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Abstract: In this article, we review different studies based on advanced X-ray diffraction techniq-
ues—especially coherent X-ray diffraction—that allowed us to reveal the behaviour of such symmetry-
breaking systems as Charge Density Wave (CDW) and Spin density Wave (SDW), through their
local phase. After a brief introduction on the added value of using coherent X-rays, we show how
the method can be applied to CDW and SDW systems, in both static and dynamical regimes. The
approach allowed us to probe the particular sliding state of CDWs systems by observing them through
their phase fluctuations, to which coherent X-rays are particularly sensitive. Several compounds
stabilizing a CDW phase able to slide are presented, each with a different but clearly pronounced
signature of the sliding state. Two main features emerge from this series of experiments which
have been little treated until now, the influence of CDW pinning by the sample surfaces and the
propagation of periodic phase defects such as charge solitons across the entire sample. Phase models
describing the spatial and temporal properties of sliding CDWs are presented in the last part of
this review.

Keywords: Charge Density Wave; Coherent Diffraction; sliding; charge propagation; incommensurate
modulation; solitons

1. Introduction

As early as in the 1970s, several authors raised the importance of the phase in CDW
systems [1,2]. Indeed, a Charge Density Wave (CDW) is described by a periodic modulation
of charges ρ(~r) = A cos[2kF~r + φ(~r)], where A is the amplitude and φ is the phase which
denotes the position of the CDW relative to the atomic host lattice. As a matter of facts, ex-
ternal perturbations generally mainly affect the CDW phase. For instance, when submitting
the system to an electric current, the threshold field above which the CDW depins from
the atomic lattice and slides, leading to an additional current, is directly linked to local
CDW phase variations, either through defects in the bulk [2], conversion processes at the
electrodes [3] or pinning at the surface [4,5]. Although CDW deformation and phase shifts
have been theoretically studied for a long time [6], the precise observation of the phase
deformation has been missing until the advent of advanced X-ray diffraction techniques.

From a general point of view, the observation of all types of defects in condensed
matter has always been challenging. Electron diffraction methods on thin samples or
surface techniques such as STM are very efficient to observe crystal dislocations at the
atomic scale. On the other hand, bulk experiments such as neutron or X-ray diffraction
are also sensitive to defects but result from spatial averages which provide a global view
of disorder at the macroscopic scale. Observing localized CDW phase shifts is a much
more difficult task. In that case indeed, the phase shift does not concern the host lattice
itself, but the periodic atomic displacement associated to the CDW, small in amplitude
and which overlaps to the host atomic lattice. To some extent, this type of defect could be
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called a second order phase shift. The purpose of this review is to show how coherent X-ray
diffraction can provide access to such peculiar phase singularities.

Experiments using coherent X-ray beams have been being developed continuously
since the 90’s thanks to the improvement of synchrotron sources [7]. Third generation
sources are indeed able to deliver much brighter beams and smaller source sizes, allowing
to take advantage of the coherence properties of the beam.

After presenting the methodological aspects from model examples, we will show how
this technique has proved efficient to probe CDW phase shifts and their dynamics.

2. Coherent X-ray Diffraction to Track Phase Shifts in Condensed Matter

Speaking of coherent diffraction is actually a pleonasm. Indeed, the diffraction process
originates from contructive interferences and is therefore a coherent phenomenon in essence.
However, this expression is justified by the orders of magnitude involved. Indeed, the
beam is defined by two characteristic lengths: the first one is related to the wavelength,
and the second one to the relative angle of propagation. We thus define two coherence
lengths, the longitudinal coherence length ξl =

λ2

2∆λ and the transverse one ξt =
λR
2a , where

λ is the beam wavelength, ∆λ the spectral width of the source, a is the numerical aperture
of the source and R is the distance from the source. These two quantities have to be large
enough to see interferences. But how large? It actually depends on the typical size of
the object under consideration. For instance, in the case of classical X-ray diffraction on
crystals, ξl and ξt have to be larger than the lattice parameters of the chosen crystal, which
is always the case, even for laboratory X-ray sources. However, to obtain interference from
larger objects, both coherence lengths must be scaled to the dimensions of the object. This
is standard to get interferences from micron-size objects with visible light, using lasers
typically, but harder to get with X-rays as ξl and ξt scale with λ. However, since the
emergence of third-generation synchrotrons, micron-size values for ξt can be obtained
thanks to micrometer source sizes and large distances between source and sample, while
ξl in the micron range is achieved thanks to low bandwidth monochromators. Hence, we
generally speak of coherent diffraction, when the coherence lengths of the X-ray beam are
close to the size of the diffracted entities.

The diffraction pattern of a rectangular slit opened at few micrometers and leading to
the expected cardinal sinus squared diffraction pattern (see Figure 1) is an illustration the
phenomenon. The very good contrast of the interference fringes reveals the high degree of
coherence obtained in the hard X-ray regime [8–10].

Figure 1. (a,b) CXRD pattern of a 7 keV X-ray beam by 5 µm square slits. (c) Profile of the diffraction
pattern showing high-visibility fringes.

Many techniques emerged to take advantage of the coherent properties of beams
produced by large-scale instruments, all based on the analysis of the interference patterns
obtained by objects introducing a phase shift in the beam propagation. In condensed
matter physics, any system that deviates from perfect crystallinity and/or is smaller than
the beam size introduces such phase shifts and leads to interference patterns. Coherent
X-ray diffraction (CXRD) thus opened the way to new opportunities, as the possibility
to follow the fluctuation dynamics in condensed matter (called X-ray photon correlation
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spectroscopy) or to obtain the real-space image of the diffracted object using phase-retrieval
methods (referred to as coherent diffraction imaging methods [11,12]).

There is however another possible application of the use of a coherent beam. Among all
the possible defects encountered in condensed matter, some of them introduce phase shifts,
as dislocations, for which coherent diffraction is particularly sensitive. Before discussing
the case of dislocations in electronic crystals, let us illustrate the phenomenon with the
textbook case of an isolated dislocation in a perfect crystal.

For example, an isolated dislocation loop can be stabilized in a silicon crystal after
specific thermal treatments. Such a defect introduces phase-shifted domains on each
side of the dislocation line. When a coherent X-ray beam probes regions containing such
dislocation lines, interferences are observed (see Figure 2).

Figure 2. Coherent diffraction of a Silicon crystal displaying a dislocation loop (a) CXRD pattern obtained
on the 220 reflection when the beam probes the dislocation line. (b) Topography image of a typical
dislocation loop in this sample. (c) Image obtained in the same area as (b) by scanning the area with the
5µm coherent X-ray beam and plotting the intensity at the expected Bragg peak position. This experiment
has been performed at the CRISTAL beamline of the SOLEIL synchrotron at E = 7 keV.

In perfects regions of the crystal, a well defined Bragg peak is observed. In contrast,
when the beam probes the dislocation line, a destructive interference is observed, and the
Bragg peak displays two side maxima (Figure 2a). The local minimum in between the two
maxima can be tracked as a function of beam position on the sample to retrieve the full
dislocation loop (Figure 2c). The resulting image is in agreement with images obtained
by X-ray topography (Figure 2b). In addition, more details can be extracted of the CXRD
pattern, especially from the oblique scattering line that reveals that these dislocation loops
are dissociated into two partials (see [13] for more details).

2.1. Phase Shifts of Electronic Crystals Studied by Coherent X-ray Diffraction

The same methodology can be applied to electronic crystals (CDW and SDW) focusing
the measurement on the satellite reflection associated to the periodic lattice distortion
instead of the diffraction peaks associated to the host atomic lattice itself.

2.2. Isolated CDW and SDW Dislocations

First, electronic crystals can display their own phase defects such as dislocations
that can be probed with a coherent beam, as described in the previous section. A first
demonstration of a CDW dislocation was obtained in the blue bronze K0.3MoO3 [14].
This compound is a quasi-1D system made of chains of MoO6 clusters along which an
incommensurate CDW develops below 183K. The CDW being out-of-phase for adjacent
planes, the CDW wavefronts are inclined with respect to the chain direction, as illustrated
in Figure 3a.
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Figure 3. Schematic representation of the CDW wavefronts in the blue bronze (red lines) in the
quasi-1D crystal structure (only MoO6 octahedra are represented): (a) without a CDW dislocation and
(b) with a CDW mixed-dislocation. Coherent diffraction pattern measured at two different sample
positions at T = 75K. The single peak measured in (c) corresponds to a perfect CDW as represented
in (a) whereas interference fringes in (d) are consistent with a CDW displaying a mixed dislocation,
between an edge and a screw dislocation, as displayed in (b). Note that the widths of the two fringes
are identical and equal to the width of the reflection associated to the perfect CDW.

In most regions of the sample, the satellite reflection associated to the CDW modulation
displays a single peak (Figure 3c), indicating a long-range order greater than the beam size
without CDW phase defect in the micron-sized probed volume. In other regions however,
the CXRD pattern is split into two subpeaks with the same widths (Figure 3d). Similarly to
the diffraction of a slit where all fringes have the same width (at half maximum intensity),
all fringes display here the same widths. This is the typical signature of interference effects
between two domains out of phase. This diffraction profile can be well reproduced by
considering a mixed-dislocation of the CDW, between an edge and a screw dislocation, as
schematically shown in Figure 3b).

Similar isolated phase defects can be detected in magnetic modulations, like SDW.
This was observed in chromium, that exhibits both SDW and CDW modulations below
TN = 311K with associated satellites reflections at wave vectors qs = 2kF and qc = 4kF
respectively. Using CXRD in a non-resonant magnetic mode, a characteristic splitting of the
2kF satellite reflection associated to the SDW is observed at certain positions of the sample,
while a single peak is visible at most other positions, and turned out to be in agreement
with an edge-dislocation on the magnetic modulation (see Figure 4) [15].
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Figure 4. (a) CXRD pattern obtained on the SDW peak of chromium at a position where the peak is
split, as seen on the CCD detector; (b) simulation of an edge dislocation line of the SDW. The white
dot is the dislocation line position, and the yellow/red dots are a representation of the magnetic
moments at each atomic position in the presence of a SDW dislocation; (c) red solid line: simulated
CXRD pattern corresponding to the spatial arrangement shown in (b) represented on top of the
experimental data (black squares).

2.3. Coexisting SDW and CDW: Two Modulations with Highly Different Correlation Lengths

Coherent diffraction experiments also allow to compare the state of disorder through
speckles. Indeed, the number of speckles observed is, in first approximation, related to the
number of defects. This property is particularly interesting in the case of chromium case
that hosts two coexisting phases whose type of interaction has been much discussed.

If the SDW represents the main harmonics of the modulation with wavevector ~Q, a
CDW is concommitantly stabilized as its second harmonics at ~2Q. However, while the
magnetic instability is clearly due to the nesting of electron and hole pockets at the Fermi
level with wave vector ~Q, the origin of the CDW is far less understood. Several scenarii may
account for its appearance. The first one relies on magnetostrictive coupling: the interaction
between the SDW and the atomic lattice induces a CDW at ~2Q [16]. Another hypothesis
involves a second nesting of unnested hole pockets following the SDW formation [17].
How to distinguish between this purely electronic or magneto-elastic scenarii? As coherent
diffraction is very sensitive to local defects, similar profiles on the two reflections are
expected in the case of the magnetostrictive origin of the CDW. However, comparing
the singularities of the two phases is not an easy task in diffraction because the probed
volumes are in general not equivalent. The way to avoid this is to use simultaneous
diffraction geometry for the SDW and CDW reflections by placing simultaneously the
qS = (0, 1− δ, 0) SDW reflection and the qC = (1, 1− 2δ, 0) CDW reflection on the Ewald
sphere (see Figure 5a). The images recorded at the maximum of the rocking curve for the
CDW and SDW reflections using a 2D detector are displayed in Figure 5b,c respectively,
with the same scale in reciprocal space.

The difference between the two diffraction patterns is striking: while the CDW reflec-
tion is broad and contains many speckles, the SDW reflection is as narrow as the direct
beam. This reveals a high number of CDW defects while the SDW correlation length
remains larger than the 10 µm × 10 µm probed volume. We can directly infer from these
measurements that the the origin of the CDW is not directly linked to that of the SDW. The
scenario relying on a purely magnetostrictive origin of the CDW does not hold while the
results could be compatible with a band model based on a second order nesting [18].
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Figure 5. (a) Schematic drawing of the simultaneous diffraction experiment. Given an incident wave
vector ki, the sample is oriented so that both qS and qC satellite reflections are simultaneously located on
the Ewald sphere, and therefore both fulfill the diffraction condition. Comparison of (b) CDW and (c) SDW
satellite reflections in chromium by using coherent and simultaneous diffraction through the maximum
intensity of the CDW (qC=(1,1−2δ, 0)) and SDW satellites (qS=(0,1−δ, 0)) (beam size = 10 µm× 10 µm).
For most of the regions probed, the qC satellite displays speckles, while no speckle is observed at qS.

3. Dynamics of CDW Sliding Based on Phase Shifts Motion

The most spectacular property of incommensurate CDW systems is their ability to
carry a collective current when submitting the sample to an external electric field (for a
review, see [19,20]). Above a threshold bias current, an oscillating current is detected with
a fundamental frequency as well as several harmonics [21]. Up to 23 harmonics have
been observed in NbSe3 [22]. This collective transport of charges through macroscopic
sample has received a considerable interest for more than 35 years [19,23]. However,
the understanding of the type of charge carriers involved in the phenomenon and their
propagation mode still remains incomplete.

The first proposed scenario was based on the translational invariance of the incom-
mensurate modulation allowing the whole CDW to slide over the atomic lattice without
dispersion [24]. In fact, as we will see in the following, the sliding state is characterized by
a strong distortion of the CDW. In addition, the CDW is an almost sinusoidal modulation
as shown by diffraction experiments (the second harmonic is usually very weak in inten-
sity) while transport measurements reveal a strong anharmonic signal [22] which suggests
that the transport of charges in CDW systems is far more complex than a simple CDW
translation. Another description considering the influence of defects, assumes a slowly
varying phase φ(x) of the CDW interacting weakly with impurities [2]. The existence of the
threshold field is thus well explained by considering an empirical bulk pinning potential,
either strong or weak, depending on the type of defects and their concentration [23]. On
the other hands, a strong electron-phonon coupling has been considered where the lattice
itself plays the role of CDW pinning leading to discontinuities, in the phonon spectrum
and atomic modulation [25]. A pure quantum tunneling through the sample was also
proposed [26]. However, the most accepted theory, developed by Ong and Maki [3] and
Gor’kov [27–29], deals with the CDW-metal junction at electrical contacts. The conversion
of normal electrons from the metallic electrode into condensed charges in the CDW is made
possible by climbing CDW dislocations at the interface. This so-called phase slippage and
current conversion phenomena are in agreement with local resistivity measurements close
to contacts [30]. In the phase slippage theories [3], impurities play a minor role, hidden in
the tunneling coefficient. Note also that phase slippage mixed with quantum tunneling
have been considered at low temperature [31].

The validation of either of these theories suffers, however, from the fact that it is very
difficult to observe this phenomenon at the atomic scale. The aim of this review is to show
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how the use of CXRD to observe CDW phase defects brings new insight on charge transport
in CDW materials.

3.1. Dynamics of Sliding CDW Revealed by CXRD

The sliding state was historically observed by macroscopic resistivity measurements,
but its signature in diffraction is also clear. Although each CDW system displays its own
behavior, the sliding state is characterized in all cases by an increase of disorder below the
threshold. Depending on the system under study, the type of disorder may take the form
of creep, compression, expansion, rotation, or shear of the CDW wavefronts, with ordering
processes by motion for larger currents or the appearance of an additional modulation
appearing on top of the CDW.

As an illustration of the diversity of the phenomenon, let us first describe the behavior
of the blue bronze K0.3MoO3 system under current (see Figure 6).

Figure 6. Coherent diffraction patterns of the 2kF satellite reflection associated to the CDW of the
blue bronze, at two positions A and B, while applying external dc currents. Each diffraction pattern
corresponds to a sum of the full rocking curve and has been obtained for currents between 0 mA and
2 mA at position A and from 5 mA to 15 mA, then switched to −20 mA and back to 0 mA at position
B. A sketch of the corresponding wavefront configuration in real space is displayed below each image,
illustrating the creep regime below the threshold, the narrowing effect above the threshold due to
the sliding motion, as well as dilatation and contraction of the CDW wavelength in the sliding state
depending on the current direction. This experiment was performed at the CRISTAL beamline of
SOLEIL synchrotron.

In this experiment, an external current was applied to the sample in a 4-probe con-
figuration at 70 K, below and above the threshold current IS = 2 mA. In most regions of
the sample, the behaviour is similar to the one measured at position A in Figure 6: in the
virgin state (I = 0 mA), the CDW reflection is made of a single peak, which accounts for a
long-range order of the CDW. When current is applied, the CDW reflection broadens and
displays speckles, which shows that the CDW loses its coherence even at very low currents,
far below the threshold IS, which is characteristic of the creep regime. Above IS, when the
macroscopic excess of current is observed by transport measurements, the CDW reflection
gets narrower and accounts for a recovery of long-range order. However, this observation
remains very local and is not homogeneous from one place to another. At another beam
position (the beam size is few microns large) some intrinsic defects locally pin the CDW
even above IS, which gives rise to speckles (at 5 mA here, see Figure 6b). If current is
further increased, the CDW can overcome the pinning center and recover its long-range
order, here at I = 15 mA. By reversing the current, at I = −20 mA, this long-range order is
maintained, and still apparent when the current is switched off [32,33].
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Finer details revealing the effect of sliding can be detected. Probing the 2kF CDW
satellite with respect to external dc currents in the blue bronze reveals the existence of an
extra modulation (see Figure 7).

Figure 7. (a) 2D maps of the CDW satellite summed over the full rocking curve versus applied currents
and (b) corresponding CDW profile along ~b∗ (sum over the vertical CCD axis). (c) Evolution of the
two secondary satellites position with respect to the 2kF position (top panel) and the corresponding
period in real space reaching more than one micrometer (lower panel).

In the sliding regime, the 2kF satellite reflection displays secondary satellites along
the chain axis which corresponds to the appearance of a new periodicity in the system,
with periods in the micrometer scale i.e., 1500 times larger than the CDW wavelength that
decrease with increasing currents (see Figure 7). We will come back to this experiment in
the next chapter.

The sliding state is characterized by different features depending on the system under
consideration. Figure 8 shows a comparison between two other sliding systems: the quasi
two dimensional system TbTe3 and the quasi one dimensional one NbSe3, both probed by
CXRD. Although the two systems do not display the same behavior, the diffraction patterns
are very sensitive to the threshold current in both cases.

TbTe3 samples are intrinsically much less ordered than the blue bronze or NbSe3,
leading to broad diffraction peaks and speckles. However, this disorder does not prevent
the system from sliding [34] and the non-Ohmic conductivity is intimately linked to a
strong distortion of the CDW.

The satellite reflection associated to the CDW shown in Figure 8a) displays speckles
even without current. Below the threshold current Is, the peak remains unchanged, but a
visible shift in position is observed above Is. This global shift corresponds to a rotation of
the CDW wave vector in the sliding state (Figure 8a) [35]. Despite this reordering, one can
still observe speckles surrounding the peak proving that the CDW remains in a disordered
state above Is.

The case of NbSe3 is quite different. The diffraction pattern without current displays
an almost single peak corresponding to CDW correlation lengths larger than the beam
size, i.e., more than several micrometers in all directions. For small currents, far below the
threshold, the satellite reflection displays an elongated shape along the transverse direction
and is made of speckles (see Figure 8b).

Once the applied current exceeds the threshold current for sliding, speckles disappear
in NbSe3 leading to smooth diffraction profiles (see Figure 8b). This effect is more visible
in Figure 9. The disappearance of speckles does not correspond to a decreasing number
of CDW phase shifts but to time average, the counting time to get the image being longer
than the characteristic time of CDW sliding. Indeed, the 10s acquisition time necessary to
obtain one diffraction pattern is long compared to the phase shifts motion [36].
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Figure 8. Coherent diffraction patterns of the 2kF satellite reflection associated to the CDW versus
external current, below and above the threshold current IS, in (a) the quasi-two dimensional TbTe3

system (for I = 0 mA, I = IS/2.1 = 5 mA and I = 1.1× IS = 12 mA) where the red arrow indicates
the shift of the 2kF reflection at IS. (b) in the quasi-one dimensional NbSe3 system displaying an
elongated shape made of speckles below the threshold before refining above. The 2D images are a
sum over several incidence angles through the maximum of intensity. Although the cutting plane is
different in the two cases, the vertical direction of the camera is close to the 2kF wave vector (Q‖) and
the horizontal one is transverse to 2kF (Q⊥) in both cases [35].

Figure 9. 2D diffraction patterns of the (0,1.241,0) satellite reflection under external current from
0.2 to 1.8 mA (left column), as well as the corresponding transverse profiles (right column) obtained
after integration over the longitudinal direction. Speckles are observed even for weak currents and
disappear above the threshold at Is = 0.8 mA due to time average [36].

3.2. Microscale Shear Deformation of a CDW Induced by Surface Pinning

The limitation of the previous experiment is that the probe remains static and large,
averaging the CDW over the whole illuminated region of the sample, and thus excluding
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the possibility to observe local variations of the CDW. The NbSe3 system, however, is
known to develop a continuous CDW deformation under current. Indeed, current-induced
CDW deformations have been measured mainly close to the two electrodes by using a
50 µm × 50 µm X-ray beam along the entire sample length. The CDW appears to be
compressed on one edge close to the electrical contact and expanded on the other, leading
to a clear phase asymmetry in this direction [4,37]. These deformations were also observed
by local resistivity measurements [38] and are consistent with those required for phase slip
and CDW-to-normal carrier conversion at the contacts [4].

Although predicted in the 80’s [6], at least in the close vicinity of the surface, the
CDW shear deformation, which takes place along the direction perpendicular to current
injection, had never been observed. This is explained by the fact that NbSe3 samples have
the shape of very thin wires, tens of micrometers wide requiring the use of a much smaller
beam to observe transverse deformations without space averaging. In this regard, an X-ray
micro-diffraction experiment has been performed in NbSe3 versus applied dc currents.
Four gold contacts were evaporated on a 39 µm × 3 µm × 2.25 mm single crystal glued on
a sapphire substrate to perform four points resistivity measurements in-situ. Fast scanning
diffraction technique allows us to map the CDW sliding across the NbSe3 cross section. The
precise 2kF wave vector has been measured as a function of the X-ray beam position on
the sample surface. As shown in Figure 10, 100 µm × 40 µm maps were probed with 1 µm
resolution as a function of current. From these diffraction patterns, the CDW phase has
been obtained by using a phase gradient method [39]. The maps in Figure 10 have been
obtained using the gradient method by considering the map measured at I = 0.15 mA as
the reference map. Indeed, due to hysteresis effects, it is always difficult to start the current
injection from the true virgin state. However, we have considered that the reference map
chosen was similar to the CDW initial state without current (see Figure 10 for more details).

In the upper part of the sample, in which current flows, a continuous deformation is
observed from one lateral surface to the other, while the part in which no current flows
remains unchanged. Like a guitar string plucked at both ends and subjected to a transverse
force, the CDW bends in one direction or the other depending on the current direction.
Despite the imperfections of the crystal, the CDW displays a continuous shear through the
whole sample cross section, i.e., across 20 µm, which corresponds to more than 10,000 times
its wavelength (λCDW = 14 Å). This continuous deformation spreading over such a large
distance, and leaving both boundaries unchanged, emphasizes that a CDW is able to
maintain its cohesion over macroscopic distances despite the local disorder. A CDW, a least
in NbSe3, is mainly pinned by the lateral surfaces and little by the bulk, in contradiction
with bulk pinning theories [2].

Another indication that the surface has a dominant effect on CDW sliding is that the
threshold current depends on the sample size and increases as it decreases. Resistivity
measurements show that the threshold value diverges with decreasing sample length
in NbSe3 [40,41] and in TaS3 [42]. Resistivity measurements have also shown that the
threshold field is sensitive to the lateral dimensions of the sample, and increase with
decreasing sample cross-section in NbSe3 [41,43] but also in TaS3 [44].

To describe this sample length-dependence of the threshold, a phenomenological
relationship between Eth and sample length Lx can be established, involving CDW bulk
impurity pinning [6]. Batistic et al. numerically found Eth ≈ 2.55L−α

x where α = 1.23
considering longitudinal pinning [40], but this, however, does not explain the constant Eth
observe for large Lx. On the other hand, a more precise description of the compression-
dilatation profile developing along the CDW direction in NbSe3 has been obtained by
considering nucleation processes of dislocation loops considering creep effect and an
incomplete conversion process [45].
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Figure 10. (a) Image of the NbSe3 wire. The focused ion beam (FIB) cut forces the current to flow
through the upper part of the sample only, and not in the lower part below the cut line. This
geometry allows to simultaneously observe sliding and non-sliding areas from a single sample. The
CDW wave fronts are displayed in yellow. The area mapped by the X-ray beam is indicated in red.
(b) Evolution of the CDW in this region under increasing positive currents and decreasing currents
down to negative values (I = {0.15, 0.6, 1, 0, −0.15, −0.6, −1}). The map at 0.15 mA has been
considered as the reference map. For clarity, the period of the CDW (yellow wave fronts) has been
considerably increased (in reality, the CDW period is λ = 14 Å) [39]).

This experiment obviously highlights the predominant role of pinning by lateral
surfaces, until now neglected in previous theories (see Figure 10). In order to get the
spatial dependence of the phase and the size-dependent threshold field Eth(Lx, Ly, Lz), let
us consider the known 3D CDW free energy [46,47]:

F [φ] ∝
∫

d3~r {c2
xφ2

x + c2
yφ2

y + c2
zφ2

z + ω2
0 [1− cos(φ)] + ηExφx} (1)

where cx, cy, cz are the CDW longitudinal and transverse elastic coefficients, φj ≡
∂φ
∂j are the

phase derivatives, Vimp(φ) ≡ ω2
0 [1− cos(φ)] is a standard emulation of the bulk impurity
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pinning potential [19,23] neglecting its randomness [2,23] and the last term corresponds to
the CDW coupling to an applied electric field E with the longitudinal gradient φx, where η
is a temperature-dependent coupling coefficient [47] and Ex is the applied electric potential.
Guided by the experiment, we fix the phase at the electrical contact (x = 0 and x = Lx) and
at the transverse surfaces. The corresponding boundaryconditions are :

φ

(
± Lx

2
, y, z

)
= φ

(
x,±

Ly

2
, z
)
= φ

(
x, y,± Lz

2

)
= 0, (2)

The variational equation for the functional (1) (see Equation (4) below) was solved
using the Green function and image charges method (see details in [48,49]). In the first
order in β, the solution yields:

φ(~r) ≈ − 32
π5 Eηβ cos(π

x
Lx

) cos(π
y
Ly

) cos(π
z
Lz

) (3)

where the coefficient β dependents on the sample size Lx, Ly, Lz as:

β =
1

c2
x

L2
x
+

c2
y

L2
y
+ c2

z
L2

z
+

ω2
0

2π2

As shown in Figure 11, Equation (3) for the phase satisfies the Dirichlet conditions
(Equation (2)). The solution corresponds to a CDW shear in the central part of the sample
and a compression or a dilatation of the CDW wave fronts at the two edges, in agreement
with experiments.
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Figure 11. (a) CDW including the φ(x, y) obtained from Equation (3) displaying a shear effect with
a curvature of the wave fronts in the middle part of the sample and a compression-dilation of the
CDW period at the two electrical contacts. The CDW wavelength λ has been significantly increased
for clarity (in reality λ = 14 Å in NbSe3, that is λ ≈ 10−6Lx) (b) Threshold field Eth versus Lx and
its corresponding fit using Equation (13) of reference [49]. The experimental dots were obtained in
NbSe3 (reproduced from [40]) and the blue triangles in TaS3 (from [42]). (c) Threshold field Eth (blue
dots) versus sample cross section in small o-TaS3 samples (reproduced from [44]). The fit (red line)
correctly reproduces the increase of Eth for decreasing cross sections and the asymptotic constant
value for large cross sections [49].

The threshold dependence on Lx and Ly can be obtained by considering a threshold
strain φ′ leading to Eth ∝ 1/Lx and to a constant Eth at large Lx. Experimental data in
Figure 11b) are shown with their corresponding fit using Equation (13) from Ref. [49]. The
same equation was used to fit the evolution of Eth as a function of the sample cross-section
S = LyLz shown in Figure 11c). Furthermore, bulk impurity pinning was removed for those
fits (ω0 = 0) showing that surface pinning alone is sufficient to explain the constant Eth at
large Lx (see [49] for more details).

As a conclusion, without considering the empirical bulk pinning (ω0 = 0), and by
only fixing the phase at a constant value on all surfaces, the global deformation of the CDW
under current can be reproduced, including the dilatation and the compression close to
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electrical contacts [4,37], the wave front curvature in the middle part [39], and the threshold
field dependence on sample length and cross section.

This observation raises questions about the very nature of this phase able to develop a
continuous deformation across macroscopic distances in imperfect lattices containing many
defects in volume [26]. We can also note that if the transverse deformation is clearly related
to lateral surface pinning, the longitudinal one isn’t since the CDW compression-dilatation
at the electrodes is also due to the conversion of normal electrons from the metallic electrode
into condensed charges [4,45].

3.3. Sliding CDW Based on a Traveling Soliton Lattice

In the previous chapters, we have shown several aspects of a CDW that are all related
to sliding: CDW can stabilize dislocations at rest (see Figure 3) [14], those phase shifts
are mobile above the threshold, leading to the disappearance of speckles in blue bronze
(see Figure 6) and in NbSe3 (see Figure 9) [36]; the CDW displays a strong distortion
(longitudinal and transverse) in NbSe3 and an additional periodicity appears on top of the
CDW when sliding in K0.3MoO3 blue bronze (see Figure 12) [32]. The excess of current
observed in CDW systems above the threshold could be related to all these observations.

Figure 12. Sketch of the soliton lattice in real space. (a) CDW in the presence of a soliton lattice with
period l corresponding to periodic 2π phase shifts spread over a distance ls and propagating along
the applied field (b) the corresponding electronic density and (c) the phase φ profile [50].

Let us come back to the extra modulation observed in the sliding regime of the blue
bronze (see Figure 7). This modulation can be understood as the presence of a soliton lattice
in translation. For this, let us first consider a crude model considering the influence of
defects through an interaction which couples the pinning potential and the phase φ [2]. The
free energy leads to the following equation of motion in 1D [23]:

∂2φ

∂t2 − c2
x

∂2φ

∂x2 + η
∂φ

∂t
+ ω2

0 sin(φ) = F (4)

where F =
2c2

φ e E
h̄ vF

is proportional to the applied electric field, cx =
√

m/m∗ vF is the
phason’s velocity and ω0 the pinning frequency. We also add an effective damping term
η

∂φ
∂t to mainly take into account the coupling between CDW and phonons. The sin(φ)

term is not linearized here allowing for abrupt phase variations. The usual non-perturbed
sine-Gordon equation (for which F = η = 0) is known to admit soliton solutions. However,
soliton excitations are quite robust and survive the inclusion of a reasonable external force
and dissipation keeping their topological properties although the soliton shape is slightly
modified [51]. Let us now solve Equation (4) considering that the phase φ(x, t) contains
two terms: a slowly varying phase φ0(x) and a dynamical part φ1(x, t) where φ1 varies
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much more rapidly than the static one. The static part φ0(x) can then be calculated by
averaging Equation (4) in time:〈

∂2φ0(x)
∂x2

〉
t
= (

η π

e
j− F)/c2

φ, (5)

leading to a quadratic variation of the phase φ0(x) (j = e/π〈∂φ1/∂t〉). The CDW,
ρ = ρ0 cos(2kFx + φ(x, t)), pinned at both ends at the metal/CDW junction, is compressed
at one electrode and stretched at the other in agreement with experiments [4,37,45]. The
excess of current in the sliding regime j = e

π
∂φ
∂t is constant far from electrodes as observed

by numerous transport measurements [38,52–55].
The dynamical part φ1(x, t) obeys the sine-Gordon equation and is submitted to an

effective force including friction. Considering the periodic nucleation of CDW dislocations
at the electrode [31], we obtain a train of solitons [51]:

φ1(x, t) = δ +
∞

∑
n=−∞

4 arctan
(

exp
(

x− vSt− ln
lS γ(v)

))
, (6)

where l is the distance between successive solitons and lS = cx/ω0 their extension (see
Figure 13). Overlapping effects between solitons are neglected (l/lS > 2) [50]. Note also
that the soliton lattice reaches a stationary sliding velocity vs proportional to the electric
field E. Another expression for this soliton lattice, using the elliptic Jacobi function and
giving essentially similar results, will be discussed later (see Equation (14)).

Figure 13. (a) Fit of the experimental data from the soliton lattice model (Equation (6)). (b) Fitted
parameters ls and l versus currents and (c) profile of the corresponding phase φ showing an increase
of the soliton density for increasing currents [50].

This scenario of a soliton lattice traveling through macroscopic samples explains the
main features of the collective transport of charges in CDW systems. In this approach, once
created, these topological objects propagate without dispersion and with a remarkably long
lifetime. Furthermore in this theory, the propagation velocity increases while the lattice
period decreases with increasing applied fields and these 2π solitons carry a localized
charge. All these properties are in agreement with observations. It explains the well-
defined frequency of the additional pulsed current despite the macroscopic dimensions
of samples. Indeed, the charges remain spatially correlated despite the distance and the
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presence of disorder thanks to the robustness of these topological objects. The existence
of the soliton lattice is also in agreement with the appearance of an additional periodicity
observed by X-ray diffractioni experiments in the sliding regime of the blue bronze (see
Figure 7). It also explains why the fundamental frequency of the additional current increases
with increasing currents (since vs ∝ E) and why the additional periodicity observed in the
blue bronze decreases with increasing currents.

4. Effects of Solitons Observed by Diffraction

In this chapter, some theoretical aspects of the physics of solitons will be described
in relation to X-ray diffraction experiments. Only the unidirectional case, along the 2kF
direction, is considered.

CDWs are subject to stresses that can come from a variety of sources, such as surface effects
inducing pinning and shear [39] and/or changes in transition temperatures [56]. CDWs can
also be stressed by surface doping, surface steps [57], proximity to commensurability, various
structural defects like twins, domain walls [5], a constraint geometry [58] or an imbalance of
normal and collective currents near junctions in the sliding regime [45]. The stress can easily
exceed an elastic limit leading to the appearance of topological defects. For commensurate or
near commensurate CDWs, the associated stresses can leave particular fingerprints such as a
soliton lattice or a system of random solitons [32,59–61]. All these effects can, in principle, be
observed by local probes such as STM or by space-resolved X-ray beam as previously described
in this article (see also [5,38,45,57]) although the interpretation is not always obvious.

The intensity of the elastic scattering of the CDW with a distorted phase φ(r) is given
by the expression:

I(q) = I0

∣∣∣∣∫ S(r) · eiq·r · ei(φ(r)−φ(0)) · dr
∣∣∣∣2 (7)

where I0 is the normalization constant, and S(r) is the correlation function describing
an intrinsic disorder or inhomogeneity. X-ray experiments usually recover the “square
Lorentz” intensity profiles [62] which correspond to a simple exponential decay in real
space: S(r) ∼ exp(−|r|/η) where η is the correlation length.

The M-fold commensurate CDW interacts with the underlying lattice via the commen-
surability energy which, for a small CDW amplitude A, can be written as (see e.g., [23]):

Wcom = α(1− cos Mφ) , α = AM (8)

Cases M = 2, 3, 4, 8 are known in various CDW materials with M = 4 for NbSe3 and
M = 8 for Blue Bronzes; the case M = 1 is to emulate the interaction with host impurities
if we ignore the randomness of their positions. With primary contributions to the CDW
energy ∝ A2, the commensurability effect is weak for M > 2, affecting only the low energy
deformations of the phase, leaving the amplitude A almost unchanged.

For an exactly commensurate system, Wcom results in locking of the CDW phase φ at
values that are multiples of 2π/M. The actual band filling and/or local perturbations of
the concentration of condensed electrons enforce small deviations q from commensurability.
The overall phase displays increments ∆φ = qL over a length L and the phase jumps
N = ∆φM/2π times along the sequence of commensurability plateaux, forming a lattice of
solitons (see experimental Figure 13, and theoretical Figures 14). As previously described
in the experimental section, the soliton lattice is characterized by two lengthscales, the
distance between solitons l = L

N = 2π/(Mq) and the soliton width ξ (similar to ls in the
previous arctangent model, see Equation (6)). The period l depends on band filling which
makes it temperature-dependent due to thermal activation of carriers [63,64]. The single
soliton width ξ ∝ (Cx/α)−1/2 is jointly determined by the energy α and the CDW rigidity
parameter Cx. It also depends on the carriers concentration due to the so-called effect of
Coulomb hardening [19,65–67]. The basic model describing effects of the commensurability
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upon both the ground state and the spatio-temporal evolution of the CDW phase relies
upon equation [51]

m∗
∂2φ

∂t2 + γ
∂φ

∂t
− Cx

∂2φ

∂x2 +
e
π

E∗ + Fcom = 0 , Fcom(φ) = αM sin(Mφ) (9)

whose parameters will be discussed later. The simplicity of the model and availability of
exact solutions (the pure sine-Gordon limit with γ = 0, E∗ = 0) provoked a great amount of
studies through decades ([50] and references therein). However, the precise measurement
of the different parameters of this equation is far from being simple. The effective mass
density m∗ is accessible by optical measurements though the parameter α which is related
to the measurable pinning frequency ωpin as αM/m∗ = ω2

pin. With regards to the damping
coefficient γ, it is related to the measurable conductivity of the collective CDW sliding σc as
γ = e2/(sσc) where s is the area per chain. The definitions of σc, the stiffness Cx, and the
effective driving field E∗ require a comprehensive approach to CDW physics, including
such essential elements as Coulomb forces and normal carriers. The full microscopical
approach with some applications was reviewed in [19], the transparent equations have
been derived in [68] and the reasonably simplified version can be written as:

1
π

1
sσc

∂tφ−
1
π

ρc/ρn∂2
xφ +

Fcom

e2NF
= − J(t)

sσn
,

1
σc

=
1

σCDW
+

1
σn

(10)

which is comparable, term by term, to Equation (9) allowing to interpret its components.
The microscopically-derived temperature-dependent parameters are the normal and con-
densed densities ρn and ρc = 1− ρn, with ρc(Tc) = 0. They are normalized to ρc(0) = 1,
and hence ρn(0) = 0. The second term on the left-hand-side describes the enhancement
of the phase elasticity Cx and the ratio ρc/ρn controls the rigidity vanishing, while ap-
proaching the metallic state at T → Tc. It also explains the Coulomb hardening between
condensed charges which dramatically increases with freezing out of screening by normal
carriers when ρn → 0 at T → 0. The right-hand-side of Equation (10) gives the driving
force E∗ as the total monitored current J(t) divided by the normal conductivity σn alone.
The total current is additive: J = Jn + JCDW with the intrinsic CDW current (per chain)
being J1

CDW = −(e/π)∂tφ.
These complications, not quite intuitive, arise from the complex interplay of Coulomb

interactions with screening facility of normal carriers. The effects are particularly strong for
solitons which are actually the walls crossing the sample; their charge density generates
a constant electric field which must be screened by the cloud of normal electrons whose
width is the screening length ∝ 1/ρn. This cloud deforms or moves together with the phase
evolution thus contributing to both elastic energy and friction.

The boundary conditions applied to the solution of Equation (9) also require special
attention. It is already known that without pinning, the solution in the dissipative limit is:
φ = (px2 − rt) where p and r are related as follows: Cx p + γr = eE∗/π. In the opposite
case, without boundary conditions, there is a freedom to redistribute the action of the
driving force among the elastic ∼ p and viscous ∼ r contributions. We will demonstrate
below the difference in behavior under different boundary conditions, both physically
motivated.

Experiments performed on CDW systems show that the sliding motion is essentially
dissipative. According to optical data (see e.g., [23]), the CDW response is overdamped
for frequencies below 10 GHz, while the characteristic frequencies of CDW sliding, as
measured by Narrow Band Noise (NBN) measurements, do not exceed 100 MHz. We must
therefore keep only the derivatives in the dynamical equation (Equation (9)). The resulting
equations can only be studied numerically, and is presented in the following.

The important question that arises is why the damping coefficient γ is so large, as
shwon by the experiments dealing with the interaction of CDW with phonons. The answer
also deserves to be integrated in the context of the physics of solitons, a now local phe-
nomenon, caused by microscopic defects. Indeed, their presence is known to destroy the
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long-range CDW order. However, more importantly for us here, they provide an evolving
metastable order, whose relaxation dissipates the sliding energy.

For the so-called local or strong pinning, the answer is explicitly known (see [69]). For
small velocities, it looks like

γ = 4niFπτπ , Fπ =
1
2

d∆E
dθ

∣∣∣∣
π

(11)

where ni is the linear concentration of impurities, τπ is the relaxation time of the local
metastable state, Fπ is the phase restoring force produced by the impurity, ∆E is the energy
term dependent on the phase mismatch θ, and τπ is the relaxation rate of the metastable
state. More details are given in the last section.

In the following, we will first consider randomly-distributed static solitons, then a regular
lattice of solitons, either static or moving under the effect of an external electric field, and finally
the solitons in space and time domains appearing in the course of phase slips.

4.1. Rare Random Solitons

Consider a CDW system containing few solitons, with a mean concentration c = 1/l,
trapped by impurities or thermally-scattered at T > Tc, so that their positions xi are
random. Each soliton produces a phase shift χ = 2π/M. We shall keep χ to be arbitrary
allowing also to include the effect of charged impurities, providing Friedel phase shifts
even in absence of solitons (see [62] and refs. therein). The correlation function in (7) can be
calculated via the Poisson distribution for a number of defects n found within the interval
(0, x). We have

D(x) =
〈

eı[φ(x)−φ(0)]
〉
= ∑

n
eiχ·n·sgn(x) (c|x|)

n

n!
e−c|x| = e−|x|c(1−cos χ)eixc sin χ. (12)

In q space, we find a single symmetrical Lorentzian peak with the width c(1− cos χ)
and located at the displaced position δq=c sin χ:

I(q) = R
2c(1− cos χ)

(q− c sin χ)2 + 4c2(1− cos χ)2 ; χ =
2π

M
(13)

where R is the material parameter. If χ� 1, the shift is just given by the mean stretching
δq ≈ cχ. Even small, the shift is nevertheless visible because the broadening cχ2 is even
smaller. On the contrary, when the shift is maximal (δq = c at χ = π/2 for M = 4), for the
unitary limit of the impurity potential, the peak position is no longer well-defined since its
broadening is of the same order of magnitude as the shift.

4.2. Static Lattice of Solitons

Without driving force, E∗ = 0, the static soliton of Equation (9) yields the regular
soliton lattice whose form is known analytically:

φ(x, k) =
2
M

am
[

M
2k

x
ξ

, k
]

; l =
4kK(k)ξ

M
; ξ =

(
Cx

α

)1/2
(14)

where l is the distance between solitons, ξ is the characteristic soliton size, am[τ, k] is
the elliptic Jacobi function, and K(k) the complete elliptic integral of the first kind. This
expression is more precise than the one used previously (see Equation (6)), although it may
be less intuitive.

The intensity I(q) is determined by Equation (7) containing the phase φ given by
Equation (14). The results are shown in Figure 14. When the soliton size is large, for ξ ∼ l
(k� 1), the phase φ grows almost linearly. In that case, the intensity I(q) is simply shifted in
q-space from the commensurability point Q0 to Q0 + 2π/l. In the opposite strongly non-linear
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case, where φ contains abrupt phase shifts (ξ � l), the solitonic superstructure leads to the
formation of non-symmetric peaks, spaced by a wave vector depending of 1/l (Figure 14).

4.3. Lattice of Solitons Submitted to an External Electric Field

Consider now the static and the stationary states of the solitonic lattice under the
applied homogeneous field E∗. Recall that the CDW sliding is overdamped, and so we
consider the behavior of the phase φ described by Equation (9) in the limit m∗ = 0. We
numerically solve the differential equation by considering two different physical situations:

(i) The CDW condensate is considered as isolated, with a conserved total charge and
submitted to boundary conditions fixing the phase increment:

∆φ = φ(L, t)− φ(0, t) = 2πNs/M (15)

where Ns is the number of solitons over the chain length L present before the field is
applied.

(ii) The CDW condensate without boundary conditions, only the initial phase distribution
φ(x, 0) is defined.

Independently of the boundary conditions, the CDW state is not static anymore for too
large E, exceeding a critical electric field Ec. In the specific case of the rigid approximation,
where ∂xφ = 0, the potential energy −α cos(Mφ)− eEx/π behind the Equation (9) looses
its minima above the critical electric field Ec0 = Mα. In the more general case, where
∂xφ 6= 0, the threshold field Ec is different and our numerical solution shows that the actual
threshold field is lower than the rigid case, with Ec ≈ 0.7Ec0, being reduced by the allowed
elasticity ∂xφ 6= 0.

Figure 14. (a) The phase φ grows almost linearly for ξ = 0.44l (blue line) or displays abrupt phase
shifts ξ = 0.04l (yellow line) (b) Corresponding normalized diffraction profile of the sattelite reflection
associated to the CDW displaying the two types of solitonic lattice for ξ = 0.44l (dashed blue line)
and for ξ = 0.04l (yellow line). The shift of the maximum of intensity is related to the average slope
of the phase, which is equal in both cases here.

For the case (i) of the closed system, the space-time distribution of the phase φ(x, t) is
presented in Figure 15 for low and high electric fields.

We see that the static solution corresponding to the lattice of somehow deformed
solitons is reached at sufficiently long times. At the critical field, the soliton lattice starts
to move and no static limit can be reached. Figure 16a shows the space dependence at a
given point t0 of φ(x, t0) for various electric fields. In the sliding regime, the amplitude of
undulations diminishes. At larger E, the profile of φ(x, t0) approaches a plateau while the
solitons are expelled in favor of a steep rise of φ near a boundary. The scattering intensity
I(q) is presented in Figure 16b for a subcritical electric field.
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Figure 15. Space-time distribution of the phase φ for various electric fields: (a) E = 0.5Ec,
(b) E = 0.65Ec and (c) E = 0.8Ec.

Figure 16. (a) Space distribution of the phase φ(x) at a fixed time for various electric fields.
(b) Scattering intensity profile for an intermediate field E/Ec = 0.5.

For the case (ii) of the open system, we imply the initial conditions corresponding to
the initial solitonic distribution:

φ(x, 0) = am(x, k) (16)

The results of the numerical solution are presented in Figures 17 and 18. At short
times, the soliton lattice profile φ(x, t) changes and becomes non-symmetrical. The soliton
width increases with increasing applied fields, and the solitons start moving. The density
plot of φ(x, t) is presented in Figure 17.

FIG. 16: a) Space distribution of the phase φ(x) at a fixed time for various electric fields. b)

Scattering intensity profile for an intermediate field 0.5E0.

FIG. 17: Contour plots of phase φ for a) E = 0 and b) E = 0.15Ec.

the soliton lattice profile for φ(x, t) changes the shape, which becomes non-symmetrical. The

width of the soliton increases with the increase of the applied field, and the solitons start to

move. The density plot of φ(x, t) is presented in Fig. 17.

At zero electric field (17,left), the periodic initial φ(x, 0) profile is kept statically, but it

starts to move under applied external electric fields with no threshold. The contour lines

φ(x, t) bend and the distance between solitons changes not only in space but also in time

(Fig. 17b). The behavior of the phase in the middle part of the sample, φ(L/2, t), for various

electric fields is presented in Fig. 18a; the intensity I(q) at an intermediate electric field is

presented in Fig. 18b.

In this complex CDW sliding process, many questions can be answered by considering the

28

Figure 17. Contour plots of phase φ for (a) E = 0 and (b) E = 0.15Ec.

At zero electric field (Figure 17a), the initial periodic profile φ(x, 0) is kept statically,
but it starts to move under applied external electric fields with no threshold. The contour
lines φ(x, t) bend and the distance between solitons changes not only in space but also in
time (Figure 17b). The behavior of the phase in the middle part of the sample, φ(L/2, t),
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for various electric fields is presented in Figure 18a; the intensity I(q) at an intermediate
electric field is presented in Figure 18b.

Figure 18. (a) Space distribution of the phase φ(x) at a fixed time for various electric fields.
(b) Scattering intensity profile for intermediate field.

In this complex CDW sliding process, many questions can be answered by considering
the phase-only framework, like how solitons enter or leave the sample, how they are
(re)created near junctions, how the total soliton number Ns changes with temperature for
example, or how the equilibrium wave vector evolves (see [70] and the first part of this
review concerning diffraction experiments). However, a change of Ns, or more generally of
the total phase increment ∆φ, is required for so-called phase-slip processes, which corre-
spond to a kind of space-time vortices. As a consequence, it is required for the amplitude
A of the CDW order parameter Ψ = A exp(iφ) to vanish in the vortex core [49]. Thus, the
equations must be generalized and include the function A(x, t). The commensurability
energy has to be generalized as Wcom ∝ −α

(
ΨM + Ψ∗M) and the following additional

equation for A has to be considered:

κx∂2
x A + κx A(∂xφ)2 − A + A3 − αM

(
ΨM−1 + Ψ∗M−1

)
= τ−1∂t A (17)

where κx and τ (the amplitude relaxation rate) are some constants. In Equation (9), we
must take into account that γ ∝ Cx ∝ A2 and α ∝ AM. The vorticity can be obtained only
in invariant variables, so the phase derivative in Equations (9) and (17) must be generalized
as ∂tφ→ ω = Im(Ψ∗∂tΨ)/A2, ∂xΨ→ q = Im(Ψ∗∂xΨ)/A2 with the phase being restored
as φ =

∫ t
ω(t′)dt′. The numerical solution was performed in terms of components u, v

of Ψ = u + iv. The boundary conditions are given in terms of q ; in view of the local
electroneutrality condition (q/π) + n = 0, q specifies the concentration of normal electrons
n, and thus their chemical potential which is the standard assumption.

Figure 19 shows an example of numerical solutions for M = 1. We see a stratification
among the pinned bulk where the phase is nearly constant and the sliding stripes near
junctions where the phase evolves by 2π pulses (solitons in the time domain). The regions
are separated by a periodic array of vortices in time, and form as a wall in the x direction,
which can be viewed as space-domain solitons. The plot of the amplitude shows the
sequence of nodes: as expected, A(x, t) goes to zero at the space-time vortex centers.

In conclusion, the commensurability solitons can be observable in CDWs with a
sufficient concentration of normal electrons. Particular manifestations near junctions are
challenging for space-resolved studies, particularly coherent micro-diffraction. These
intriguing spatial and temporal effects require the use of both space and time-resolved
techniques to be observed.
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Figure 19. Phase slip processes. (a) Space-time distribution of the phase φ(x) and (b) of the amplitude A(x, t).

4.4. Generation of Pairs of Solitons by an Impurity and Resulting CDW Viscosity

Consider a system of interacting CDW chains with a point impurity located at position
~ri, x = xi on the chain n = 0. We can write the Hamiltonian as

H =
∫

dx

{
∑
n

[
1
2

C‖(∂xφn)
2 −∑

m
C⊥ cos(φn − φm)

]
−V cos(φ0 + ~Q~ri)δ(x− xi)

}
(18)

where C⊥ is the interchain coupling and V is the impurity strength. The 2π periodicity of
the pinning energy allows to skip the 2π quanta in φ0 to optimize the total energy. More-
over, the 2π periodicity of the regular energy in Equation (18) allows for interchain ±2π
solitons. For the soliton centered at position X, the phase profile φs(x−X) describes stretch-
ing/dilatation by one period along the defected chain relative to the surrounding ones. The
soliton is distributed over the length ξ ∼

√
C‖/C⊥ and costs the energy Es ∼

√
C‖C⊥, the

two terms defining the equilibrium concentration of solitons ns ∼ exp(−Es/T).
The energy should be minimized over φ(x) with the asymptotic condition φ → φ̄ at

|x− xi| → ∞ where the mean phase in the bulk φ̄ can be time-dependent. It is convenient to
keep the local value φ0(xi) fixed and optimize it only at the end of the calculation. Then the
pinning center can be described by a single degree of freedom ψi and monitored by another
single one θi. Let us define the local mismatches of phases relative to the bulk value φ̄:

ψi = φ(xi)− φ̄ , θi = −Qxi − φ̄ , ∂tφ̄ = ω (19)

Henceforth, the index i will be omitted.
Quantitative results can be obtained within a short-range model (Equation (18)). If

we consider that only the central chain n = 0 (passing through the impurity) is perturbed
while its neighbors stay at φn 6=0 ≡ φ̄ homogeneously, then the energy functional can be
simplified as: ∫

dx
[

1
2

C‖(φ
′)2 − C⊥ cos(φ)−V cos(φ− θ)δ(x)

]
(20)

Its extremum is the function φ(x) = φs(x−X)−φs(x+X) where φs(x) is the standard
sine-Gordon soliton shape and X is fixed by the conditions φ(0) = 2φs(X) = ψ. The
successive φ(x) profiles versus θ is shown in Figure 20a.

The energy can be written as: W(ψ) = Es(1− cos(ψ/2)). Over one period, W(ψ)
changes monotonously within 0 = W(0) ≤ W(ψ) ≤ W(2π) = 2Es. The remnant varia-
tional energy contains the pinning potential V(ψ − θ), which we take as
V(φ) = V(1− cos φ), and the energy of deformations W(ψ) with W(0) = 0, W(2π) = 2Es:

H(ψ, θ) = V(ψ− θ) + W(ψ) (21)

The study of the extrema of this energy yields one or three solutions ψi(θ), i = 1, 2, 3
whose energies Ei(θ) are illustrated in Figure 20b. As an example, the profile i = 3
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corresponds to a dilatation of the CDW wavelength at one side and a compression on the
other side, in agreement with the observations [4,37]. The whole interval of θ, or some parts
of it, can be either mono-stable or bi-stable. The last case corresponds to the coexistence of two
locally stable branches: the absolutely stable one with the lower energy E1 and the metastable
one with a higher energy E2. The same pair of branches can be regrouped also as the
ascending branch E+ for which F+(θ) > 0 and the descending one E− with F−(θ) < 0, where
Ea (with a = ±) are the partial forces generated by the pinned state a. They correspond to
the retarded and the advanced states at the impurity, respectively, and the two branches cross
each other at θ = π, with ψ±(π) < π (see Figure 20b). The barrier height, with respect to
the metastable branch E2, gives the activation energy for its decay: Ub(θ) = E3(θ)− E2(θ).

Figure 20. (a) The φ profile starts from the equilibrium position 0 with φ(x) ≡ 0, and evolves through
the shapes 1, 2, 3, 0′. These configurations correspond to the retarded branch E+ which becomes
metastable after φ(0) crosses π. The phase φ will then follow the advanced profiles 1′, 2′, 3′, 0,
corresponding to the branch E_. If the retarded branch E+ is less deformed, costing a smaller energy
W, the relaxation E+ → E_ is avoided, and the new development starts with the profile 0′ = 0 + 2π

corresponding to the infinitely divergent pair of solitons. (b) Energy branches for a bistable impurity.
The upper line shows the barrier branch E3. Solid lines show the locally stable branches E±, also
classified as E2 > E1. The difference ∆E = E2 − E1 gives the dissipated energy. The difference
U = E3 − E2 gives the activation energy for a decay of the metastable state E2.

Let us consider the stationary process when the CDW moves with a constant phase
velocity ω = − ˙̄φ = θ̇ = const. The pinning force can be written as a weighted distribution
of instantaneous forces:

Fpin = ni

∫ θmax

π
dθF(θ) exp

(
−
∫ θ

π

dθ1

ωτ(θ1)

)
, F =

d
dθ

∆E
2

=
F+ − F−

2
(22)

where the expression in the exponent generalizes, for a variable relaxation time τ(θ), the
natural guess for the decay probability as exp(−Tslide/τ) where Tslide = 2π/ω is the period
of the CDW sliding over the impurity site.

We shall limit the discussion to small velocities ω � τ−1
π where τπ = τ(π) ∼

exp(Uπ/T), Uπ = U(π), is the maximal relaxation time in the region of the branch crossing
the point θ = π. The main contribution comes from the close vicinity of π: θ ≈ π + δθ
where δθ ∼ ωτπ . We can distinguish between two sub-regimes.

1. Very small velocities: with ω � ωπ = T/(τπ Fπ)� τ−1
π and Fπ = F(π). The decay hap-

pens as soon as the branch becomes metastable in a vicinity of π, even before the θ dependence
is seen. The life time interval is δθ ∼ vτπ, hence Equation (22) yields the expression

Fpin = niωFπτπ (23)

which gives the phenomenological viscosity in the regime of the linear collective conductivity.
It shows an activated behavior via τ−1

π which can emulate the normal conductivity via
thermally activated quasi-particles.
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2. Moderately small velocities: with ωπ � ω � τ−1
π and

Fpin ∼ niT ln[ωτπ ] i.e., ω ∼ τ−1
π exp( f /niT) (24)

Convenient interpolation formulas for the two cases 1,2 can be obtained:

Fpin ≈ Tni ln
(

1 + ω
τπ Fπ

2πT

)
; ω =

2πT
τπ Fπ

(
exp

Fpin

Tni
− 1
)

(25)

The physics of Fpin ∼ ω regime is given by the high probability to stay with the
metastable branch in the course of small displacements δθ ∼ τπv. The Fpin ∼ ln ω regime
appears because that at higher ω a wider region of δθ is explored and the metastable branch
starts to feel the decrease of the barrier (long in advance, there is either the termination
point θe or the minimal barrier point θm), even if still unreachable at these moderate ω. The
complete range of velocities was described in [69] and compared with experiments in [71].

5. Conclusions

This article summarizes different studies that have made it possible to observe defects
in electronic crystals, such as charge and spin density waves, thanks to cutting-edge X-ray
diffraction techniques and more particularly coherent X-ray diffraction. New information
about the CDW static and dynamical regimes could be obtained thanks to the sensitivity of
coherent X-rays to phase variations, especially in the sliding CDW state. Two main features
emerge from this series of experiments: the CDW deformation, mainly due to pinning by
sample surfaces and the propagation of a periodic lattice of phase shifts on top of the CDW.
These two characteristics of sliding CDW are linked. The collective transport of charges in
CDW systems is based on the dynamics of phase shifts induced by CDW deformations. After
a threshold strain, the CDW elastic energy is released by creating a 2π soliton. Once created,
the soliton propagates freely across the sample. Since the applied current is continuous, the
creation of soliton is periodic, generating a soliton lattice in motion.

There is, however, still a lot to understand. The main difficulty lies in the fact that each
system, despite identical aspects, has different properties. The diversity of measured re-
sponses probably shows that the type of transport is not identical depending on the system.
Ultrashort and coherent X-ray pulses as the ones delivered by X-ray Free Electron Lasers
could open new perspectives thanks to unprecedented spatial and temporal resolution to
get a better understanding of this collective motion of charges.
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