis Based on XGBoost 

In a single decision tree, the importance of each feature is quantitatively evaluated 
by calculating and comparing the performance improvement of each feature splitting 

point. Then, the results of a feature appearing in all boost trees are calculated as the 
weighted average, which is the importance score corresponding to each feature. Finally, 
the importance of the features are ranked based on this score. Using XGBoost’s weight 

calculation method, the number of times feature variables are used as partition variables 
in all trees is accumulated to obtain a feature importance score. The importance ranking 

of X influencing factors of input BO XGBoost using the XGBoost model is shown in Figure 
8. 

 

Figure 8. Importance ranking of TF and PCU influencing factors based on XGBoost. 

From Figure 8, it can be observed that the two research objectives have some similar 

influencing factors. However, some influencing factors with very different weights exist 
in the two research objectives, such as PV, which has the greatest impact weight on PCU 
and the smallest impact weight on TF. Overall, the ELCTF, LTTF, and STTF have the 

greatest impact on the two objectives. The PV and PCTF have the greatest impact on PCU. 
ELCTF, STTF, and LTTF have a significant impact on TF. Considering the arithmetic mean 

of the importance weights of the two research objectives as the weight of the importance 
influencing factor, the impact factors with importance in the analysis results are listed in 
Table 9. 

  

Figure 7. Comparison of R2 and MAPE% metrics of PCU by different models.

5.3. Feature Importance Analysis Based on XGBoost

In a single decision tree, the importance of each feature is quantitatively evaluated
by calculating and comparing the performance improvement of each feature splitting
point. Then, the results of a feature appearing in all boost trees are calculated as the
weighted average, which is the importance score corresponding to each feature. Finally,
the importance of the features are ranked based on this score. Using XGBoost’s weight
calculation method, the number of times feature variables are used as partition variables in
all trees is accumulated to obtain a feature importance score. The importance ranking of X
influencing factors of input BO XGBoost using the XGBoost model is shown in Figure 8.
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From Figure 8, it can be observed that the two research objectives have some similar
influencing factors. However, some influencing factors with very different weights exist in
the two research objectives, such as PV, which has the greatest impact weight on PCU and
the smallest impact weight on TF. Overall, the ELCTF, LTTF, and STTF have the greatest
impact on the two objectives. The PV and PCTF have the greatest impact on PCU. ELCTF,
STTF, and LTTF have a significant impact on TF. Considering the arithmetic mean of
the importance weights of the two research objectives as the weight of the importance
influencing factor, the impact factors with importance in the analysis results are listed in
Table 9.
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Table 9. Importance weights of impact factors based on XGBoost.

Impact Factors Importance Weight of PCU Importance Weight of TF Average

PV 0.2949 0.0041 0.1495
PCTF 0.1670 0.0050 0.086
LTTF 0.1551 0.1845 0.1698

ELCTF 0.1375 0.4450 0.29125
STTF 0.0922 0.1865 0.13935
LBTF 0.0746 0.0460 0.0603
Speed 0.0387 0.0788 0.05875

SMPTF 0.0284 0.0046 0.0165
CTF 0.0116 0.0459 0.02875

6. Conclusions

A BO-XGBoost network with a Bayesian optimization parameter adjustment process
was proposed to analyze the high-speed traffic flow and traffic equivalents around a
central city. Considering Xi’an’s data as an example for analysis, the main conclusions are
as follows:

(1) A dataset of high-speed traffic flow around a city was constructed, and the data
were dimensionalized to expand the data features. By combining the inherent at-
tributes of randomness, continuity, periodicity, and volatility of high-speed traffic flow
data, the data were visualized, and their spatiotemporal distribution characteristics
were studied. We observed that the dataset had apparent annual periodicity and
intra-year variability.

(2) We constructed different feature matrices for the traffic flow data and input those into
the symmetric Bi-LSTM and integrated XGBoost models. The prediction accuracy of
inputting time series data into the ensemble learning model after the monthly feature
matrix analysis was observed to be higher than that of directly inputting time series
data into the symmetric Bi-LSTM model. To further improve the prediction accuracy
of the integrated XGBoost model, a Bayesian algorithm was used to optimize the
model and obtain optimal network parameters. Experiments have shown that the
improved XGBoost model has better accuracy, with a prediction accuracy of 0.90 and
0.87 for TF and PCU, respectively.

The following future research prospects warrant further study:

1. Collecting more data on urban highways around central cities and analyzing the
impact of urban traffic flow on the economic development of central cities;

2. A hyperparameter optimization method with better accuracy and efficiency to deter-
mine the optimal parameter combination within the searchable range.
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