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Abstract: The characteristics of a stationary flow of a volatile liquid driven by a co-current gas flux in
a flat horizontal mini-channel upon the non-zero transverse temperature drop are studied. We use an
exact solution of the thermosolutal convection equations for describing the heat and mass transfer
caused by the combined action of gas pumping, buoyancy, thermocapillarity and linear heating of
the channel walls in a two-layer system. The influence of heating from above on the parameters of
the ground state and the stability characteristics of the basic flow is explored using an example of the
ethanol–air system. We evaluate the thresholds of the linear stability and select the most dangerous
modes. Heating from above results in flow stabilization. Instability appears in the form of oscillatory
cellular convective patterns.

Keywords: mathematical modeling; exact solution; evaporative convection; oscillatory instability

1. Introduction

Mathematical modeling of heat and mass transfer processes under the conditions of
phase transitions in fluid media is a very complex problem. A commonly used approach
to describe thermal convection in liquids and gases is based on the application of the
fundamental conservation laws of continuum mechanics. Constitutive equations and
boundary conditions on the surface dividing the media being in various aggregate states
are formulated with respect to some additional presuppositions of physical chemistry
and thermodynamics. When using the Navier–Stokes equations for an incompressible
medium and the heat and mass transfer equations or their Boussinesq approximations,
the main problem consists in the choice of a method of taking into account the phase
interactions, including the formulation of conditions at the interface and the selection of
the closing relations, which ensures the correctness of the problem statement. The feature
of the convection equations derived on the basis of the Navier–Stokes equations is that
the relations are differential expressions of the conservation laws of mass, momentum and
energy and imply the natural symmetry properties of the space-time and fluid moving
in this space [1]. The comprehensive review of the mathematical models of evaporative
convection formulated within the framework of various approaches, summary of the
underlying hypotheses, necessary characteristics and properties of interfaces and types of
the mass transfer are presented in [2].

The development of mathematical models of evaporative convection includes their
verification based on the results of experimental studies. The modern experimental in-
struments and measuring techniques allow one to investigate and quantify the velocity
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and temperature fields at the interface, in the near-surface layers and inside the liquid
volume. In addition, it is possible to experimentally determine the vapor content in the
gas phase and the evaporation mass flow rate, even in the case where the mass transfer
effects are rather slight (for example, under the diffusion-type evaporation occurring near
the local thermodynamic equilibrium state). In [3–6], the experimental research methods
are described, and the measurement data of various flow characteristics in the two-phase
systems with the working fluids such as ethanol/HFE-7100 (liquid) and nitrogen/air (gas)
are presented.

The use of the experimental methods is often limited due to the high resource costs,
especially when it is necessary to repeatedly simulate the real conditions of the convective
processes. In many cases, theoretical investigations are needed to obtain the preliminary
characteristics of the flow regimes under various conditions, whose rapid experimental
implementation is problematic, for example, for low gravity conditions. The possibility
to carry out a quick theoretical analysis increases if the exact solution of the governing
equations underlying the mathematical model is known. Construction of exact analytical
solutions (solutions of a special form), which satisfy the boundary conditions and admit
a physical interpretation for describing the process under study, in particular, convection
with evaporation, is of particular interest. With the help of exact solutions, it becomes
possible to reveal the nature of the dependences of the main characteristics of the system
(such as the fluid flow rate, coolant temperature, vapor content in the gas phase, mass
evaporation rate) on various parameters (thermophysical properties of the working media,
geometric characteristics of the flow domain) and on the external impacts (the intensity of
the thermal load at the boundaries and gravitational field). The study of the stability of the
derived solutions will make it possible to determine the ways to control the arising flow
regimes of the working fluids due to various mechanisms (see [7–11]).

The analysis of the experimental data shows that an evaporative flow is characterized
by the presence of interfacial temperature inhomogeneities resulting from the decrease in
the average kinetic energy of the liquid volume. The occurrence of a temperature gradient
should be regarded by a solution of the corresponding problem. The Ostroumov–Birikh
solution [12,13] of the Navier–Stokes equations considered in the Boussinesq approxima-
tion takes into account this effect due to the linear dependence of the temperature function
on the longitudinal coordinate implied by the solution structure. Thus, the possibility of
generalizing this solution to describe convection under evaporation (and condensation)
conditions has been noticed. The Ostroumov–Birikh type solutions are partially invariant
ones of rank 1 and defect 3 for the problem in the two-dimensional formulation. The group
nature of such solutions, including their analogues for the case of thermosolutal convection,
was proved in [14]. The group origin of the solutions guarantees their physical realizability
and plausibility due to the symmetry properties inherited by the exact solutions. The re-
search methodology based on the application of the exact solutions allows one to effectively
study the fundamental and secondary features of the physical processes described with the
help of the Navier–Stokes and heat transfer equations (or their approximations).

A variety of instability forms is peculiar to multilayer systems, since the presence
of the interfaces causes the appearance of an additional factor related to the action of
thermocapillary forces [15]. The instability in a two-layer fluid can be developed even in
the conditions of potentially stable temperature stratification of the system [15,16]. If ther-
mocapillary convection is accompanied by evaporation, then an additional mechanism of
instability appears due to the cooling of the liquid surface. In the present paper, we examine
thermocapillary bilayer flows with diffusion-limited evaporation in a plane channel under
terrestrial gravity. We consider the case when thermal load distributed according to the
linear law with respect to the longitudinal coordinate is applied on the channel walls.
Here, the temperature of the upper wall is higher than that of the lower boundary. We use
the Ostroumov–Birikh type exact solution of the thermosolutal equations [17] in order to
scrutinize the characteristics of the ground state and dependence of the thresholds of linear
stability on the heating conditions. A comparative analysis of the results obtained for the
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cases of the non-zero transverse temperature drop and equal thermal load applied on the
channel walls is performed.

2. Problem Statement

We consider liquid–gas thermocapillary flows in a flat horizontal mini-channel with
fixed impermeable walls y = −l and y = h subjected to the linear heating in the direction
of the x-axis (Figure 1). We assume that the fluids are viscous heat-conducting incom-
pressible media divided by a smooth interface Γ. The gas in the upper layer is pumped
at a given flow rate Q; it leads to a formation of additional interfacial shear stress and
liquid evaporation from the surface Γ. Therefore, the overlying layer is filled with the
mixture of the background gas and liquid vapor. We consider the volatile component as a
non-reactive impurity.

Figure 1. The model of a two-phase system with the interface in the Cartesian coordinates.

The mechanisms governing the convective flows with evaporation in the bilayer sys-
tem are gas pumping, buoyancy and thermocapillary forces and linear heating of the chan-
nel walls. We use a two-sided mathematical model on the basis of the Oberbeck–Boussinesq
approximation for describing the combined convection. The convective heat and mass
transfer in the jth fluid is governed by the following equations

∂vj

∂t
+ (vj · ∇)vj = −

1
ρj
∇pj + νj∆vj − g(β jTj + δ2

j γC),

div vj = 0,
∂Tj

∂t
+ vj · ∇Tj = χj(∆Tj + δ2

j αC ∆C).

(1)

∂C
∂t

+ v2 · ∇C = D(∆C + αT ∆T2). (2)

Hereinafter, the subscripts or superscripts j = 1 and j = 2 correspond to the functions
and parameters related to the liquid and gas layers, respectively. Equation (2) describes the
vapor transfer in the gas layer. In Equations (1) and (2), v = (u, v) is the velocity vector, p is
the modified pressure giving a deviation of the true fluid pressure from the hydrostatic one,
T is the temperature, C is the vapor concentration function, g = (0,−g) is the vector of the
gravity force acceleration, ρ is the reference density, ν, χ, β are the coefficients of kinematic
viscosity, heat diffusivity, and thermal expansion, respectively, D is the coefficient of vapor
diffusion in the gas, γ is the density concentration coefficient, the parameters αT and αC are
the Soret and Dufour coefficients, respectively, and δ2

j is the Kronecker delta.
On both outer boundaries, no-slip conditions for the velocity functions and the linear

law of the temperature distribution are set. On the upper wall, we additionally impose the
zero vapor flux condition. The boundary conditions on the channel walls are as follows:

y = −l, u1 = 0, T1 = Ax + ϑ1,

y = h : u2 = 0, T2 = Ax + ϑ2,
∂C
∂y

= 0.
(3)
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Here, the positive or negative values of the longitudinal temperature gradient A
correspond to the heating or cooling of the walls in the direction of the x-axis, respectively.
In the first case, relative heaters are arranged downstream. The latter corresponds the
configuration with the heaters located at the channel inlet. The constants ϑj set the wall
temperature. When ϑ1 6= ϑ2, a transverse temperature drop is formed in the channel.

The continuity conditions for the velocity and temperature, kinematic condition and
balance relations for the forces and heat are set on the common internal boundary Γ.
We supplement the standard conditions with the relation specifying the concentration of
saturated vapor. In the general form, the interface conditions are as follows [18]:

v1 = v2, T1 = T2, v1 · n = v2 · n = Vn, (P1 − P2)n = 2σHn +∇Γ σ,

κ1
∂T1

∂n
− κ2

∂T2

∂n
− αC κ2

∂C
∂n

= −LM, C = C0(1 + ε(T2 − T0)),
(4)

where n is the unit normal vector to Γ directed from the lower layer into the upper one, Vn
is the velocity of motion of the surface Γ in the direction of the normal n (Vn = − ft/|∇x f |,
∇x f = ( fx, fy, fz), f (x, y, z, t) = 0 is the implicit equation of the interface, in the stationary
case Vn = 0), Pj = −pjI + 2νjρjD(vj) is the stress tensor in the jth medium, I is the unit
tensor, D(vj) = (∇vj + (∇vj)

∗)/2 is the velocity-strain tensor of the vector field vj, H
is the mean curvature of Γ (if the surface Γ is bent outwards, then H > 0), ∇Γ is the
vector differential operator ∇Γ = ∇ − n(n · ∇), σ is the surface tension of the liquid,
σ = σ0 − σT(T1 − T0), σ0 is the reference value of the surface tension at the equilibrium
temperature temperature T0, κj is the heat conductivity coefficient, L is the latent heat of
evaporation, M is the mass flow rate of vaporization, C0 is the equilibrium concentration of
the saturated vapor, ε = Lµ/(R∗T2

0 ), µ is the molar mass of the evaporating liquid, and R∗

is the universal gas constant.
The intensity of gas pumping is determined by the condition specifying the gas flow

rate in the upper layer:

Q =

h2∫
0

ρ2u2(y) dy. (5)

Equations (1) and (2) supplemented by conditions (4) represent the basis of the full
two-sided model for describing convection in the two-phase system under the conditions
of the diffusive type evaporation through the interface [2]. Possible variants of the condi-
tions on the outer boundaries of the flow domain within the framework of the model are
discussed in [17].

3. Form of the Exact Solution

Due to the group properties of systems (1) and (2), we can find their solution in a
special form [10,17]:

uj = uj(y), vj = 0, Tj = Tj(x, y) = (aj
1 + aj

2y)x + ϑj(y),

C = C(x, y) = (b1 + b2y)x + φ(y), pj = pj(x, y).
(6)

Here, aj
k, bk (k = 1, 2) are the solution parameters. Solution (6) belongs to the Birikh

solution class and has a group origin [19]. It describes steady flows in a two-layer system
where one of the fluids is a binary mixture.

Substituting the required functions in form (6) into (1)–(5), we find that the solution
exactly satisfies all the governing equations and boundary conditions. Here, the time
invariance of the solution ensures that the kinematic condition is identically satisfied.
Projecting the dynamic condition on n, we obtain the equality H = 0. It means that the
surface Γ remains non-deformed, and the equation y = 0 defines the interface position.
The continuity condition for the temperature on Γ imposes the equality aj

1 = A, so that the
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temperature in the jth layer is defined by the function Tj = (A + aj
2)x + ϑj(y). The value of

the temperature gradient on the interface coincides with the given value of the boundary
gradient A. Here, the interfacial gradient governs the surface tension-driven convection
and evaporation intensity. We do not consider the case A = 0, since in this situation
exact solution (6) degenerates into a simpler one with the zero constants aj

k, bk (k = 1, 2).
The latter does not belong to the Birikh solution class. Moreover, it does not take into
account the impact of the thermocapillarity.

Lastly, if the linear heating with equal boundary gradients is applied on the channel
walls, then only the case M = const can be realized due to the solution form [17]. The con-
dition means that evaporation at the interface occurs at a constant rate along the whole
length of the channel. We use the mass balance condition for evaluating the evaporation
rate M:

M = −Dρ2

(
∂C
∂n

+ αT

∂T2

∂n

)
. (7)

If M > 0, then there occurs evaporation of the liquid into the carrier gas. The case of
M < 0 describes the vapor condensation from the gas phase.

Direct integration of Equations (1) and (2) allows one to find explicit expressions for
all the required functions. Considering the above, we obtain the following polynomial
form for functions (6):

uj(y) = cj
3 + cj

2y + cj
1

y2

2
+ Lj

3
y3

6
+ Lj

4
y4

24
,

pj(x, y) =
(

dj
1 + dj

2y + dj
3

y2

2

)
x + cj

8 + K j
1y + K j

2
y2

2
+ K j

3
y3

3
+ K j

4
y4

4
+

+K j
5

y5

5
+ K j

6
y6

6
+ K j

7
y7

7
+ K j

8
y8

8
,

Tj(x, y) =
(

A + aj
2y
)

x + cj
5 + cj

4y + N j
2

y2

2
+ N j

3
y3

6
+ N j

4
y4

24
+

+N j
5

y5

120
+ N j

6
y6

720
+ N j

7
y7

1008
,

C(x, y) = (b1 + b2y)x + c7 + c6y + S2
y2

2
+ S3

y3

6
+ S4

y4

24
+

+S5
y5

120
+ S6

y6

720
+ S7

y7

1008
.

(8)

The algorithm for the calculation of all the unknown constants and solution parameters
can be found in [17]. Therein, the physical interpretation of the exact solution is given,
and the conditions of its applicability for describing real physical systems are specified.

4. Influence of the Heat from Above on the Convective Regime

We consider ethanol–air as a working two-phase system. The physical parameters
of the media and equilibrium value of the vapor concentration corresponding to the
equilibrium temperature T0 = 293.15 K are listed in Table 1. The system is in the field
of mass forces with g = 9.81 m/s2. We examine the case when the thicknesses of the
liquid and gas layers, gas flow rate and average temperature of the lower wall are fixed:
l = 3 mm, h = 5 mm, Q = 9.6× 10−6 kg/(m·s), ϑ1 = 293.15 K. The temperature gradient
A ranges from −5 to 5 K/m. We model the heat from above by means of a change in the
value ϑ2, so that ϑ = ϑ2 − ϑ1 characterizes the intensity of the top heating. We consider the
configurations where the average temperature of the upper wall ϑ2 ranges from 293.15 to
295.15 K, i.e., the values of ϑ do not exceed 2 degrees. These values of A and ϑ2 provide
moderate temperature drops in the whole system, thereby ensuring the correct application
of the Oberbeck–Boussinesq approximation in the problem under study. We track the
changes in the interface velocity uΓ , temperature drop in the system4T and evaporation
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rate M, which are caused by the variation in the intensity of the external temperature action.
Table 2 presents the values of the specified characteristics for some cases.

Table 1. Physicochemical parameters of the ethanol–air two-phase system [20,21].

Parameter Ethanol
(Liquid) Air (Gas)

Density ρ, kg/m3 0.79× 103 1.205
Kinematic viscosity ν, m2/s 0.15× 10−5 0.15× 10−4

Thermal expansion β, K−1 1.08× 10−3 3.67× 10−3

Heat diffusivity χ, m2/s 0.38× 10−7 0.21× 10−4

Heat conductivity κ, W/(m·K) 16.72× 10−2 2.62× 10−2

Molar mass µ, kg/mol 46× 10−3 29× 10−3

Temperature coefficient of the surface tension σT , N/(m·K) 0.8× 10−4

Surface tension at the equilibrium temperature σ0, N/m 22.03× 10−3

Laten heat of vaporization L, W·s/kg 8.79× 105

Coefficient of vapor diffusion D, m2/s 1.35× 10−5

Concentration expansion γ −0.62
Dufour coefficient αC , K 10−3

Soret coefficient αT , K−1 5× 10−3

Equilibrium vapor concentration C0 0.1

Table 2. The values of the convective regime characteristics (uΓ , mm/s;4T, K; M, kg/(m2·s)) for the
ethanol–air system at various intensities of the external temperature action.

A, K/m ϑ2 = 293.15 K ϑ2 = 294.15 K ϑ2 = 295.15 K

−5
uΓ = 0.943
4T = 0.52

M = 3.982× 10−6

uΓ = 0.943
4T = 1.25

M = −7.705× 10−6

uΓ = 0.943
4T = 2.25

M = −1.939× 10−5

−1.5
uΓ = 0.376
4T = 0.11

M = 4.675× 10−7

uΓ = 0.376
4T = 1.075

M = −1.122× 10−5

uΓ = 0.376
4T = 2.075

M = −2.291× 10−5

1.5
uΓ = −0.110
4T = 0.081

M = 1.557× 10−7

uΓ = −0.110
4T = 1.075

M = −1.153× 10−5

uΓ = −0.110
4T = 2.075

M = −2.322× 10−5

5
uΓ = −0.678
4T = 0.428

M = 2.943× 10−6

uΓ = −0.678
4T = 1.25

M = −8.745× 10−6

uΓ = −0.678
4T = 2.25

M = −2.043× 10−5

We note that the constants determining the velocity functions in the layers do not
depend on the values ϑj. Therefore, the presence of the non-zero transverse temperature
drop does not lead to the alteration of the velocity field, and hence to the formation of topo-
logically new types of flows. It is sufficient to compare the velocity profiles corresponding
to various values of ϑ2 at the same gradients A in Figures 2 and 3 and the values of the
interface velocity uΓ given in Table 2. All possible classes of bilayer evaporative flows and
mechanisms governing certain flow regimes are described in detail in [17]. With all the fixed
parameters of the system, the temperature driving factor resulting in the transformation of
the velocity profile is related only to changes in the temperature gradient A. The sign and
value of the interface gradient A determine the direction and intensity of the Marangoni
force action, respectively. The liquid moves from the hot domain into the region with a
lower temperature along the interface due to the thermocapillary effect. Depending on
the values of A, we observe the transition from the mixed type flows (the corresponding
velocity profiles are shown in Figures 2a,d and 3a,d to the purely thermocapillary regime
(Figures 2g and 3g). Here, the intensity of the surface flow grows with an increase in |A|
(compare the values uΓ at various A in Table 2).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. The velocity field (left column), temperature isolines (middle column) and concentration
isolines (right column) at ϑ2 = 293.15 K: mixed type flow, A = −5 K/m (a–c); mixed type flow,
A = 1.5 K/m (d–f); purely thermocapillary flow, A = 5 K/m (g–i).

(a) (b) (c)

(d) (e) (f)

Figure 3. Cont.
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(g) (h) (i)

Figure 3. The velocity field (left column), temperature isolines (middle column) and concentration
isolines (right column) at ϑ2 = 295.15 K: mixed type flow, A = −5 K/m (a–c); mixed type flow,
A = 1.5 K/m (d–f); purely thermocapillary flow, A = 5 K/m (g–i).

If an equal thermal load is applied on the channel walls, we have M > 0 (Table 2,
the case ϑ2 = 293.15 K), i.e., the liquid evaporates into the carrier gas. Here, regimes
with the near-surface thermocline are realized. The feature of these regimes is that the
liquid in the lower layer has stable temperature stratification, whereas the gas layer is
unstably stratified (Figure 2b,e,h). The heat from above essentially influences not only
the pattern of the thermal field but also the regime of phase transition. We can observe
the formation of the totally stable temperature field in the bilayer system (Figure 3b,e,h).
In this state, the thermal equilibrium is upset since the temperature of the liquid vapor
is higher than the temperature within the volume liquid phase along the entire length of
the channel. Here, the vapor concentration in the background gas exceeds the equilibrium
value C0 within the whole upper layer (compare the variation ranges of the C function
in Figures 2 and 3). It means that the chemical equilibrium imposed by the condition
providing the saturated vapor concentration at the interface is also upset. Since the system
always tends to remain in the equilibrium state, then there occurs the condensation of
vapor from the gas phase into the liquid. The solution correctly describes such a change
of the phase transition regime, predicting negative values of the M parameter (Table 2).
The increase or decrease in the vapor content along the channel completely depends on the
direction of the thermocapillary effect, entailing the heat transfer on the phase boundary.
If the interface temperature drops along the x-axis (A < 0), then the vapor concentration in
the gas diminishes (see Figures 2b,c and 3b,c). With an increase in the interface temperature
(A > 0), the vapor content grows (see, for example, Figures 2h,i and 3h,i).

We found that even rather little heat from above results in a drastic change-over
of the evaporative convection regime. Therefore, we can expect that such an additional
temperature impact affects the stability properties of the modes. Further, we will investigate
the linear stability of the basic state described by exact solution (6).

5. Linearized Stability Problem

We move on to dimensionless variables to formulate the stability problem and to
introduce the governing similarity criteria. The values of physical parameters of the gas
are chosen as reference ones for the corresponding characteristics. Then, a dimensionless
analogue ω̂j = ωj/ω2 corresponds to each physical parameter ωj. Since ω̂2 = 1 for all
the parameters, below we omit the “circumflex” symbol for the physical characteristics.
The gas layer thickness h is taken as a characteristic size, and ĥ = l/h denotes the non-
dimensional height of the liquid layer. We use the values of ν2/h, ρ2ν2

2 /h2 and Ah as scales
of velocity, pressure and temperature, respectively. Then, the dimensionless variables
of time and space are τ = ν2t/h2 and ξ = (ξ, η) = (x/h, y/h). We use the notations
α̂C = αC /Ah and α̂T = αT /(Ah) for the dimensionless Dufour and Soret coefficients, re-
spectively. The concentration function C does not require non-dimensionalization. The fol-
lowing dimensionless parameters and similarity criteria are introduced:
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Gr =
gβ2 Ah4

ν2
2

, Pr =
ν2

χ2
, Ga =

gh3

ν2
2

, Sc =
ν2

D
,

Ma =
σT Ah2

ν2
2 ρ2

, E =
LDρ2

κ2 Ah
.

(9)

Here, Gr, Pr, Ga, Sc, Ma are the Grashof, Prandtl, Galilei, Schmidt and Marangoni
numbers respectively, and E is the evaporation number.

For the stability studies, we assume that the basic state is perturbed by infinitesimally
small disturbances that are represented as

Vj(ξ, τ) = (Uj(η), Vj(η)) exp[i(αxξ − λτ)], Pj(ξ, τ) = Pj(η) exp[i(αxξ − λτ)],

Θj(ξ, τ) = Θj(η) exp[i(αxξ − λτ)], S(ξ, τ) = S(η) exp[i(αxξ − λτ)],

where αx is the dimensionless wave number along the x-axis, λ = λr + iλi is the complex
time decrement. We assume that the interface Γ remains to be non-deformed when sub-
jected to the perturbations. The possibility to keep the flatness of the interface between
the evaporating liquid and the overlaying gas flux can be realized in real physical condi-
tions. A detailed description of the experimental technique using the optical shadowgraph
method that allows one to control the non-deformed position of the flat phase boundary
with the accuracy of ±10 µm is given in [5].

Linearizing governing Equations (1) and (2) and boundary conditions (3) and (4) near
stationary solution (6), we obtain the following problem:

−ĥ < η < 0 : (−iλ + iαxu1)U1 + u′1V1 = −iαxρ−1 P1 + ν(U′′1 − α2
xU1),

(−iλ + iαxu1)V1 = −ρ−1 P′1 + ν(V′′1 − α2
xV1) + βGr Θ1, iαxU1 + V′1 = 0,

(−iλ + iαxu1)Θ1 + U1T1ξ + V1T1η = χPr−1 (Θ′′1 − α2
xΘ1),

0 < η < 1 : (−iλ + iαxu2)U2 + u′2V2 = −iαxP2 + (U′′2 − α2
xU2),

(−iλ + iαxu2)V2 = −P′2 + (V′′2 − α2
xV2) + Gr Θ2 + γGa S, iαxU2 + V′2 = 0,

(−iλ + iαxu2)Θ2 + U2T2ξ + V2T2η = Pr−1(Θ′′2 − α2
xΘ2 + α̂C (S

′′ − α2
xS)),

(−iλ + iαxu2)S + U2Cξ + V2Cη =

= Sc−1(S′′ − (α2
x + α2

z)S + α̂T (Θ
′′
2 − (α2

x + α2
z)Θ2)),

(10)

η = −ĥ : U1 = V1 = Θ1 = 0,

η = 1 : U2 = V2 = Θ2 = S′ = 0,
(11)

η = 0 : U1 = U2, V1 = V2 = 0, Θ1 = Θ2,

U′2 − νρU′1 + iαx(V2 − νρV1) = Ma iαxΘ1,

P1 − P2 = 2(νρV′1 −V′2), κΘ′1 −Θ′2 − α̂C S′ = E(S′ + α̂T Θ′2),

(12)

where the prime denotes differentiation on the η-variable. System (10)–(12) presents the
generalized eigenvalue problem λG(V, P, Θ, S)T = J(V, P, Θ, S)T for the decrement λ and
the perturbation vector (V, P, Θ, S), which is the corresponding eigenvector. Here, G is the
diagonal matrix and J is the Jacobian matrix defining the right-hand side of the linearized
problem. The diagonal elements of the G matrix corresponding to the time derivatives of
(V, Θ, S) are equal to −i, whereas the elements corresponding to P as well as the compo-
nents related to the boundary conditions are zeros. Then, detG = 0 and the generalized
eigenvalue problem cannot be reduced to the standard one. Problem (10)–(12) is numeri-
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cally solved. The numerical approach is based on the Abramov–Godunov algorithm [22],
which was adapted for the case of a domain with an internal interface.

The two-phase flow described by solution (6) is unstable if at least one eigenvalue λ
with a positive imaginary part exists. The instability threshold is determined by the condi-
tion λi = 0. Here, the eigenvalue with the largest imaginary part and the corresponding
eigenvector are referred to as leading. The real part λr defines the oscillation frequency;
if λr = 0, then the perturbations are monotonous. The phase velocity of the traveling waves
is determined according to the formula ωp = λr/αx.

6. Instability Thresholds and Selection of Convective Patterns

In fact, the instability threshold is defined as a set of governing parameters (9) at
which the leading eigenvalue crosses the real axis. Since we consider changes in the flow
characteristics caused by the thermal action, then we choose the Gr and Ma numbers as
key similarity criteria related to two different mechanisms of instability, namely, to the
convective and thermocapillary ones. Thus, the solution of the spectral problem is reduced
to finding neutral curves Gr(αx), determining the instability domains in the plane (Ma, Gr)
and to investigating their evolution, depending on changes in ϑ.

In Figure 4a, the neutral curves Gr(αx) are presented. For the curve 1 calculated for
the case of the equal temperature load with ϑ = 0, the instability domain U0 is to the
right of the graph. The lines 2+ and 2− present two branches of the neutral curve plotted
for the case of the top heating at ϑ = 1. We use the notations U+

1 and U−1 to indicate the
instability domains lying above and below the corresponding branch. The superscripts +
and − correspond to the positive and negative values of the Grashof number, respectively.
The values of Gr lying on the curves define the threshold values. Knowing the critical
values and taking into account the relation between A and Gr (see (9)), we can evaluate the
values of the temperature gradient A at which the loss of stability of the convective flow
occurs. Both branches of the neutral curve obtained at ϑ = 2 corresponding both to the
positive and negative Grashof number provide the values of the gradient A at which the
temperature drop in the whole system cannot be regarded as moderate. Therefore, we do
not present the curves in the figure.

(a) (b)

Figure 4. The neutral curves Gr(αx) (a) and instability domains on the plane (Ma, Gr) (b). Curves 1
and 2 correspond to the cases ϑ = 0 and ϑ = 1, respectively. The shaded regions U0 and U1 present
the instability domains at ϑ = 0 and ϑ = 1, respectively.

We see that, at ϑ = 0, there are always perturbations causing the instability of the
basic flow even at small Gr. The critical value of the wave number for the most dangerous
disturbance (i.e., the minimum wave number of the perturbation resulting in the stability
loss) is α∗x0 = 2.48, and the corresponding threshold value of the Grashof number is
Gr∗0 = 0.08. The typical form of the leading disturbance is presented in Figure 5a. We show
the pattern of the temperature and hydrodynamical perturbations. The instability appears
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in the form of cellular convection accompanied by the development of thermal structures
with typical cores localized near the liquid–gas surface. The concentration disturbances
are determined by the thermal ones. We observe the formation of alternate concentration
spots or strips (depending on the length of the perturbation wave) with the elevated and
reduced vapor content above the “cold” and “hot” thermal perturbations, correspondingly.

As seen in Figure 4, the stable temperature stratification does not guarantee the
stability of the ground state. The neutral curve for the case ϑ = 1 consists of two
parts (Figure 4a). The extremes of the upper and lower branches have the coordinates
(α∗+x1 , Gr∗+1 ) = (5.34, 0.434) and (α∗−x1 , Gr∗−1 ) = (4.82,−0.366), respectively. Thus, at ϑ = 1
and Gr ∈ (Gr∗−1 , Gr∗+1 ) the formation of stable regimes is possible within the range of the
wave number values under consideration. We can conclude that thermal pumping from
the side of the upper wall stabilizes the flow.

(a) (b) (c)

Figure 5. The pattern of the leading perturbations in the instability domains U0 (a), U−1 (b)
and U+

1 (c).

The development of instability in the bilayer system is always related to the action
of the thermocapillary effect (Figure 4b). At small Gr and Ma (and hence at low A), if
there arises a small thermal perturbation near the interface, then converging and divergent
horizontal motion are formed within both phases in the domains of “cold” and “hot”
thermal spots, respectively, due to the Marangoni effect. Owing to the media continuity,
the fluid in the gas layer moves upward over the “cold” spot, whereas a downflow appears
over the “hot” zone. The typical form of instability corresponding to this instability
mechanism is presented in Figure 5a. We note that a similar type of the instability can also
be realized in the bilayer system heated from above. Here, ascendant currents in the upper
layer carry the cold fluid (since the temperature of the lower liquid is lower). It leads to a
further decrease in temperature over the “cold” spot. Descending from the hotter wall, the
fluid is heated even more, which results in the intensification of the “hot” spot, and hence
in the intensification of the horizontal motion.

With an increase in Gr and Ma, the regimes with a thermocline near the interface
are formed. Then, another mechanism causes instability. In such modes, the liquid has
a stable temperature stratification when the interface temperature is higher than the sub-
strate temperature, whereas an unstable stratification is formed in the entire gas layer.
There occurs heat-gravitational convection in the gas. Due to the medium continuity,
the near-surface motion results from the convective mass exchange. It generates a thermal
perturbation on the interface. The liquid spreads from the perturbed “hot” thermal spot
into the “cold” zone. Thus, the flow loses its stability due to the combined action of the
convective and thermocapillary mechanisms. The first mechanism forms a convecting zone,
whereas the second one causes the horizontal motion on the interface where small thermal
perturbations arise.

In all the cases, we find that all the eigenvalues λ have a nonzero real part λr, i.e., the
oscillatory instability regimes are realized in the two-phase system. The phase velocities
ωp in mm/s for the arising perturbations at various intensities of the top heating are
given in Table 3. The phase velocity is calculated only for the normal waves which cause
the instability of the ground flow described by the exact solution under study. These
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disturbances are characterized by the wave numbers αx, for which there are the instability
domains (see domains U0 and U±1 in Figure 4a). We present the phase velocity for the
disturbances with the integer values of αx to evaluate the character of changes in the wave
characteristics. As noted earlier, the phase velocity is determined based on the values of
the real part λr of the complex decrement λ. The presence of two values of ωp means that
two various perturbations with the same wavelength appear, but they propagate in the
flux with different phase velocities and differently interact with the basic flow. We see that
the temperature pumping results in the growth of the phase velocity (the values of ωp at
ϑ = 1 are higher than those obtained for the case ϑ = 0). The perturbations with ωp < 0
propagate in the direction opposite to the gas pumping. The drift direction is determined
by the pattern of the basic flow. If the near-surface reverse flow caused by the Marangoni
effect in the liquid layer is realized (see the examples of the regime in Figures 2d,g and 3d,g),
then the disturbances are driven by the basic flow in the direction opposite to the x-axis
(Figure 5c). When the interface liquid flow is co-directed to the gas flux (see the velocity field
in Figures 2a and 3a), then the perturbations propagate down the stream and their phase
velocity ωp is positive (Figure 5b). With the negative Gr, the top heating provides conditions
for the change in the drift direction of the arising patterns. In both cases, the perturbations
are deformed by the basic flow. We note that the realization of the oscillatory instability
in the evaporating liquids is confirmed by the experiments [23,24]. Moreover, the regimes
of the spatial instability with transverse rolls drifting upstream were observed in a real
two-phase system where the evaporating liquid was driven by the co-current gas flux [25].

Table 3. The values of the phase velocity ωp, mm/s, at various temperature drops ϑ, K, for the
ethanol–air system with l = 3 mm.

αx 1 2 3 4 5 6 7 8 9 10

ϑ = 0 0.037
0.101

0.019
0.132

0.012
0.171

−0.02
0.194

−0.054
0.237

−0.101
0.283

−0.154
0.319

−0.204
0.397

ϑ = 1 −6.512 −4.195
1.816
−2.107

1.012
−0.92

0.471
−0.216 0.119

7. Conclusions

With the help of the exact solution under study, we established the stabilizing effect of
top heating, obtained the threshold characteristics of the convective stability and specified
the forms of the leading disturbances for the two-phase system with evaporation. The in-
stability in this system appears in the form of oscillatory cellular convection. The regimes
of instability are characterized by the presence of transversal waves traveling windward
or streamwise, depending on the type of the basic flow. Based on the obtained results, we
conclude that it is possible to control the convective regimes by means of the minimized
top heating in order to provide the stability of the basic flow.
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