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Abstract: Fuzzy systems are widely used in most fields of science and engineering, mainly because the
models they produce are robust, accurate, easy to evaluate and capture real-world uncertainty better
than do the classical alternatives. We propose a new methodology for structure and parameter tuning
of Takagi–Sugeno–Kang fuzzy models using several optimization techniques. The output parameters
are determined analytically, by finding the minimum of the root-mean-square error (RMSE) for a
properly defined error function. The membership functions are simplified by considering symmetry
and equispacing, to reduce the optimization problem of finding their parameters, and allow it to
be carried out using the numerical method of gradient descent. Both algorithms are fast enough to
finally implement a strategy based on the hill climbing approach to finding the optimal structure
(number and type of membership functions) of the fuzzy system. The effectiveness of the proposed
strategy is shown by comparing its performance, using four case studies found in current relevant
works, to the popular adaptive network-based fuzzy inference system (ANFIS), and to other recently
published strategies based on evolutionary fuzzy models. In terms of the RMSE, performance was at
least 28% better in all case studies.

Keywords: fuzzy systems; Takagi–Sugeno–Kang; ANFIS; gradient descent; hill climbing

1. Introduction

This work proposes an optimization strategy that combines three different approaches:
heuristic; numerical; and analytic optimization. The aim was to produce a synergy, to
determine the parameters and structure of a Takagi–Sugeno–Kang fuzzy-rule-based system.
The combination of these approaches is intended to maximize the advantages and to
minimize the disadvantages that each of them possesses on their own.

Fuzzy systems are a numerical modeling technique fitted to experimental data, which
are widely used [1]. The distinction of fuzzy systems is the use of fuzzy sets, which
possess the characteristic that their elements may belong to them partially (in a degree of
membership), thus capturing the natural imprecision of human knowledge [2].

One of the advantages of fuzzy models is that they can express a highly nonlinear
functional relationship, even with a small number of rules [3]: this characteristic is relevant,
given that nonlinear systems are widespread in practice.

Fuzzy systems have been categorized into three types, based on their consequent part
rules [4]: the first type is Mamdani, which uses IF–THEN rules associated with linguistic
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variables, where the consequent part is within a fuzzy variable [5]; secondly, there are the
Takagi–Sugeno–Kang (TSK) fuzzy systems, which use functional consequents (a linear
combination of the entries) [6,7]; thirdly, there are singleton-type fuzzy systems, where, for
each rule, a real number is assigned [4].

All three types of fuzzy systems have a universal approximation capacity for any
nonlinear function [8]. Nevertheless, in comparison to the other two types, TSK fuzzy
modeling can significantly decrease the number of fuzzy rules, particularly for complex
systems with high dimensions [4].

TSK fuzzy systems include a set of rules [6]:

Rl : If x1 is F1 and . . . and xn is Fn (1)

Then zl = Cl,1x1 + . . . Cl,nxn + Cl,n+1, (2)

where x is the vector of the premise variables defined as x = [x1 . . . xn], Fi is the fuzzy sets,
zl is the output of the Rl rule and Cl,k is the kth coefficient associated with the Rl rule. The
antecedent part of the rule is known as (1), and the consequent part of the rule is known as
(2). In addition to the output z = {zi} of each rule, it is necessary to calculate the degree of
truth ω = {ωi} of all the rules, to compute the output of a TSK fuzzy logic system.

There are two main stages required to model a fuzzy system: identifying its structure,
and optimizing its parameters. Identifying a fuzzy system’s structure involves determining
how to partition the input–output space, and deciding the number of rules the system
should use. Optimizing a fuzzy system’s parameters focuses on finding the best values for
all the parameters in the system, including defining the fuzzy partitions and coefficients of
each rule’s consequent part [9].

In our proposed strategy, the heuristic part is used to determine the structure of the
model. Then, for each candidate structure, a gradient-based approach is used to search for
the optimal antecedent parameters: this is done while applying an analytic approach to
finding the corresponding optimal consequent parameters for each point in the search space.

The main contributions of this work are summarized as follows:

1. This work presents a method based on optimization, to obtain the parameters of the
antecedent and consequent parts and the appropriate structure of the fuzzy system;

2. This work provides a fast analytic strategy for finding the optimal parameters of the
consequent part for each set of parameters of the antecedent part, which sidesteps the
current method found in the literature, of searching through a long set of parameters
for the antecedent and consequent part simultaneously;

3. This work proposes a hill climbing heuristic strategy to determine the optimal struc-
ture. This strategy uses, as a fitness function, the RMSE found with the algorithm that
optimizes the parameters of the antecedent part.

A novel aspect of this work is that it reduces the number of parameters of the an-
tecedent part, by considering only some particular classes of membership functions, i.e.,
triangular and Gaussian with symmetry and equispacing properties: this makes the opti-
mization problem, of tuning the parameters, more manageable.

Sections 2 and 3 present a brief literature overview of fuzzy systems tuning, and
introduce the proposed strategy. Section 4 presents the four case studies that we used, to
compare our strategy to others. Finally, a discussion of the case studies, and the conclusions
from this work, are presented in Sections 5 and 6.

2. Literature Overview

Fuzzy systems and some other related techniques have been used extensively in recent
decades, to model complex systems. Initially, these systems were designed using only
expert knowledge. Most research on optimizing fuzzy systems focuses on a fixed structure,
and suggests methods for optimizing the system’s parameters within that structure, rather
than changing the structure itself.
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The initial methods for tuning fuzzy controllers relied on trial and error, as described
in the earliest publications [10,11]. Subsequently, input and output data began to be used
to adjust the parameters of the fuzzy controller [12].

More advanced approaches were based on numerical methods or neuro-fuzzy hybrid
systems [13–15]; however, the majority of these strategies considered a fixed topology.

Greater effort was invested in solving the parameter tuning problem, as determining
the system structure was a more complex and difficult task, which rendered it challenging
to find effective methods or techniques. Another issue was that system structure identi-
fication algorithms could not be tested without employing parameter fitting algorithms.
Consequently, both problems needed to be addressed at the same time.

Takagi and Sugeno presented the first relevant strategy in 1985 [6]. They optimized
the consequents of fuzzy rules, using the least squares algorithm, and calculated the
antecedents, using the complex method. Then, they applied a heuristic combinational
approach to partitioning the input domain, resulting in more intricate topologies that could
be optimized subsequently.

Neural networks with effective learning algorithms emerged in the late 1990s, as a
substitute for automating or supporting the development of techniques for fine-tuning
fuzzy systems [16–19].

Most of the early applications of these algorithms were in process control; however,
their use gradually expanded, to include many other fields, e.g., fault detection, classifica-
tion, data analysis and support for decision-making systems.

A set of fuzzy rules can be considered as a neuro-fuzzy system, which, like fuzzy
rules, can be constructed solely based on input–output data, or can be initiated by ex-
isting knowledge. By merging fuzzy systems with neural networks, a final system was
formed that offered the advantages of pattern learning and uncomplicated functionality
interpretation [20,21].

Neuro-fuzzy systems can be represented using neural networks that perform logical
operations. While it is not necessary to use a neural network to represent the parameters of
a fuzzy system, according to some authors, this approach is considered more convenient,
because it enables the visualization of the input flow within the system, as well as the error
signals that are utilized to modify its parameters.

There are multiple neuro-fuzzy architectures, including the Fuzzy Adaptive Learning
Control Network (FALCON), Generalized Approximate Reasoning-based Intelligence
Control (GARIC), the Fuzzy Net (FUN), the Self-Constructing Neural Fuzzy Inference
Network (SONFIN), the Neuronal Fuzzy Controller (NEFCON), the Fuzzy Inference and
Neural Network in Fuzzy Inference Software (FINEST), the Fuzzy Neural Network (NFN),
the Dynamic/Evolving Fuzzy Neural Network (EFuNN and dmEFuNN) and the Adaptive
Network-based Fuzzy Inference System (ANFIS) [14,16,19,22–29].

ANFIS is a Takagi–Sugeno fuzzy inference system that uses the least mean square
method to identify the consequent parameters, and backpropagation learning to detect
input membership function parameters [14,30]. The iterative learning algorithm consists of
two steps: firstly, the premises parameters are set and the input patterns are propagated,
to determine the consequent parameters, using the iterative minimum squared method
algorithm; secondly, the input patterns are propagated again, and the learning algorithm
backpropagation is applied in each iteration, to adjust the premises parameters while
keeping the consequents constant. Due to its immense popularity, and its frequent use
in recent articles on fuzzy systems [31–35], and despite it not being a recent strategy, we
decided to compare ANFIS to our proposal.

The rising interest in adaptive system modeling has driven the advancement of highly
adaptable fuzzy systems, which are also referred to as evolving fuzzy systems (eFS): these
models are self-developed from a continuous flow of data [36]. There are numerous
alternative approaches, in the literature, to creating and implementing eFS: most of them
propose systems based on evolutionary functional principles, in which the structure and/or
the antecedent and consequent parameters evolve continually. These methods have been
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effectively utilized in a variety of fields, including system identification, pattern recognition
and intelligent control [37–41].

A recent and favored strategy is the use of online learning fuzzy neural networks
(FNNs), in which all neurons are generated and evolved continuously, by adapting them to
the incoming data: this means that the neuron is included or modified by using various
evolving mechanisms, to keep pace with the system’s behavior.

Due to the current popularity of such strategies, we decided to compare the perfor-
mance of FNNs proposed in some recent articles [42–60] to that of our strategy.

3. Proposed Methodology

Our strategy can be interpreted as three optimization algorithms contained within each
other: an analytical; a numerical; and a heuristic algorithm, each with a specific objective:

1. Consequent coefficients determination;
2. Antecedent parameter determination;
3. Structural parameter determination.

The innermost algorithm—the analytical algorithm—finds the best parameters of the
consequent part C for a fixed antecedent part and structure.

The analytical solution is not an approximation, but rather a precise representation of
the solution. The calculations involved in obtaining the analytical solution are also faster,
compared to iterative numerical methods or heuristic approaches. It is important to note
that analytical solutions are not always feasible or available. Many complex real-world
problems do not have known analytical solutions, due to their intricacy, their non-linearity,
or the absence of mathematical models: in such cases, numerical or heuristic methods
provide valuable alternatives for obtaining approximate or satisfactory solutions efficiently.

The second algorithm—the numerical algorithm—uses the numerical method of
gradient descent to find the best parameters of the antecedent part C̄, considering the fixed
structure, with the help of the analytical algorithm.

Numerical methods aim to find precise or accurate solutions, by employing systematic
mathematical techniques, and often involve iterative processes, convergence analysis and
error estimation. In particular, gradient descent involves computing the gradient of a cost
or objective function with respect to the parameters, and using it as the search direction.
The simplicity of the algorithm makes it accessible and efficient to use. While gradient
descent is widely used, there are certain scenarios where its application may not be suitable
or effective: for example, for non-differentiable functions or in the case of combinatorics
problems, such as determining the structure.

The third and outermost algorithm is the main algorithm, a hill climber that calculates
the fitness of each structure as the RMSE of the best possible parameters C, C̄, by using the
second algorithm.

Hill climbing is known to be computationally efficient, as it does not require complex
mathematical models; moreover, it does not rely on explicit gradient information, and it
strikes a balance between exploration and exploitation. Despite these advantages, it is
important to note that hill climbing has some limitations typical of heuristic algorithms:
unlike deterministic algorithms that guarantee an optimal solution, heuristic methods trade
accuracy for efficiency; hill climbing can get trapped in a local optimum, and may struggle
to find the global optimum in complex problem landscapes.

A general activity diagram of the proposal can be seen in Figure 1.
The following sections explain each of the algorithms in detail, and the process of

finding the parameters of the consequent part, using calculus.
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Figure 1. Activity diagram of the proposed strategy.

3.1. Consequent Coefficients Determination

Before solving these problems, min–max normalization was applied to the dataset, to
prevent values in a larger interval from having a bigger influence on the model’s output, as
occurs in some machine learning strategies [58].

The output ȳ of a TSK fuzzy system is calculated as the weighted average of the rules
outputs, considering their degree of truth:

ȳ =
∑R

l=1 ωlzl

∑R
l=1 ωl

(3)

where R is the number of rules, and ωl is the degree of truth of the lth rule.
To formulate the problem of finding the set of parameters Ci,j as an optimization

problem, an error function is defined—in this case, the previously named RMSE:
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RMSE =

√
∑nd

j=1(ȳ− y)2

nd
, (4)

where y was the output of the dataset. As nd (the number of observations) was constant,
and as the root argument was always positive, the minimum of the RMSE was also the
minimum of the simpler function E:

E :=
nd

∑
j=1

(ȳ− y)2. (5)

Considering that the structure was fixed, and that the set of points was given, it was
possible to calculate the partial derivatives of E with respect to the consequent parameters,
and to solve the problem of finding the parameters that minimized the error directly.

Using

∂E
∂ȳ

=
nd

∑
j=1

2(ȳ− y), (6)

∂ȳ
∂zk

=
ω

∑m
l=1 ωl

, (7)

and

∂zk
∂Ck,m

= xm∗ =
{

xm i f m ≤ n
1 i f m = n + 1,

(8)

it was possible to use the chain rule to calculate

∂E
∂Ck,m

=
nd

∑
j=1

2(ȳ− y)
ω

∑R
l=1 ωl

xm ∗ . (9)

Substituting ȳ from (3) in (9), we obtained

∂E
∂Ck,m

=
nd

∑
j=1

2

(
∑R

l=1 ωlzl

∑R
l=1 ωl

− y

)
ω

∑m
l=1 ωl

xm ∗ , (10)

and substituting zl from (2) with the definition S := ∑R
l=1 ωl , we could write

∂E
∂Ck,m

= (11)

2ωk
S

nd

∑
j=1
−(yjxj

m) +
2ωk
S2

nd

∑
j=1

(
R

∑
i=1

ωl

n+1

∑
l=1

Ci,l x
j
l

)
xm ∗ , (12)

when the notation xj
i was the ith variable of the jth observation in the dataset.

Alternatively, if we defined E in terms of the error of each observation ej := (ȳ− y)2 as

E =
nd

∑
j=1

ej (13)

we could evaluate

∂ej

∂Ck,m
= −2ωk

S
(yjxj

m) +
2ωkxm∗

S2

R

∑
i=1

ωl

n+1

∑
l=1

Ci,l xl (14)
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or

∂ej

∂Ck,m
= k j + a1,1C1,1 + a1,2C1,2 + · · ·+ aR,n+1CR,n+1, (15)

where

k j = −
2ωk

S
(yjxj

m) (16)

and

ai,l =
2ωk
S2 (xj

mωixl); (17)

then, it was possible to express the gradient vector of ej with respect to the parameters C as
the sum of a constant term, Kj , with a linear combination of the parameters C, i.e., there
was a matrix Aj ∈ MR(n+1)xR(n+1) and a vector Kj ∈ RR(n+1), such that

∇ej =


∂ej

∂C1,1
...

∂ej
∂CR,n+1

 = Kj + AjC, (18)

and, after computing ej for each observation, the gradient of the error E could be calculated
as

∇E =
nd

∑
j=1
∇ej =

nd

∑
j=1

(K j + AjC) (19)

or

∇E =


∂E

∂C1,1
...

∂E
∂CR,n+1

 = K + AC, (20)

where A = ∑nd
j=1 Aj and K = ∑nd

j=1 K j.
As E was a convex function (5), E had a minimum that was well-defined with respect

to the parameters C when ∇E = 0, i.e., when

C = −A−1K. (21)

Thus, for a fixed antecedent part, it was possible to calculate the parameters of the
consequent part that minimized the RMSE analytically, by calculating the contribution to A
and K from each observation in a cycle, and subsequently solving a system of equations.

Furthermore, if we stored the matrix A and the vector K, it was possible to update the
set of optimal weights when a new observation arrived, tuning the system online, without
having to reset the whole calculation or to use the previous observations, simply by adding
the contribution of the new data to A and K, and solving the new linear system.

The procedure for tuning the consequent part parameters is shown in Algorithm 1.



Symmetry 2023, 15, 1417 8 of 17

Algorithm 1 Obtaining the optimal consequent parameters C

Minmax(x,y).
Set A = 0, K = 0;
for j = 0 to nd do

Calculate the membership of µ(x) to each class.
Calculate the degree of truth of each rule ω(µ).
Evaluate Aj(xj, ω), Kj(xj, yj, ω)
A = A + Aj and K = K + Kj

end for
C = −A−1K
return C

3.2. Antecedent Parameter Determination

The membership functions type that we used was called ’structure’. Considering that,
for the described problem, both the number of fuzzy partitions for each variable and the
structure were fixed, the objective was then to determine the parameters for each of them.

In order to reduce the number of parameters, and to solve the problem optimally, it
was decided to force the membership functions to be symmetric, with equispaced centers,
as shown in Figure 2. As the data were normalized between 0 and 1, in the case of using two
membership functions, their centers would be found at 0 and 1, while for three membership
functions, their centers would be at 0, 0.5 and 1, respectively. In general, the ith centroid
θ position was computed using Equation (22), where p was the number of fuzzy sets in
the partition:

θi =
i− 1
p− 1

. (22)

Figure 2. Equispaced triangular membership functions with 25% overlap.

This last consideration was not arbitrary: the tuning process of multiple strategies,
such as ANFIS, usually brings the centers to values close to equidistance. Some authors [59]
tend to recommend the use of normal membership functions with the unit at the extreme
values, such as those produced by this approach.

The symmetry condition allowed us to reduce the number of parameters by half, in the
case of triangular functions. By knowing their center and forcing symmetry, we would only
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have to determine one parameter: the limit of the set related to the percentage of overlap
between neighboring sets. In the case of Gaussian bells, the parameter to be determined
would be the variance.

We denoted C̄ as the set of parameters of the membership functions, a vector of length
m, whose components represented the percentage of overlap of each membership function
with its neighbor. The objective was to minimize the RMSE, which depended also on the
parameters C of the consequent part:

min
C,C̄

RMSE(C, C̄). (23)

The proposed approach was to find the optimal C for a fixed C̄, and to use that RMSE
value as the fitness function of C̄:

F(C̄) := min
C

RMSE(C) with fixed C̄. (24)

The objective function was the minimum RMSE obtained by the process explained
in the previous section. As it was necessary to go through all the observations, and to
solve a large system of equations to evaluate the fitness, and as this was computationally
expensive, the use of heuristic strategies that required multiple evaluations was discarded.

For this reason, in addition to other advantages of numerical methods—such as their
solid theoretical foundation—a numerical method was adopted. In particular, it was
decided to use the gradient descent method, because, despite its low order of convergence,
it did not require the use of a numerical estimation of a Hessian matrix or many fitness
function evaluations, which were considered expensive and unstable.

An overlap between neighboring fuzzy sets of between 10% and 50% had to be ensured,
to obtain uniform and stable performance [61]; therefore, it was decided to use C̄0 as the
starting value = 0.25: that is, initially, each fuzzy set had a 25% overlap with its neighbors.

The algorithm worked by taking small steps from C̄0 in the direction of the steepest
decline of the cost function, F(C̄), which was given by the negative gradient of the cost
function itself.

At each iteration, the algorithm computed the gradient of the cost function with
respect to the current parameter C̄ values, and then updated the parameters, by subtracting
a fraction of the gradient α, known as the learning rate. The learning rate determined the
step size at each iteration of the algorithm. The step size had to be accurate: if it was too
large, the algorithm might overshoot the minimum, and fail to converge; if it was too small,
the convergence might be slow.

To estimate the value of α, it was decided to use a backtracking algorithm. At each
iteration, the algorithm checked whether the current value of the objective function had
decreased sufficiently: if it had not decreased, the algorithm reduced the learning rate, by
multiplying it by a small constant value β, and repeated this process until the current value
of the objective function had decreased sufficiently.

The gradient descent implemented can be formulated as shown in Algorithm 2.

Algorithm 2 Gradient descent

Set k = 0, C̄k = 0.25, β = 0.5 and ε > 0
while ||~∇F(C̄k)|| > ε do

α = 1
repeat

α = βα

until F(C̄k + α~∇F(C̄k)) < F(C̄k)
C̄k+1 = C̄k − α∇F(C̄k)

end while
return C̄k
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3.3. Structural Parameter Determination

An empirical consideration that had to be followed for the conformation of the fuzzy
sets was that the number of fuzzy sets associated with a variable had to be between two
and nine [61].

It is considered advisable to use odd values, so as to always have an inflection set [61];
however, from practical experience, an even number is sometimes preferable, in terms of
the RMSE: therefore, this last consideration was not taken into account.

At this stage, the suitability of a structure was calculated as the result of applying the
algorithm described in the previous stage for the given structure, i.e., to determine the
fitness of a structure, the parameters of the optimal antecedent part were found, as in the
previous step, and, with them, the parameters of the consequent part were found, so that
the minimum RMSE for the structure was its fitness.

As both the number of membership functions for a variable and the type of mem-
bership functions to use were discrete and complex problems, it was not possible to use
numerical methods to solve them; therefore, it was decided to use a heuristic strategy.
Considering the cost of each fitness evaluation, common population strategies, such as
genetic algorithms, were discarded in favor of a hill climber strategy.

Firstly, two triangular membership functions were chosen for each variable; then,
an incremental change was made in the number of membership functions for a random
variable; finally, the change of triangular to Gaussian functions was evaluated, to ascertain
if it produced a better solution: if that was the case, another incremental change was made
to the new solution, and this process continued until no further improvements could be
found [62].

Increasing the number of membership functions increased the calculation of the fitness
function, because the number of parameters to be optimized grew; therefore, it was decided
to set the maximum at five.

Hill climbing can be formulated as shown in Algorithm 3.

Algorithm 3 Hill climbing

Structure = InitialStructure
while Stop Condition = False do

candidates = neighbors(Structure)
bestEval = realMax
for all S in candidates do

get Eval of S using Algorithm 2
if Eval ≤ bestEval then

bestEval = Eval
bestStruct = S

end if
end for
if bestEval ≥ Eval(Structure) then

Stop Condition = True, as no better neighbors exist
end if

end while

In the structure, only triangular and Gaussian membership functions were consid-
ered, because, under the restrictions of the symmetry and equidistance of their centers,
these functions only had one parameter, unlike other popularly adopted membership
functions, such as the trapezoidal or the generalized bell-shaped. Using functions with
an additional parameter, such as those previously mentioned, would have duplicated the
size of the optimization problem for the antecedent part to be solved, and, therefore, the
computation time.
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4. Case Studies

In this section, four case studies are described, to illustrate the applicability of our
approach, and to assess its performance: they are the same four cases used in [60].

4.1. Case Study I

As presented by Li et al., the first case was the identification of a dynamic system with
time-varying inputs, defined as

y(t + 1) = u3(t) +
y(t)

1 + y2(t)
+ n(t), (25)

where u(t) = sin(2πt/100), n(t) was the variant in the time function, defined as

n(x) =


0 i f t ≤ 1000 or t ≥ 2001

0.5 i f 1001 ≤ t ≤ 1500

1 i f 1501 ≤ t ≤ 2000,

(26)

y(t + 1) was the output of the system at time t, and u(t), n(t) and y(t) were the system
inputs at time t. The initial values of the inputs were set to y(1) = 0 and u(1) = 0. In this
example, 3000 data samples from t = 1 to 3000 were generated for training, and another
200 data samples from t = 3001 to 3200 were used for testing.

After applying the algorithm, it was found that the minimum, with respect to the
RMSE, was obtained using three membership functions for y(t), three for u(t) and two for
n(t), with triangular functions whose percentages of overlap were 22.77%, 37.75% and 25%,
respectively.

Table 1 shows the experimental results of modeling this function using our strategy,
compared to other methods, in terms of the RMSE.

In this, and in all cases, the same type and number of membership functions were
used for ANFIS and for our strategy, to make the comparison fair.

Table 1. Experimental test set results.

Method RMSE

DENFIS [42] 0.1749
eTS [43] 0.0682
GSETSK [44] 0.0661
LI [60] 0.0649
ANFIS [30] 0.0558
Proposed method 0.0402

4.2. Case Study II

The second case study dealt with one of the most commonly used problems for
the evaluation of the performance of modeling methods: identifying the dynamics of a
nonlinear system. In this case, the system dynamics were given by

y(n + 1) =
y(n)y(n− 1)(y(n)− 0.5)

1 + y2(n) + y2(n− 1)
+ u(n), (27)

where u(t) = sin(2πn/25), y(n + 1) was the system output at time n, and u(n), y(n− 1)
and y(n) were the system inputs at time n. The initial values of the inputs were set to
y(1) = 0 and y(0) = 0. In this example, 5000 data samples from n = 2 to 5001 were
generated for training, and another 200 data samples were generated from t = 5002 to 5201,
for testing.
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After applying the algorithm, it was found that the minimum, with respect to the
RMSE, was obtained using two membership functions for y(n− 1), two for y(n) and five for
u(t), with function triangles whose overlap percentages were 22.98%, 22.57% and 24.02%,
respectively.

Table 2 shows the experimental results of modeling this function using our strategy,
compared to other methods, in terms of the RMSE.

Table 2. Experimental test set results.

Method RMSE

SAFIS [40] 0.0221
FLEXFIS Var A [38] 0.0176
FLEXFIS Var B [38] 0.0171
SOFMLS [45] 0.0201
eMG [63] 0.0058
DeTS [46] 0.0172
RSIM [47] 0.0006
SEA [48] 0.0004
LI [60] 0.0025
ANFIS [30] 0.0080
Proposed method 3.58× 10−9

4.3. Case Study III

The third case study was the identification of a nonlinear dynamical system defined as

y(t + 1) = f (y(t), y(t− 1), y(t− 2), u(t), u(t− 1)), (28)

where

f (x1, x2, x3, x4, x5) =
x1x2x3x5(x3 − b) + cx4

a + x2
2 + x2

3
. (29)

In (29), the coefficients varied in time, according to (30):
a(t) = −0.2cos(2πt/T) + 1.2
b(t) = −0.4sin(2πt/T) + 1
c(t) = 0.4sin(2πt/T) + 1,

(30)

where T = 1000 represented the total number of sampled data, while the additional external
input u(t) was defined as

u(t) =



sin(πt/25) i f t < 250
1.0 i f 250 < t < 500
−1.0 i f 500 < t < 750
0.3sin(πt/25)+
0.1sin(πt/32)+ i f 750 < t < 1000
0.6sin(πt/10).

(31)

The RMSE was used to evaluate and compare the differences in accuracy between our
approach and the other methods. The corresponding results are shown in Table 3.
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Table 3. Experimental test set results.

Method RMSE

HO-RNFS [49] 0.054
RSEFNN-LF(zero) [50] 0.0246
RSEFNN-LF(first) [50] 0.0199
eRIT2IFNN [51] 0.0176
eRIT2IFNN-A [51] 0.0227
eRIT2IFNN-B [51] 0.0211
IT2 IFLS-DEKF-GD [52] 0.0250
LSTM-IT2IFNN [53] 0.0217
LI [60] 0.0154
ANFIS [30] 0.0109
Proposed method 0.00027

4.4. Case Study IV

For the fourth case study, the aim was to predict the behavior of a chaotic dynamic
system, defined as

yp(k + 1) = 1 + Py2
p(k) + Qyp(k− 1), (32)

where the values for the system parameters were chosen as P = 1.4 and Q = 0.3. The
initial values of the system were yp(0) = 0.4 and yp(1) = 0.4. This example generated
2000 data points of Equation (32), where the first 1000 points were used for training, and
the remaining 1000 points were used as test data.

After applying the algorithm, it was found that the minimum, with respect to the
RMSE, was obtained using four membership functions for y(n− 1), and six for y(n), with
triangular functions whose percentages of overlap were 24.42% and 25%, respectively.

The results of the experiments are shown in Table 4.

Table 4. Experimental test set results.

Method RMSE

RSEFNN-LF(first) [50] 0.0209
RIFNN [54] 0.051
RSEIT2FNN-UM [55] 0.0047
RIT2TSKFNN [56] 0.0010
WTFCMNN [57] 0.0186
LI [60] 0.0000837
ANFIS [30] 0.0080
Proposed method 0.00000218

5. Discussion of the Case Studies

As can be seen in the tables from the previous section, the proposed structure and
parameters tuning methodology was able to identify nonlinear dynamic systems, such
as those in the first three case studies, and chaotic systems, such as the one from the last
case study. In all these cases, the proposed approach obtained a lower RMSE than that
obtained by the popular ANFIS strategy, and those reported by multiple other strategies in
the specialized literature.

For Case Study I, the RMSE was 28% lower than when using ANFIS while adopting
the same structure. For Case Study II, this percentage increased by several orders of
magnitude, with respect to ANFIS, from 8 × 10−3 to 3.5 × 10−9: in this system, some
evolutionary strategies managed to reduce the RMSE more than ANFIS, but without
reaching the improvement achieved by our proposal. The same trend could be found in the
dynamic system of Case Study III: in this case, the error found was almost 50 times lower
than with the system modeled using ANFIS. For the chaotic system used as Case Study IV,
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the RMSE of the model produced by the proposed strategy was up to 20 times lower than
that used by the strategy proposed in [60], and several orders of magnitude lower than the
one produced using ANFIS.

The optimal values found for the percentage of overlap of the membership functions
were, in all cases, close to the initial value of 0.25: this makes it clear that the approach of
using 0.25 as a starting point was adequate, as noted in Section 3.2.

Furthermore, unlike ANFIS, the proposed strategy provided the optimal type and
number of membership functions.

6. Conclusions and Future Work

This paper presented a reliable method of tuning rule-based fuzzy system parameters
and structure, using the RMSE error of the training dataset as the objective function: this
addressed the issue as an optimization problem.

Instead of concurrently searching for a vast set of parameters in both the antecedent
and consequent parts—which leads to an optimization problem that is both time-consuming
and computationally expensive—an analytical solution for the consequent part was adopted,
and the number of parameters in the antecedent part was reduced. As a result, remarkably
low execution times of a few seconds were achieved, despite the conventional computer
used in the experiments, which was a Dell G7590 Laptop equipped with a 9th Gen Intel
Core i5-9300H and 8GB of RAM.

The fast response time, in calculating the optimal parameters for a fixed structure,
allowed us to go further, and to use this parameter tuning as part of a heuristic strategy to
successfully choose the best possible structure, in terms of the RMSE.

The search algorithm utilized for the antecedent part—gradient descent—is widely
used in machine learning and other optimization tasks. Gradient descent offers several
advantages, such as its simplicity and efficiency, in addition to those already mentioned in
the work; however, it also has some limitations: gradient descent can get stuck in a local
optima; it may exhibit slow convergence in certain cases; and it can be sensitive to the
choice of learning rate.

Despite the fact that the results obtained, in terms of the RMSE, were better than those
reported in the literature for each of the case studies, it is not possible to guarantee that
the results obtained were optimal, or even within a reasonably good range in all cases:
this was because the gradient descent could only guarantee locally optimal solutions, in
addition to the drawbacks of using heuristics algorithms, e.g., using hill climbing to decide
the structure of the fuzzy system.

The RMSE was employed because it is the most commonly used performance index in
predictive modeling, for the following reasons: it reflects global performance; it considers
all data points; it is differentiable and continuous; it is easy to interpret; and it emphasizes
large errors.

However, one potential drawback of relying solely on the RMSE as the sole criterion
is its sensitivity to outliers. The RMSE penalizes the differences between predicted and
actual values quadratically, meaning that large errors have a significant impact on the final
fitness: this can be problematic if there is noise or if there are outliers in the dataset, as
these factors can distort the overall evaluation of the structure and parameters of the fuzzy
model. In some cases, it may be desirable to consider additional metrics, such as the Mean
Absolute Error (MAE). Moreover, as min–max normalization is performed, and the effect
of an outlier can be even more severe, a significant improvement would be to identify and
clean the dataset of outliers before the normalization process.

It is possible to quickly update the weights of the consequent part online after adding
new observations to the dataset, simply by adding the contribution of that data to the
matrix A and K, and solving a system of equations (21). An interesting alternative for
further study would be the development of an online algorithm based on the analytical
strategy used to calculate the parameters of the consequent part.
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Another issue that remains outstanding, for future work to address, is the use of other
types of membership functions, and the use of optimization algorithms that better deal with
problems that have multiple local optima, such as random restarts or simulated annealing.
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