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Abstract: The centroid of Lie algebra is a basic concept and a necessary tool for studying the structure
of Lie algebraic structure. The extended Heisenberg algebra is an important class of solvable Lie
algebras. In any Lie algebra, the anti symmetry of Lie operations is an important property of
Lie algebra. This article investigates the centroids and structures of 2n + 2 dimensional extended
Heisenberg algebras, where all invertible elements form a group and all elements form a ring. Then,
its main research results are extended to infinite dimensional extended Heisenberg algebras.
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1. Introduction

Centroid is a basic concept in Lie algebra, and it is also an important tool to study
the theory of Lie algebraic structure, see [1] for details. In references [2], Chen, P. and
Gao, S. studied the centroid of the extended Schrodinger-Virasoro Lie algebra. In ref. [3],
the authors studied the centroids of n-Lie superalgebras. Zhou, J. and Cao, Y. studied the
centroid of Jordan Lie algebra, see [4] for details. In refs. [5–7], scholars have studied the
relevant properties of the centroid of n-Lie algebra, Lie triple system and Leibniz triple
system algebra respectively. However, there are few centroids and their structures on finite
dimensional Lie algebras. This article discusses the centroids and structures of finite and
infinite dimensional Lie algebras.

The solvable extension Lie algebra of Heisenberg algebra is a class of solvable Lie
algebras, which we call extension Heisenberg algebra. Solvable Lie algebras hold an
important position in finite dimensional Lie algebras. Therefore, further research on
the algebraic properties of the extended Heisenberg algebra has theoretical significance.
Reference [8] studied the derived subalgebra and automorphism group of the extended
Heisenberg algebra and the real submanifold of the two-dimensional complex projective
space. In ref. [9], scholars studied two types of non weighted modules of twisted Heisenberg
Virasoro. The centroid belongs to the structure and intersection problem of Lie algebra,
and the structure and representation problem of Lie algebraic structure has always been a
hot topic in the research of Lie algebra, see [10,11] for details. The author has also studied
the structure and representation of Lie algebraic structure, see [12–14] for details.

This article investigates the centroids and structures of 2n + 2 dimensional extended
Heisenberg algebras, where all invertible elements form a group and all elements form a
ring H. H has only three ideals, and it is a principal ideal ring. The focus is on studying
the structure of groups and rings. Then, its main research results are extended to infinite
dimensional extended Heisenberg algebras. The Lie operations of these two extended
Heisenberg algebras both have anti symmetry. This paper adds a new method to the study
of the centroid of finite and infinite dimensional Lie algebra, which is helpful to the study
of the centroid structure of general Lie algebra. The relatively important theorems in the
text are Theorems 1 and 2. Symbol description: C represents a complex field, Z+ represents
a set of positive integers.
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2. Main Results

Definition 1. Let g be a Lie algebra, where the centroid of g is a linear transformation on g and
satisfies the following conditions:

Cent(g) = {X : g→ g|X([x, y]) = [x, X(y)], ∀x, y ∈ g}.

According to the definition, ∀φ1, φ2 ∈ Cent(g),

φ2φ1([x, y]) = φ2(φ1([x, y])) = φ2([x, φ1(y)]) = [x, φ2(φ1(y))], ∀x, y ∈ g,

so φ2φ1 ∈ Cent(g). And because

(φ2 + φ1)([x, y]) = (φ2([x, y])) + (φ1([x, y])) = [x, φ2(y)] + [x, φ1(y)] = [x, (φ2 + φ1)(y))],

∀x, y ∈ g,

so φ2 + φ1 ∈ Cent(g).
Obviously, identity mapping I belongs to Cent(g), zero mapping 0 belongs to Cent(g).

In summary, all centroids on the Lie algebra g can form a loop by ordinary addition and
multiplication of linear mappings.

Lemma 1. Let g be a finite dimensional Lie algebra, and if a set of bases of g is e1, e2, · · · , en, then
φ ∈ Cent(g) holds if and only if

φ([ei, ej]) = [ei, φ(ej)], ∀i, j ∈ {1, 2, . . . , n}.

Proof. Necessity: Assuming φ is the centroid of g.
Because φ([x, y]) = [x, φ(y)], ∀x, y ∈ g, so

φ([ei, ej]) = [ei, φ(ej)], ∀i, j ∈ {1, 2, 3, · · · n}.

Adequacy: Because φ([ei, ej]) = [ei, φ(ej)]. ∀x, y ∈ g, x = ∑n1
i=1 kiei, y = ∑n2

j=1 ljej, so

φ([x, y]) = φ(
n1

∑
i=1

n2

∑
j=1

kilj[ei, ej]) =
n1

∑
i=1

n2

∑
j=1

kiljφ([ei, ej]) =

n1

∑
i=1

n2

∑
j=1

kilj[ei, φ(ej)] = [
n1

∑
i=1

kiei, φ(
n2

∑
j=1

ljej)] = [x, φ(y)].

Definition 2. Let g = span{t, e1, · · · , en, ξ1, · · · , ξn, c}, define the Poisson product in g as follows:

[t, ei] = ei, [t, ξi] = −ξi, [ei, ξi] = c, [t, c] = 0, [ei, c] = 0, [ξi, c] = 0(i = 1, · · · , n).

It is easy to verify that g is a solvable Lie algebra, which is called a 2n + 2 dimensional extended
Heisenberg algebra.
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Theorem 1. g is a 2n+2 dimensional extension Heisenberg algebra, and ϕ : g → g is a linear
mapping,

ϕ



t
e1
...
en
ξ1
...
ξn
c


=


c1,1 c1,2 · · · c1,2n+1 c1,2n+2
c2,1 c2,2 · · · c2,2n+1 c2,2n+2

...
...

. . .
...

...
c2n+2,1 c2n+2,2 · · · c2n+2,,2n+1 c2n+2,,2n+2





t
e1
...
en
ξ1
...
ξn
c


= C



t
e1
...
en
ξ1
...
ξn
c


,

So ϕ is the centroid if and only if

C =


c1,1 0 · · · 0 c1,2n+2
0 c1,1 · · · 0 0
...

...
. . .

...
...

0 0 · · · c1,1 0
0 0 · · · 0 c1,1

.

Proof. Necessity: (1) Because ϕ[t, t] = [t, ϕ(t)] = 0,

ϕ(t) = [t, c1,1t + c1,2e1 + · · ·+ c1,n+1en + c1,n+2ξ1 + · · ·+ c1,2n+1ξn + c1,2n+2c]

= c1,2e1 + · · ·+ c1,n+1en − c1,n+2ξ1 − · · · − c1,2n+1ξn = 0,

so c1,i = 0(i = 2, · · · , 2n + 1).
Similarly, the following formula holds for ∀i ∈ 1, · · · , n:
(2) ci+1,1 = · · · = ci+1,i = ci+1,i+2 = · · · = ci+1,2n+2 = 0.
(3) ci+n+1,i+n+1 = c1,1,

ci+n+1,1 = · · · = ci+n+1,i+n = ci+n+1,i+n+2 = · · · = ci+n+1,2n+2 = 0.
(4) c2n+2,2n+2 = c1,1, c2n+2,1 = · · · = c2n+2,2n+1 = 0.
Adequacy: If the matrix of the linear transformation ϕ under a set of basis
t, e1, e2 · · · en, ξ1, ξ2 · · · ξn, c is

C =


c1,1 0 · · · 0 c1,2n+2
0 c1,1 · · · 0 0
...

...
. . .

...
...

0 0 · · · c1,1 0
0 0 · · · 0 c1,1

.

Let V = {t, e1, e2 · · · en, ξ1, ξ2 · · · ξn, c}, ∀vi, vj ∈ V, it can be verified one by one that
ϕ([vi, vj]) = [vi, ϕ(vj)] is valid.

Therefore, according to Lemma 1: ϕ is the center of mass.

Let G be the set of all reversible linear transformations in Cent(g), that is,

G = {


c1,1 0 · · · 0 c1,2n+2
0 c1,1 · · · 0 0
...

...
. . .

...
...

0 0 · · · c1,1 0
0 0 · · · 0 c1,1

|∀c11, c1,2n+2 ∈ C, c11 6= 0}.
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Lemma 2. Let

G1 = {


1 0 · · · 0 m1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

|∀m1 ∈ C},

G2 = {


m1 0 · · · 0 0
0 m1 · · · 0 0
...

...
. . .

...
...

0 0 · · · m1 0
0 0 · · · 0 m1

|∀m1 ∈ C, m1 6= 0},

then G1 and G2 are all commutative subgroups of G.

Theorem 2. If g is a 2n + 2 dimensional extended Heisenberg algebra, then we have G = G1G2.

Proof. For ∀ϕ ∈ G, ∀c1,1, c1,2n+2 ∈ C, c1,1 6= 0, let

φ2 =


1 0 · · · 0 −c1,2n+2

c1,1

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 ∈ G1.

Because 
1 0 · · · 0 −c1,2n+2

c1,1

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1




c1,1 0 · · · 0 c1,2n+2
0 c1,1 · · · 0 0
...

...
. . .

...
...

0 0 · · · c1,1 0
0 0 · · · 0 c1,1

 =


c1,1 0 · · · 0 0
0 c1,1 · · · 0 0
...

...
. . .

...
...

0 0 · · · c1,1 0
0 0 · · · 0 c1,1

,

so

φ2 ϕ =


c1,1 0 · · · 0 0
0 c1,1 · · · 0 0
...

...
. . .

...
...

0 0 · · · c1,1 0
0 0 · · · 0 c1,1

 ∈ G2,

In summary, it can be seen that ϕ ∈ G1G2,that is, G ⊆ G1G2.
It is obvious that G1G2 ⊆ G , so G = G1G2.
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Let

H = {


a 0 · · · 0 b
0 a · · · 0 0
...

...
. . .

...
...

0 0 · · · a 0
0 0 · · · 0 a

|∀a, b ∈ C}.

Obviously, H is a commutative ring with identity element, and H has zero divisor.

Lemma 3. Let H1 be the set of identity element and all zero divisor in H,

H1 = {


0 0 · · · 0 n
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

∀n ∈ C}.

Then H1 is an ideal of H.

Theorem 3. H has only three ideals: 0, H1, H. And H is a principal ideal ring.

Proof. Obviously, {0}, H1 and H are ideals for H.
Assuming that U ( H is an ideal of H and satisfies: U 6= 0, U 6= H1, then there is a

non zero element γ1 ∈ U. It would be well if

γ1 =


a1 0 · · · 0 a2
0 a1 · · · 0 0
...

...
. . .

...
...

0 0 · · · a1 0
0 0 · · · 0 a1

,

where a1 and a2 are not equal to 0 at the same time.

(1) When a1 = 0, a2 6= 0, there is γ1 ∈ H1. So U = (γ1) = H1. This contradicts
the hypothesis.

(2) When a1 6= 0, a2 = 0, there is

1
a1

γ1 =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

.

So U = (γ1) = H. This contradicts the hypothesis.
(3) When a1 6= 0, a2 6= 0, there is



a1 0 · · · 0 a2

0 a1 · · · 0 0
...

...
. . .

...
...

0 0 · · · a1 0
0 0 · · · 0 a1





b1
a1

0 · · · 0 b2
a1
− a2b1

a2
1

0 b1
a1
· · · 0 0

...
...

. . .
...

...
0 0 · · · b1

a1
0

0 0 · · · 0 b1
a1


=



b1 0 · · · 0 b2

0 b1 · · · 0 0
...

...
. . .

...
...

0 0 · · · b1 0
0 0 · · · 0 b1


,

any b1 and b2 belong to C. So U = (γ1) = H. This contradicts the hypothesis.
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Definition 3. Let g
′
= span{t, e1, · · · , ei, · · · , ξ1, · · · , ξi, · · · , c},define the Lie operation in g

′

as follows:

[t, ei] = ei, [t, ξi] = −ξi, [ei, ξi] = c, [t, c] = 0, [ei, c] = 0, [ξi, c] = 0(i ∈ Z+).

g
′

is called an infinite dimensional extension Heisenberg algebra.

Lemma 4. Let g
′
be an infinite dimensional Lie algebra, and if a set of bases of g

′
is e1, e2, · · · , en, · · · ,

then φ ∈ Cent(g
′
) holds if and only if

φ([ei, ej]) = [ei, φ(ej)], ∀i, j ∈ {1, 2, · · · , n, · · · }.

Lemma 5. Let ϕ ∈ Cent(g
′
), and satisfy the following equation:

ϕ(t) = a11t + b11c, ϕ(ei) = a11ei, ϕ(ξi) = a11ξi, ϕ(c) = a11c,

so ϕ is a reversible centroid if and only if a11 6= 0.

Let G
′

be the set of all reversible centroids on Cent(g
′
).

Lemma 6. Let G3 = {ϕ|ϕ(t) = t + b11c, ϕ(ei) = ei, ϕ(ξi) = ξi, ϕ(c) = c}. So G3 ⊂ G
′
,

and G3 is a subgroup of G
′
.

Lemma 7. Let G4 = {ϕ|ϕ(t) = a11t, ϕ(ei) = a11ei, ϕ(ξi) = a11ξi, ϕ(c) = a11c. So G4 ⊂ G
′
,

and G4 is a subgroup of G
′
.

Theorem 4. G
′
= G3G4.

The above Lemmas 4–7 and Theorem 4 are similar to the results related to 2n + 2
dimensional extended Heisenberg algebra, and will not be repeated to save space.

Let R be the set of all centroids on g′, and the linear operations on R are ordinary
addition and multiplication The structure of R is similar to the centroid structure of a 2n + 2
dimensional extended Heisenberg algebra, and will not be repeated to save space.

3. Conclusions

In this paper, the centroid structure of 2n + 2 dimensional extended Heisenberg Lie
algebra was studied ingeniously by using the elementary transformation of matrix, and
the necessary and sufficient conditions for its centroid were obtained. It also characterized
all reversible centroids forming a group, clearly showed the structure of the group, and
extended its results to the infinite dimensional extended Heisenberg Lie algebra. This paper
added a new method to the study of the centroid of finite and infinite dimensional Lie
algebra, which was helpful to the study of the centroid structure of general Lie algebra.
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