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Abstract: In this study, we developed a new faster iterative scheme for approximate fixed points.
This technique was applied to discuss some convergence and stability results for almost contraction
mapping in a Banach space and for Suzuki generalized nonexpansive mapping in a uniformly convex
Banach space. Moreover, some numerical experiments were investigated to illustrate the behavior and
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of the S algorithm, Thakur algorithm and K∗ algorithm. Eventually, as an application, the nonlinear
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1. Introduction

Many problems in mathematics and other fields of science can be modeled into an
equation with a suitable operator. The existence of the solution to this equation equates to
the existence of the fixed point (FP) of the appropriate operator. Due to the large number
of recent, valuable studies that include the FP method, these points have become the
mainstay for nonlinear analysis due to the ease and smoothness of this method, in addition
to the numerous and exciting applications in economics, biology, chemistry, game theory,
engineering, physics, etc. [1–6].

A very important branch is the involvement of FPs in approximation by symmetrical
algorithms. Numerous problems such as convex feasibility problems, convex optimization
problems, monotone variational inequalities and image restoration problems can be thought
of as FP problems of nonexpansive mappings; hence, approximating them has a range of
specialized applications.

In this paper, the symbols Ω, Θ, R+, N, ⇀, −→ and λ(=) refer to the Banach space,
a nonempty closed convex subset (CCS) of an Ω, the set of nonnegative real numbers,
the set of natural numbers, weak convergence, strong convergence and the set of all FPs
(the point θ ∈ Θ so that an equation θ = =θ is true).

There are two main categories that can be used to group the main concepts of FP
theory. Finding the prerequisites and requirements necessary for an operator to own fixed
points is the first step. Another option is to locate these fixed points using certain schematic
methods. The first category is known formally as the existence part, while the second
category is known as the computation or approximation part. Studying the behaviors of
FPs, such as stability and data dependence, is an essential but less well-known topic of
FP theory.
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The class of weak contractions that appropriately covers the class of Zamfirescu
operators [7] was supplied by Berinde in [8]. Similarly, many authors also refer to this class
of mappings as almost contraction mappings (ACMs).

Definition 1. A mapping = : Θ→ Θ is called ACM if the following inequality is true: :

‖=θ −=ϑ‖ ≤ `1‖θ − ϑ‖+ `2‖θ −=θ‖, for all θ, ϑ ∈ Θ, (1)

where 0 < `1 < 1 and `2 ≥ 0.

In 2003, ACM (1) was generalized by Imoru and Olantiwo [9] by replacing the constant
`2 with a strictly increasing continuous function v : R+ → R+ with v(0) = 0 as follows:

Definition 2. A mapping = : Θ→ Θ is called contractive-like if there exist a constant 0 < `1 < 1
and a strictly increasing continuous function v : R+ → R+ with v(0) = 0 such that

‖=θ −=ϑ‖ ≤ `1‖θ − ϑ‖+ v(‖θ −=θ‖), for all θ, ϑ ∈ Θ. (2)

Clearly, Inequality (2) is symmetrical to Inequality (1) if v(t) = `2(t).
The analysis of the performance and behavior of algorithms that make significant

contributions to real-world applications is one of the key trends in FP techniques. Therefore,
in order to enhance the functionality and convergence behavior of algorithms for nonex-
pansive mappings, several authors tended to develop numerous symmetrical iterative
schemes for approximating FPs, for example, Mann [10], Ishikawa [11], Noor [12], Argawal
et al. [13], Abbas and Nazir [14] and HR [15,16].

Let {σj} and {κj} be sequences in [0, 1]; the following procedures are known as the S
algorithm [13], Picard-S algorithm [17], Thakur algorithm [18] and K∗ algorithm [19]:

ξ◦ ∈ Θ,
ρj = (1− σj)ξ j + σj=ξ j,
ξ j+1 = (1− κj)ξi + γi=ρi,

∀j ≥ 1. (3)


ξ◦ ∈ Θ,
ρj = (1− σj)ξ j + σj=ξ j,
Υj = (1− κj)ξ j + κj=ρj,
ξ j+1 = =Υj,

∀j ≥ 1. (4)


ξ◦ ∈ Θ,
ρj = (1− σj)ξ j + σj=ξ j,
Υj = =

(
(1− κj)ξ j + κjρj

)
,

ξ j+1 = =Υj,

∀j ≥ 1. (5)


ξ◦ ∈ Θ,
ρj = (1− σj)ξ j + σj=ξ j,
Υj = =

(
(1− κj)ξ j + κjξ j

)
,

ξ j+1 = =Υj,

∀j ≥ 1. (6)

Analytically and numerically, for contractive-like mappings, the authors showed that the
iterative technique (6) converges faster than those of Karakaya et al. [20] and Thakur et al. [18],
respectively. Consequently, Iteration (6) converges faster than (3), (4) and (5).

On the other hand, nonlinear integral Equations (NIEs) are used to explain mathemat-
ical models that derive from mathematical physics, engineering, economics, biology, etc.
In particular, NIEs are produced by boundary value problems and mathematical model-
ing of the spatiotemporal dynamics of the epidemic. Recently, many authors have used
iterative methods to solve NIEs; for instance, see [21–26]. The efficiency and effectiveness
of iterative methods are determined by several factors, the most important of which are
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speed, stability and reliability. Many researchers and writers have studied these factors
using the fixed-point method. For more details, see [27,28].

Continuing on the same approach, in this paper, we introduce the convergence and
stability results for ACMs and Suzuki generalized nonexpansive mappings (SGNMs) in a
BS and a uniformly convex Banach space (UCBS) in the following faster iterative scheme:

ξ◦ ∈ Θ,
ρj = (1− σj)ξ j + σj=ξ j,
Υj = =

(
(1− κj)ρj + κj=ρj

)
,

Λj = =((1− τj)Υj + τj=Λj),
ξ j+1 = =Λj,

for all j ∈ N, (7)

where σj, κj and τj are sequences in [0, 1]. Some numerical examples are given to illustrate
that the considered iteration converges faster than the iterations of the S algorithm, Thakur
algorithm and K∗ algorithm with appropriate parameters. Ultimately, the proposed method
is implicated in finding the solution to a nonlinear Volterra integral equation with delay.

2. Preliminary Work

In this section, we provide some definitions and lemmas that will be helpful in the sequel.

Definition 3. A mapping = : Ω→ Ω is called an SGNM if

1
2
‖θ −=θ‖ ≤ ‖θ − ϑ‖ ⇒ ‖=θ −=ϑ‖ ≤ ‖θ − ϑ‖, for all θ, ϑ ∈ Ω.

Definition 4. A BS Ω is called a uniformly convex if for each ε ∈ (0, 2] there exists δ > 0, such
that for θ, ϑ ∈ Ω satisfying ‖θ‖ ≤ 1, ‖ϑ‖ ≤ 1 and ‖θ − ϑ‖ > ε, we have

∥∥∥ θ+ϑ
2

∥∥∥ < 1− δ.

Definition 5. A BS Ω is considered to satisfy Opial’s condition if for any sequence {θj} in Ω such
that θj ⇀ θ ∈ Ω implies

lim sup
j→∞

∥∥θj − θ
∥∥ < lim sup

j→∞

∥∥θj − ϑ
∥∥

for all ϑ ∈ Ω, where θ 6= ϑ.

Definition 6. Assume that {θj} is a bounded sequence in Ω. For θ ∈ Ω, we set

∇(θ, {θj}) = lim sup
j→∞

∥∥θj − ϑ
∥∥.

The asymptotic radius and center of {θj} relative to Ω are described as

∇(Ω, {θj}) = inf{∇(θ, {θj}) : θ ∈ Ω}.

The asymptotic center of {θj} relative to Ω is defined by

Z(Ω, {θj}) = {θ ∈ Ω such that ∇(θ, {θj})) = ∇(Ω, {θj})}.

Clearly, Z(Ω, {θj}) contains one single point in a UCBS.

Definition 7 ([29]). Let {σj} and {κj} be nonnegative real sequences converging to σ and κ, respec-

tively. If there exist ζ ∈ R+ such that ζ = limi→∞
‖σj−σ‖
‖κj−κ‖ , then we have the following possibilities:

• If ζ = 0, then {σj} converges to σ faster than κj does to κ;
• If ζ ∈ (0, ∞), then the two sequences have the same rate of convergence.
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Definition 8 ([30]). A mapping = : Ω→ Ω is said to be satisfy Condition I, if the inequality

f(d(ϑ, λ(=))) ≤ ‖ϑ−=ϑ‖,

is true, for all ϑ ∈ Ω, where d(ϑ, λ(=)) = inf{‖ϑ− θ‖ : θ ∈ λ(=)}.

Proposition 1 ([31]). For a self-mapping = : Ω→ Ω, we have

(1) = is an SGNM if = is nonexpansive.
(2) = is a quasi-nonexpansive mapping if = is an SGNM with a nonempty FP set.
(3) If = is an SGNM, then the inequality below holds

‖θ −=θ‖ ≤ 3‖=θ − θ‖+ ‖θ − ϑ‖, for all ϑ, θ ∈ Ω.

Lemma 1 ([31]). Assume that Θ is any subset of a BS Ω, which satisfies Opial’s condition. Let
= : Θ→ Θ be an SGNM. If {θi}⇀ θ and limj→∞

∥∥=ϑj − θj
∥∥ = 0, then I −= is demiclosed at

zero and =θ = θ.

Lemma 2 ([31]). If = : Ω → Ω is an SGNM, then it owns a FP provided that Θ is a weakly
compact convex subset of a BS Ω.

Lemma 3 ([29]). Let {ψi} and {ψ∗j } be nonnegative real sequences such that

ψi+1 ≤ (1−κj)ψj + ψ∗j , κj ∈ (0, 1), for each j ≥ 1,

if
∞
∑

j=0
κj = ∞ and limi→∞

ψ∗j
κj

= 0, then limj→∞ ψj = 0.

Lemma 4 ([32]). Let {ψj} and {ψ∗j } be nonnegative real sequences such that

ψj+1 ≤ (1−κj)ψj +κjψ
∗
j , κj ∈ (0, 1), for each j ≥ 1.

if
∞
∑

j=0
κj = ∞, and ψ∗j ≥ 0, then lim sup

j→∞
ψ∗j ≥ lim sup

j→∞
ψj ≥ 0.

Lemma 5 ([33]). Let Ω be a UCBS and {κj} be a sequence such that 0 < u ≤ κj ≤ u∗ < 1, for
all j ≥ 1. Assume that {θj} and {ϑj} are two sequences in Ω such that for some µ ≥ 0,

lim sup
j→∞

{ϑj} ≤ µ, lim sup
j→∞

{θj} ≤ µ and lim sup
i→∞

∥∥κjθj + (1−κj)ϑj
∥∥ = µ.

Then limi→∞
∥∥θj − ϑj

∥∥ = 0.

3. Rate of Convergence

In this part, we demonstrate analytically that for ACMs, our iterative method (7)
converges faster than the iterative method in (6) in the sense of Berinde [29].

Theorem 1. Let Θ be a nonempty CCS of a BS Ω and = : Θ → Θ be a ACM with λ(=) 6= ∅.

If {ξ j} is the iterative sequence given by (7) with {σj}, {κj}, {τj} ∈ [0, 1] and
∞
∑

j=0
τj = ∞. Then

{ξ j} −→ θ ∈ λ(=).
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Proof. Let θ ∈ λ(=); using (7), one has∥∥ρj − θ
∥∥ =

∥∥(1− σj)ξ j + σj=ξ j − θ
∥∥

=
∥∥(1− σj)

(
ξ j − θ

)
+ σj

(
=ξ j − ζ

)∥∥
≤ (1− σj)

∥∥ξ j − θ
∥∥+ σj

∥∥=ξ j − θ
∥∥

≤ (1− σj)
∥∥ξ j − ζ

∥∥+ `1σj
∥∥ξ j − θ

∥∥
=

(
1− (1− `1)σj

)∥∥ξ j − θ
∥∥. (8)

From (7) and (8), we have∥∥Υj − θ
∥∥ =

∥∥=((1− κj)ρj + κj=ρj
)
− θ
∥∥

=
∥∥=θ −=

(
(1− κj)ρj + κj=ρj

)∥∥
≤ `1

∥∥θ −
(
(1− κj)ρj + κj=ρj

)∥∥+ `2‖θ −=θ‖
= `1

∥∥(1− κj)
(
ρj − θ

)
+ κj

(
=ρj − θ

)∥∥
≤ `1

[
(1− κj)

∥∥ρj − θ
∥∥+ `1κj

∥∥ρj − θ
∥∥]

≤ `1
[
1− (1− `1)κj

]∥∥ρj − ζ
∥∥

≤ `1
(
1− (1− `1)κj

)(
1− (1− `1)σj

)∥∥ξ j − θ
∥∥. (9)

Using (7) and (9), we get∥∥Λj − θ
∥∥ =

∥∥=((1− τj)Υj + τj=Υj
)
− θ
∥∥

≤ `1
∥∥(1− τj)

(
Υj − θ

)
+ κj

(
=Υj − θ

)∥∥
≤ `1

[
1− (1− `1)τj

]∥∥Υj − ζ
∥∥

≤ `2
1
(
1− (1− `1)κj

)(
1− (1− `1)σj

)(
1− (1− `1)τj

)∥∥ξ j − θ
∥∥. (10)

Utilizing (7) and (10), we can write∥∥ξ j+1 − θ
∥∥ =

∥∥=Λj − θ
∥∥

≤ `1
∥∥Λj − θ

∥∥
≤ `3

1
(
1− (1− `1)τj

)(
1− (1− `1)κj

)(
1− (1− `1)σj

)∥∥ξ j − θ
∥∥. (11)

As θ < 1 and 0 ≤ κj, σj ≤ 1, for all j ∈ N, then
(
1− (1− `1)κj

)(
1− (1− `1)σj

)
< 1.

Thus, (11) takes the form∥∥ξ j+1 − θ
∥∥ ≤ `3

1
(
1− (1− `1)τj

)∥∥ξ j − θ
∥∥. (12)

From (12), we deduce that∥∥ξ j+1 − θ
∥∥ ≤ `3

1
(
1− (1− `1)τj

)∥∥ξ j − θ
∥∥

≤ `3
1
(
1− (1− `1)τj−1

)∥∥ξ j−1 − θ
∥∥

...

≤ `3
1(1− (1− `1)τ0)‖ξ0 − θ‖. (13)

It follows from (13) that

∥∥ξ j+1 − θ
∥∥ ≤ `

3(j+1)
1 ‖ξ0 − θ‖

j

∏
u=0

(1− (1− `1)τu). (14)
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From the definition of θ and τ, we have (1− (1− θ)γu) < 1. Since 1− u ≤ e−u for all
u ∈ [0, 1], the inequality (14) can be written as

∥∥ξ j+1 − θ
∥∥ ≤ `

3(j+1)
1

e
(1−`1)

j
∑

u=0
τu

‖ξ0 − θ‖. (15)

Letting j→ ∞ in (15), we get lim
j→∞

∥∥ξ j − θ
∥∥ = 0,, i.e., {ξ j} −→ θ ∈ λ(=).

For uniqueness. Let θ, θ∗ ∈ λ(=) such that θ 6= θ∗, hence

‖θ − θ∗‖ = ‖=θ −=θ∗‖
≤ `1‖θ − θ∗‖+ `2‖θ −=θ‖
= `1‖θ − θ∗‖
< ‖θ − θ∗‖,

which is a contradiction, that is, θ 6= θ∗.

Theorem 2. Let Θ be a nonempty CCS of a BS Ω and = : Θ→ Θ be a ACM with λ(=) 6= ∅. If
{ξ j} is the iterative sequence considered by (7) with {σj}, {κj}, {τj} ∈ [0, 1] and 0 < τ ≤ τj ≤ 1,
for all i ≥ 1. Then, {θj} converges to θ faster than the iterative approach (6).

Proof. It follows from (14) and the assumption 0 < τ ≤ τj ≤ 1 that

∥∥ξ j+1 − θ
∥∥ ≤ `

3(j+1)
1 ‖ξ0 − θ‖

j

∏
u=0

(1− (1− `1)τu)

= `
3(j+1)
1 ‖ξ0 − θ‖(1− (1− `1)τ)

j+1.

Similarly, the iterative process (6) ([19], Theorem 3.2) takes the form:

∥∥mj+1 − θ
∥∥ ≤ `

2(j+1)
1 ‖m0 − θ‖

j

∏
u=0

(1− (1− `1)τu). (16)

Since 0 < τ ≤ τj ≤ 1, for some τ > 0 and all j ≥ 1, then (16) can be written as

∥∥mj+1 − θ
∥∥ ≤ `

2(j+1)
1 ‖m0 − θ‖

j

∏
u=0

(1− (1− `1)τu)

= `
2(j+1)
1 ‖m0 − θ‖(1− (1− `1)τ)

j+1.

Set
ζ = `

3(j+1)
1 ‖ξ0 − θ‖(1− (1− `1)τ)

j+1,

and
ζ̂ = `

2(j+1)
1 ‖m0 − θ‖(1− (1− `1)τ)

j+1.

Then

∆j =
ζ

ζ̂
=

`
3(j+1)
1 ‖ξ0 − θ‖(1− (1− `1)τ)

j+1

`
2(j+1)
1 ‖m0 − θ‖(1− (1− `1)τ)

j+1
= `

j+1
1 .

Letting j→ ∞, we get lim
j→∞

∆j = 0. Hence, {ξ j} converges faster than {mj} to θ.

4. Convergence Results

In this section, we provide some convergence results of our iteration scheme (7) for
the SGNM in the setting of UCBSs. First, we prove the following lemmas:
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Lemma 6. Let Θ be a nonempty CCS of a BS Ω and = : Θ→ Θ be an SGNM with λ(=) 6= ∅. If
{ξ j} is the iterative sequence proposed by (7), then lim

j→∞

∥∥ξ j − θ
∥∥ exists, for each θ ∈ λ(=).

Proof. Let θ ∈ λ(=) and ϑ ∈ Θ. By Proposition 1 (2), we have

1
2
‖θ −=θ‖ = 0 ≤ ‖θ − ϑ‖ ⇒ ‖=θ −=ϑ‖ ≤ ‖θ − ϑ‖.

From (7), one has∥∥ρj − θ
∥∥ =

∥∥(1− σj)ξ j + σj=ξ j − θ
∥∥

≤ (1− σj)
∥∥ξ j − θ

∥∥+ σj
∥∥=ξ j − θ

∥∥
≤ (1− σj)

∥∥ξ j − θ
∥∥+ σj

∥∥ξ j − θ
∥∥

=
∥∥ξ j − θ

∥∥. (17)

Using (7) and (17), we obtain∥∥Υj − θ
∥∥ =

∥∥=((1− κj)ρj + κj=ρj
)
− θ
∥∥

≤
∥∥(1− κj)ρj + ηiΞρj − θ

∥∥
≤ (1− κj)

∥∥ρj − θ
∥∥+ κj

∥∥Ξρj − θ
∥∥

≤ (1− κj)
∥∥ρj − θ

∥∥+ κj
∥∥ρj − θ

∥∥
=

∥∥ρj − θ
∥∥

≤
∥∥ξ j − θ

∥∥. (18)

Similarly, from (7) and (18), we get∥∥Λj − θ
∥∥ =

∥∥=((1− τj)Υj + τj=Υj
)
− θ
∥∥ (19)

≤ (1− τj)
∥∥Υj − θ

∥∥+ τj
∥∥Υj − θ

∥∥
≤

∥∥Υj − θ
∥∥

≤
∥∥ξ j − θ

∥∥.

Finally, it follows from (7) and (19) that∥∥ξ j+1 − θ
∥∥ =

∥∥=Λj − θ
∥∥

=
∥∥Λj − θ

∥∥
≤

∥∥ξ j − θ
∥∥,

which implies that {
∥∥ξ j − θ

∥∥} is bounded and nondecreasing sequence. Hence lim
j→∞

∥∥ξ j − θ
∥∥

exists for each θ ∈ λ(=).

Lemma 7. Let ∅ 6= Θ be a nonempty CCS of a UCBs Ω and = : Θ → Θ be an SGNM If
{ξ j} is the iterative sequence given by (7), then λ(=) 6= ∅ if and only if {ξ j} is bounded and
lim
j→∞

∥∥=ξ j − ξ j
∥∥ = 0.

Proof. Let λ(=) 6= ∅ and θ ∈ λ(=). Due to Lemma 6, {ξ j} is bounded and lim
j→∞

∥∥ξ j − θ
∥∥

exists. Set
lim
j→∞

∥∥ξ j − θ
∥∥ = ω. (20)

From (20) in (17) and taking the lim sup, we have

lim sup
j→∞

∥∥ρj − θ
∥∥ ≤ lim sup

j→∞

∥∥ξ j − θ
∥∥ = ω.
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Based on Proposition 1 (2), one can write

lim sup
j→∞

∥∥=ξ j − θ
∥∥ ≤ lim sup

j→∞

∥∥ξ j − θ
∥∥ = ω. (21)

From (7) and (17)–(19), we have∥∥ξ j+1 − θ
∥∥ =

∥∥=Λj − θ
∥∥

≤
∥∥Λj − θ

∥∥
=

∥∥=((1− τj)Υj + τj=Υj
)
− θ
∥∥

≤ (1− τj)
∥∥Υj − θ

∥∥+ τj
∥∥Υj − θ

∥∥
≤

∥∥Υj − θ
∥∥

=
∥∥=((1− κj)ρj + κj=ρj

)
− θ
∥∥

≤ (1− κj)
∥∥ρj − θ

∥∥+ κj
∥∥=ρj − θ

∥∥
≤ (1− κj)

∥∥ξ j − θ
∥∥+ κj

∥∥ρj − θ
∥∥

=
∥∥ξ j − θ

∥∥− κj
∥∥ξ j − θ

∥∥+ κj
∥∥ρj − θ

∥∥.

Hence, ∥∥ξ j+1 − θ
∥∥− ∥∥ξ j − θ

∥∥
κj

≤
∥∥ρj − θ

∥∥− ∥∥ξ j − θ
∥∥. (22)

As κj ∈ [0, 1], from (22), we get

∥∥ξ j+1 − θ
∥∥− ∥∥ξ j − θ

∥∥ ≤ ∥∥ξ j+1 − θ
∥∥− ∥∥ξ j − θ

∥∥
κj

≤
∥∥ρj − θ

∥∥− ∥∥ξ j − θ
∥∥,

which leads to
∥∥ξ j+1 − θ

∥∥ ≤ ∥∥ρj − θ
∥∥.

Applying (20), we have
ω ≤ lim inf

j→∞

∥∥ρj − θ
∥∥. (23)

From (21) and (23), we get

ω = lim
j→∞

∥∥ρj − θ
∥∥ = lim

i→∞

∥∥(1− σj)ξ j + σj=ξ j − θ
∥∥

= lim
j→∞

∥∥(1− σj)
(
ξ j − θ

)
+ σj

(
=ξ j − θ

)∥∥
= lim

j→∞

∥∥σj
(
=ξ j − θ

)
+ (1− σj)

(
ξ j − θ

)∥∥. (24)

It follows from (20), (21), (24) and Lemma 5 that {ξ j} is bounded and lim
j→∞

∥∥=ξ j − ξ j
∥∥ = 0.

Conversely, let {ξ j} be a bounded and lim
j→∞

∥∥=ξ j − ξ j
∥∥ = 0. Consider =θ ∈ Z(Ω, {ξ j}),

then by Proposition 1 (3), and Definition 6, we have

∇(=θ, {ξ j}) = lim sup
j→∞

∥∥ξ j −=θ
∥∥

≤ lim sup
j→∞

(
3
∥∥=ξ j − ξ j

∥∥+ ∥∥ξ j − θ
∥∥)

= lim sup
j→∞

∥∥ξ j − θ
∥∥ = ∇

(
θ, {ξ j}

)
,

which implies that θ ∈ Z(Ω, {ξ j}). Since Ω is a uniformly convex and Z
(
Λ, {ξ j}

)
has

exactly one point, then we have =θ = θ.
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Theorem 3. Let {ξ j} be a sequence iterated by (7) and let Ω, Θ and = be defined as in Lemma 7.
Then, {ξ j}⇀ θ ∈ λ(=) if Λ satisfies Opial’s condition and λ(=) 6= ∅.

Proof. Assume that θ ∈ λ(=), due to Lemma 6, lim
j→∞

∥∥ξ j − θ
∥∥ exists.

Next, we show that {ξ j} has a weak sequential limit in λ(=). In this regard, consider
{ξ ja}, {ξ jb} ⊂ {ξ j} with {ξ ja} ⇀ θ and {ξ jb} ⇀ θ∗ for all θ, θ∗ ∈ Θ. From Lemma 7,
we get lim

j→∞

∥∥=ξ j − ξ j
∥∥ = 0. Using Lemma 1 and since I −= is demiclosed at 0, we have

(I −=)θ = 0, which implies that =θ = θ. Similarly =θ∗ = θ∗.
Now, if θ 6= θ∗, then by Opial’s condition, we get

lim
j→∞

∥∥ξ j − θ
∥∥ = lim

a→∞

∥∥ξ ja − θ
∥∥ < lim

a→∞

∥∥ξ ja − θ∗
∥∥

= lim
j→∞

∥∥ξ j − θ∗
∥∥ = lim

b→∞

∥∥ξ jb − θ∗
∥∥

< lim
b→∞

∥∥ξ jb − θ
∥∥ = lim

j→∞

∥∥ξ j − θ
∥∥,

which is a contradiction; hence, θ = θ∗ and {ξ j}⇀ θ ∈ λ(=).

Theorem 4. Let {ξ j} be a sequence iterated by (7). Furthermore, let ∅ 6= Θ be a nonempty CCS
of a UCBS Ω and = : Θ→ Θ be an SGNM. Then, {ξ j} −→ θ ∈ λ(=).

Proof. Due to Lemma 2 and 7, λ(=) 6= ∅ and lim
j→∞

∥∥=ξ j − ξ j
∥∥ = 0. Since Θ is compact, then

there exists a subsequence {ξ ja} ⊂ {ξ j} so that ξ ja → θ for any θ ∈ Θ.
From Proposition 1 (3), one has∥∥ξ ja −=θ

∥∥ ≤ 3
∥∥ξ ja −=ξ ja

∥∥+ ∥∥ξ ja − θ
∥∥, for all j ∈ N.

Letting a → ∞, we get =θ = θ, that is, θ ∈ λ(=). From Lemma 6, we conclude that
lim
j→∞

∥∥ξ j − θ
∥∥ exists for each θ ∈ λ(=), therefore {ξ j} −→ θ.

Theorem 5. Let {ξ j} be a sequence iterated by (7) and let Ω, Θ and = be defined as in Lemma 7.
Then, {ξ j} −→ θ ∈ λ(=) if and only if lim inf

j→∞
d(ξ j, λ(=)) = 0, where d(θ, λ(=)) = inf{‖θ − ϑ‖

: ϑ ∈ λ(=)}.

Proof. It is clear that the necessary condition is satisfied. Let

lim inf
j→∞

d(ξ j, λ(=)) = 0.

For Lemma 6, lim
j→∞

∥∥ξ j − θ
∥∥ exists for each θ ∈ λ(=), which leads to lim inf

j→∞
d(ξ j, λ(=))

exists. Hence
lim
i→∞

d(ξ j, λ(=)) = 0.

Now, we claim that {ξ j} is a Cauchy sequence in Θ. Since lim inf
j→∞

d(ξ j, λ(=)) = 0, for

every ε > 0 there exists j0 ∈ N such that

d(ξ j, λ(=)) ≤ ε

2
and d(ξm, λ(=)) ≤ ε

2
, for each j, m ≥ j0.
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Therefore ∥∥ξ j − ξm
∥∥ ≤

∥∥ξ j − λ(=)
∥∥+ ‖λ(=)− ξm‖

= d(ξ j, λ(=)) + d(ξm, λ(=)) ≤ ε

2
+

ε

2
= ε,

Thus, {ξ j} is a Cauchy sequence in Θ. Since Θ is closed, then there exists θ̂ ∈ Θ such
that lim

j→∞
ξ j = θ̂. As lim

i→∞
d(ξ j, λ(=)) = 0, lim

i→∞
d(θ̂, λ(=)) = 0. Therefore, θ̂ ∈ λ(=) and this

completes the proof.

5. Stability Results

In 1987, Harder [34] rigorously examined the idea of stability of an FP iteration process
in her Ph.D. thesis as follows:

Definition 9. Let = : Θ→ Θ be a self-mapping and vr+1 = g(=, vr) be a FP iteration so that
{vr} converges to v ∈ Ξ(=). For arbitrary sequence {qr} in Ω, define

εr = ‖qr − g(=, qr)‖, for all r ∈ N.

Then, the FP iteration method is called =-stable if the assertion below holds

lim
r→∞

εr = 0 if and only if lim
r→∞

qr = v.

Several writers have lately examined the idea of stability in Definition 9 for various
classes of contraction mappings; for example, see [35]. Since the sequence {qr} is arbitrarily
chosen, Berinde pointed out in [1] that the concept of stability in Definition 9 is not precise.
To overcome this restriction, the same author noted that if {qr}were approximate sequences
of {vr}, then the definition would make sense. As a result, any iterative process will be
weakly stable if it is stable, but the converse is not true in general.

Definition 10 ([1]). A sequence {qr} ⊂ Θ is called an approximate sequence of {vr} ⊂ Θ, if for
any b ≥ 1, there is α = α(b) so that

‖vr − qr‖ ≤ α, for all r ≥ b.

Definition 11 ([1]). Let {vr} be an iterative process defined for v0 ∈ Θ as

vr+1 = g(=, vr), r ≥ 0, (25)

where = : Θ→ Θ is a given mapping. Suppose that {vr} converges to a FP v∗ of = and for any
approximate sequence {qr} ⊂ Θ of {vr}

lim
r→∞

εr = lim
r→∞
‖qr+1 − g(=, qr)‖ = 0 implies lim

r→∞
qr = v∗,

then, Equation (25) is called weakly stable with respect to =, or weakly =-stable.

The following theorem demonstrates the stability of our iteration approach (7).

Theorem 6. Let Θ be a nonempty CCS of a BS Ω. Suppose that {ξ j} is a sequence iterated by (7)

with {σj}, {κj}, {τj} ∈ [0, 1] and
∞
∑

j=0
τj = ∞. If the mapping = : Θ → Θ satisfies (1), then the

proposed method is =-stable.
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Proof. Let {Υj} ⊂ Θ be a chosen sequence and {ξ j} be a sequence generating by (7) such
that ξ j+1 = h̄(=, ξ j) with ξ j → ζ as j→ ∞. Consider

ϕj =
∥∥Υj+1 − h̄(=, Υj)

∥∥.

To prove = is stable, it is sufficient to show that

lim
j→∞

ϕj = 0 if and only if lim
j→∞

Υj = θ, wher θ ∈ λ(=).

Now, assume that lim
j→∞

ϕj = 0. Using (7) and (12), one has

∥∥Υj+1 − θ
∥∥

=
∥∥Υj+1 − h̄(=, Υj) + h̄(=, Υj)− θ

∥∥
≤

∥∥Υj+1 − h̄(=, Υj)
∥∥+ ∥∥h̄(=, Υj)− θ

∥∥
= ϕj +

∥∥h̄(=, Υj)− θ
∥∥

= ϕj +

∥∥∥∥∥∥∥∥=
=

 (1− τj)

[
=
(

(1− κj)
[
(1− σj)Υj + σj=Υj

]
+κj=

[
(1− σj)Υj + σj=Υj

] )]
+τj=

[
=
(

(1− κj)
[
(1− σj)Υj + σj=Υj

]
+κj=

[
(1− σj)Υj + σj=Υj

] )]

− θ

∥∥∥∥∥∥∥∥
= `3

1
(
1− (1− `1)τj

)∥∥Υj − θ
∥∥+ ϕj,

for j ∈ N. Let
ψj =

∥∥Υj − θ
∥∥, ej = (1− `1)τj ∈ (0, 1) and ψ∗j = ϕj.

Since lim
j→∞

ϕj = 0, then lim
i→∞

ψ∗j
ej

= lim
i→∞

ψj
ej

= 0. Therefore, all assumptions of Lemma 3

hold, consequently lim
j→∞

∥∥Υj − θ
∥∥ = 0,, i.e., lim

j→∞
Υj = θ.

Conversely, let lim
j→∞

Υj = θ, then

ϕj =
∥∥Υj+1 − h̄(=, Υj)

∥∥
=

∥∥Υj+1 − θ + θ − h̄(=, Υj)
∥∥

≤
∥∥Υj+1 − θ

∥∥+ ∥∥θ − h̄(=, Υj)
∥∥

≤
∥∥Υj+1 − θ

∥∥+ `3
1
(
1− (1− `1)τj

)∥∥Υj − θ
∥∥,

passing j→ ∞, we obtain lim
j→∞

ϕj = 0. This finishes the proof.

The following example supports Theorem 6.

Example 1. Assume that Θ = [0, 1] and (R, ‖.‖) is a BS equipped with the usual norm. Define
a mapping = : [0, 1] → [0, 1] by =ξ = ξ

8 . Clearly, 0 is a unique FP of = and = fulfills (7) with
`1 = 1

4 and `2 ≥ 0.
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Next, we show that the proposed algorithm (7) is =-stable. In this regard, assume that
σj = κj = τj =

1
j+4 and ξ0 ∈ [0, 1], then by (7), one has

ρj =

(
1− 1

j + 4
+

1
8(j + 4)

)
ξi =

(
1− 7

8(j + 4)

)
ξ j,

Υj =
1
8

(
1− 7

4(j + 4)
+

49

82(j + 4)2

)
ξ j,

Λj =
1
83

(
1− 7

4(j + 4)
+

49

82(j + 4)2

)
ξ j,

ξ j+1 =
1
83

(
1− 42

8(j + 4)
+

49

82(j + 4)2 +
147

2× 82(j + 4)2 −
343

83(j + 4)3

)
ξ j

=

(
1
83 −

42
84(j + 4)

+
49

85(j + 4)2 +
147

2× 85(j + 4)2 −
343

86(j + 4)3

)

=

[
1−

(
511
512

+
42

84(j + 4)
− 49

85(j + 4)2 −
147

2× 85(j + 4)2 +
343

86(j + 4)3

)]
ξ j.

Put Υj =
511
512 +

42
84(j+4) −

49
85(j+4)2 − 147

2×85(j+4)2 +
343

86(j+4)3 . Clearly, Υj ∈ (0, 1) for each j > 0 and
∞
∑

i=0
Υj = 0. Due to Lemma 3, lim

j→∞
ξ j = 0. It is easy to see that limj→∞

∥∥ξ j
∥∥ =

∥∥limj→∞ ξ j
∥∥ = 0.

Now, consider <j =
1

j+5 for each j > 0, we have

0 ≤ lim
j→∞

∥∥ξ j −<j
∥∥ ≤ lim

j→∞

∥∥ξ j
∥∥+ lim

j→∞

∥∥<j
∥∥ = 0,

which implies that limj→∞
∥∥ξ j −<j

∥∥ = 0. Hence, the two sequences {ξ j} and {<j} are equivalent.
Finally, assume that ϕj is the sequence associated with the iterative sequence {ξ j}, then, we have

ϕj =

∥∥∥∥∥<j+1 −
(

511
512

+
42

84(j + 4)
− 49

85(j + 4)2 −
147

2× 85(j + 4)2 +
343

86(j + 4)3

)
<j

∥∥∥∥∥
=

∥∥∥∥∥ 1
j + 6

−
(

511
512

+
42

84(j + 4)
− 49

85(j + 4)2 −
147

2× 85(j + 4)2 +
343

86(j + 4)3

)
<j

∥∥∥∥∥
→ 0, as r → ∞.

Hence, the proposed algorithm (7) is =-stable.

6. Numerical Examples

In this section, we provide illustrative examples to assess the convergence of itera-
tion (7) in comparison to some of the most popular iterative schemes in the literature.

Example 2. Assume that Ω = R3 and Θ =
{

v = (v1, v2, v3) : (v1, v2, v3) ∈ [0, 6]3
}

, where(
[3, 6]3 = [3, 6]× [3, 6]× [3, 6]

)
is a subset of Ω equipped with the norm ‖v‖ = ‖(v1, v2, v3)‖ =

|v1|+ |v2|+ |v3|. Define a mapping = : Θ→ Θ by

=v =

{ (v1
3 , v2

3 , v3
3
)
, if (v1, v2, v3) ∈ [0, 3)3,(v1

6 , v2
6 , v3

6
)
, if (v1, v2, v3) ∈ [3, 6]3.

It is clear that = owns a unique FP; it is (0, 0, 0). Now, we shall show that = is a contractive-
like mapping and, hence, an ACM. In this regard, we define the function ξ : [0, ∞)→ [0, ∞) by
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ξ(v) = v
4 . Obviously, ξ is a strictly increasing continuous function with ξ(0) = 0. If v ∈ [0, 3)3,

we have

‖v−=v‖ =
∥∥∥(v1, v2, v3)−

(v1

3
,

v2

3
,

v3

3

)∥∥∥ =

∥∥∥∥(2v1

3
,

2v2

3
,

2v3

3

)∥∥∥∥,

and

ξ(‖v−=v‖) = ξ

(∥∥∥∥(2v1

3
,

2v2

3
,

2v3

3

)∥∥∥∥)
=

∥∥∥(v1

6
,

v2

6
,

v3

6

)∥∥∥ =
∣∣∣v1

6

∣∣∣+ ∣∣∣v2

6

∣∣∣+ ∣∣∣v3

6

∣∣∣. (26)

Analogously, if v ∈ [3, 6]3, one has

‖v−=v‖ =
∥∥∥(v1, v2, v3)−

(v1

6
,

v2

6
,

v3

6

)∥∥∥ =

∥∥∥∥(5v1

6
,

5v2

6
,

5v3

6

)∥∥∥∥,

and

ξ(‖v−=v‖) = ξ

(∥∥∥∥(5v1

6
,

5v2

6
,

5v3

6

)∥∥∥∥)
=

∥∥∥∥(5v1

24
,

5v2

24
,

5v3

24

)∥∥∥∥ =

∣∣∣∣5v1

24

∣∣∣∣+ ∣∣∣∣5v2

24

∣∣∣∣+ ∣∣∣∣5v3

24

∣∣∣∣. (27)

After that, we discuss the cases below:

(I) If v, υ ∈ [0, 3)3, then by (26), we get

‖=v−=υ‖ =
∥∥∥(v1

3
,

v2

3
,

v3

3

)
−
(υ1

3
,

υ2

3
,

υ3

3

)∥∥∥
=

∣∣∣v1

3
− υ1

3

∣∣∣+ ∣∣∣v2

3
− υ2

3

∣∣∣+ ∣∣∣v3

3
− υ3

3

∣∣∣
=

1
3
[|v1 − υ1|+ |v2 − υ2|+ |v3 − υ3|]

=
1
3
‖(v1, v2, v3)− (υ1, υ2, υ3)‖ =

1
3
‖v− υ‖

≤ 1
3
‖v− υ‖+

∣∣∣v1

6

∣∣∣+ ∣∣∣v2

6

∣∣∣+ ∣∣∣v3

6

∣∣∣
=

1
3
‖v− υ‖+ ξ(‖v−=v‖).

(II) If v, υ ∈ [3, 6]3, then by (27), we have

‖=v−=υ‖ =
∥∥∥(v1

6
,

v2

6
,

v3

6

)
−
(υ1

6
,

υ2

6
,

υ3

6

)∥∥∥
=

∣∣∣v1

6
− υ1

6

∣∣∣+ ∣∣∣v2

6
− υ2

6

∣∣∣+ ∣∣∣v3

6
− υ3

6

∣∣∣
=

1
6
[|v1 − υ1|+ |v2 − υ2|+ |v3 − υ3|]

=
1
6
‖(v1, v2, v3)− (υ1, υ2, υ3)‖ =

1
6
‖v− υ‖

≤ 1
6
‖v− υ‖+

∣∣∣∣5v1

24

∣∣∣∣+ ∣∣∣∣5v2

24

∣∣∣∣+ ∣∣∣∣5v3

24

∣∣∣∣
≤ 1

3
‖v− υ‖+ ξ(‖v−=v‖).
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(III) If v ∈ [0, 3)3 and υ ∈ [3, 6]3, then by (26), we obtain that

‖=v−=υ‖ =
∥∥∥(v1

3
,

v2

3
,

v3

3

)
−
(υ1

6
,

υ2

6
,

υ3

6

)∥∥∥
=

∥∥∥(v1

3
− υ1

6

)
,
(v2

3
− υ2

6

)
,
(v3

3
− υ3

6

)∥∥∥
=

∥∥∥(v1

6
+

v1

6
− υ1

6

)
,
(v2

6
+

v2

6
− υ2

6

)
,
(v3

6
+

v3

6
− υ3

6

)∥∥∥
≤

∣∣∣v1

6
+

v1

6
− υ1

6

∣∣∣+ ∣∣∣v2

6
+

v2

6
− υ2

6

∣∣∣+ ∣∣∣v3

6
+

v3

6
− υ3

6

∣∣∣
≤

∣∣∣v1

6

∣∣∣+ ∣∣∣v2

6

∣∣∣+ ∣∣∣v3

6

∣∣∣+ ∣∣∣v1

6
− υ1

6

∣∣∣+ ∣∣∣v2

6
− υ2

6

∣∣∣+ ∣∣∣v3

6
− υ3

6

∣∣∣
=

1
6
[|v1 − υ1|+ |v2 − υ2|+ |v3 − υ3|] + ξ(‖v−=v‖)

≤ 1
3
‖(v1, v2, v3)− (υ1, υ2, υ3)‖+ ξ(‖v−=v‖)

=
1
3
‖v− υ‖+ ξ(‖v−=v‖).

(IV) If υ ∈ [0, 3)3 and v ∈ [3, 6]3, then by (26), one has

‖=v−=υ‖ =
∥∥∥(v1

6
,

v2

6
,

v3

6

)
−
(υ1

3
,

υ2

3
,

υ3

3

)∥∥∥
=

∥∥∥(v1

6
− υ1

3

)
,
(v2

6
− υ2

3

)
,
(v3

6
− υ3

3

)∥∥∥
=

∥∥∥(v1

3
− v1

6
− υ1

3

)
,
(v2

3
− v2

6
− υ2

3

)
,
(v3

3
− v3

6
− υ3

3

)∥∥∥
≤

∣∣∣v1

3
− v1

6
− υ1

3

∣∣∣+ ∣∣∣v2

3
− v2

6
− υ2

3

∣∣∣+ ∣∣∣v3

3
− v3

6
− υ3

3

∣∣∣
≤

∣∣∣v1

6

∣∣∣+ ∣∣∣v2

6

∣∣∣+ ∣∣∣v3

6

∣∣∣+ ∣∣∣v1

3
− υ1

3

∣∣∣+ ∣∣∣v2

3
− υ2

3

∣∣∣+ ∣∣∣v3

3
− υ3

3

∣∣∣
=

1
3
[|v1 − υ1|+ |v2 − υ2|+ |v3 − υ3|] + ξ(‖v−=v‖)

=
1
3
‖(v1, v2, v3)− (υ1, υ2, υ3)‖+ ξ(‖v−=v‖)

=
1
3
‖v− υ‖+ ξ(‖v−=v‖).

Based on the above cases, we conclude that condition (7) is satisfied. Hence, = is a contractive-
like mapping.

Example 3. Assume that (R, ‖.‖) is a BS equipped with the usual norm and ∆ = [3, 5]. Define a
mapping = : Θ→ Θ by

=v =

{
v+6

3 , if v < 5,
2, if v = 5.

To prove that = does not satisfy Condition (C), we take v = 4 and υ = 5, then

1
2
|v−=v| = 1

2
|4−=4| = 1

3
< 1 = |v− υ|.

But

|=v−=υ| ≤ |=4−=5| =
∣∣∣∣10

3
− 6

3

∣∣∣∣ = 4
3
> 1 = |v− υ|.

Hence, = does not satisfy Condition (C).
Now, to show that = is an SGNM, we consider following cases:
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(I) If v, υ < 5, we get

`|v−=v|+ `|υ−=υ|+ (1− 2`)|v− υ|

=
1
2

∣∣∣∣v−(v + 6
3

)∣∣∣∣+ 1
2

∣∣∣∣υ−(υ + 6
3

)∣∣∣∣
=

1
2

∣∣∣∣2v− 6
3

∣∣∣∣+ 1
2

∣∣∣∣2υ− 6
3

∣∣∣∣
≥ 1

2

∣∣∣∣(2v− 6
3

)
−
(

2υ− 6
3

)∣∣∣∣
=

1
2

∣∣∣∣2v

3
− 2υ

3

∣∣∣∣ = 1
3
|v− υ| = |=v−=υ|.

(II) If v < 5 and υ = 5, we obtain

`|v−=v|+ `|υ−=υ|+ (1− 2`)|v− υ|

=
1
2

∣∣∣∣v−(v + 6
3

)∣∣∣∣+ 1
2
|5− 2|

=
1
2

∣∣∣∣2v− 6
3

∣∣∣∣+ 3
2
=
∣∣∣v

3

∣∣∣+ 1
2

≥
∣∣∣v

3

∣∣∣ = |=v−=υ|.

(III) If υ < 5 and v = 5, we have

`|v−=v|+ `|υ−=υ|+ (1− 2`)|v− υ|

=
1
2
|5− 2|+ 1

2

∣∣∣∣υ−(υ + 6
3

)∣∣∣∣
=

3
2
+

1
2

∣∣∣∣2υ− 6
3

∣∣∣∣ = 1
2
+
∣∣∣υ
3

∣∣∣
≥

∣∣∣υ
3

∣∣∣ = |=v−=υ|.

• If υ = v = 5, we can write

`|v−=v|+ `|υ−=υ|+ (1− 2`)|v− υ|
= 3 > 0 = |2−=υ| = |=v−=υ|.

Hence, = is an SGNM and has a unique FP 3.
Numerically, by using MATLAB R2015a, we show that our iterative scheme (7) converges

faster than both iterations (5) and (6) as follows:
Let Ω = (−∞, ∞), Θ = [0, 50], and = : Θ→ Θ be a mapping described as

=(ξ) =
√

ξ2 − 9ξ + 54.

Clearly, 6 is a unique FP of =. Consider σj = κj = τj =
1

5j+10 , with distinct starting points.
Then, we get the following Tables 1 and 2 and Figures 1–6 for comparing the different iterative
techniques.
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Table 1. Numerical comparison of results of Equations (5)–(7).

Number of Iterations

Initial Point (z1) Equation (5) Equation (6) Equation (7)

3.00 16 13 7
3.82 23 18 10
4.44 25 20 10

Table 2. Numerical comparison of results of Equations (5)–(7).

Execution Time in Seconds

Initial Point (z1) Equation (5) Equation (6) Equation (7)

3.00 0.00483290000000000 0.00595750000000000 0.000157200000000000
3.82 0.00236760000000000 0.00755520000000000 0.00779860000000000
4.44 0.00705930000000000 0.00946030000000000 0.00744400000000000

0 2 4 6 8 10 12 14 16

Number of Iterations

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Figure 1. A graphical comparison of Equations (5)–(7) where z1 = 3.00.
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100

102

Figure 2. A graphical comparison of Equations (5)–(7) where z1 = 3.00.
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Number of Iterations

10-12
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10-6
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100
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Figure 3. A graphical comparison of Equations (5)–(7) where z1 = 3.82.

1 2 3 4 5 6 7 8

Elapsed time [sec] 10-3

10-12
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10-6
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10-2

100

102

Figure 4. A graphical comparison of Equations (5)–(7) where z1 = 3.82.
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102

Figure 5. A graphical comparison of Equations (5)–(7) where z1 = 4.44.
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1 2 3 4 5 6 7 8 9 10

Elapsed time [sec] 10-3

10-12

10-10

10-8
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10-4
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100

102

Figure 6. A graphical comparison of Equations (5)–(7) where z1 = 4.44.

Remark 1. The two main metrics used to evaluate the efficiency and success of the iterative process
are time and the number of repetitions. saves time and effort when strong convergence is easily
attained with the fewest repetitions in various optimization and variational inequality problems.
The tables and figures above make it clear that our strategy is effective, and our algorithm acts
properly when compared to other more sober iterations in this direction.

7. Solving a Nonlinear Integral Equation with Delay

In this section, we apply iteration (7) to determine the existence of the solution to the
following nonlinear Volterra equation with delay:

ξ(t) = η(t) +k
t∫

k

Φ(t, ς, ξ(ς), ξ(ς− µ)))dς, t ∈ J = [k, l]. (28)

with the condition
ξ(t) = Ξ(t), t ∈ [k− µ, k], (29)

where k, l ∈ R, Ξ ∈ (C[k− µ, k],R) and µ,k > 0. Clearly, the space i = ((C[k, l],R), ‖.‖∞)
is a BS, where the norm ‖.‖∞ is described as ‖ξ − ϑ‖∞ = maxt∈J{|ξ(t)− ϑ(t)|} and
(C[k, l],R) is the set of all continuous functions defined on [k, l].

Th following theorem is the main result in this part:

Theorem 7. Suppose that Θ is a nonempty CCS of a BS i and {ξ j} is a sequence generated by (7)
with {σj}, {κj}, {τj} ∈ [0, 1]. Let = : i→ i be an operator described as

=ξ(t) = η(t) +k
t∫

k

Φ(t, ς, ξ(ς), ξ(ς− µ)))dς, t ∈ J,

with =ξ(t) = Ξ(t), t ∈ [k− µ, k]. Assume that the following statements are true:

(si) the functions η : J → R and Φ : J × J ×R×R→ R are continuous;
(sii) there exists a constant AΦ > 0 so that

|Φ(t, ς, ξ1, ξ2))−Φ(t, ς, ξ∗1 , ξ∗2))| ≤ AΦ(|ξ1 − ξ∗1 |+ |ξ2 − ξ∗2 |),

for all ξ1, ξ2, ξ∗1 , ξ∗2 ∈ R+ and t, ς ∈ J;
(siii) for each t, ς ∈ J, 2kAΦ(t− k) < 1.
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Then the integral Equation (28) with (29) has a unique solution ξ̂ ∈ C[k, l]. Further, if = is a
mapping satisfying (2), then ξ j −→ ξ̂.

Proof. First, we prove that= has a FP by using the Banach contraction principle. Recall that

|=ξ(t)−=ξ∗(t)| = 0, ξ, ξ∗ ∈ (C[k− µ, k],R), t ∈ [k− µ, k].

Next, for each t ∈ J, we can write

|=ξ(t)−=ξ∗(t)| =

∣∣∣∣∣∣η(t) +k
t∫

k

Φ(t, ς, ξ(ς), ξ(ς− µ)))dς

− η(t) +k
t∫

k

Φ(t, ς, ξ∗(ς), ξ∗(ς− µ)))dς

∣∣∣∣∣∣
≤ k

t∫
k

|Φ(t, ς, ξ(ς), ξ(ς− µ)))−Φ(t, ς, ξ∗(ς), ξ∗(ς− µ)))|dς

≤ kAΦ

t∫
k

[|ξ(ς)− ξ∗(ς)|+ |ξ(ς− µ)− ξ∗(ς− µ)|]dς

≤ kAΦ

t∫
k

[
max

k−µς≤l
|ξ(ς)− ξ∗(ς)|+ max

k−µς≤l
|ξ(ς− µ)− ξ∗(ς− µ)|

]
dς

= kAΦ

t∫
k

[‖ξ − ξ∗‖∞ + ‖ξ − ξ∗‖∞ ]dς

= 2kAΦ

t∫
k

‖ξ − ξ∗‖dς = 2kAΦ(t− k)‖ξ − ξ∗‖∞ .

Since 2kAΦ(t− k) < 1, we conclude that the operator = has a unique FP λ(=) = {ξ̂}
because it is a contraction. Hence, the problem (28) with (29) has a unique solution
ξ̂ ∈ C[k, l].

Finally, we show that ξ j −→ ξ̂. For each ξ, ξ∗ ∈ Θ, one has

|=ξ(t)−=ξ∗(t)|
≤ |=ξ(t)− ξ(t)|+ |ξ(t)−=ξ∗(t)|

≤ |=ξ(t)− ξ(t)|+

∣∣∣∣∣∣η(t) +k
t∫

k

Φ(t, ς, ξ(ς), ξ(ς− µ)))dς

−η(t) +k
t∫

k

Φ(t, ς, ξ∗(ς), ξ∗(ς− µ)))dς

∣∣∣∣∣∣
≤ |=ξ(t)− ξ(t)|+kAΦ

t∫
k

[|ξ(ς)− ξ∗(ς)|+ |ξ(ς− µ)− ξ∗(ς− µ)|]dς

≤ max
k−µς≤l

|=ξ(t)− ξ(t)|+kAΦ

t∫
k

[
max

k−µς≤l
|ξ(ς)− ξ∗(ς)|+ max

k−µς≤l
|ξ(ς− µ)− ξ∗(ς− µ)|

]
dς

= ‖=ξ − ξ‖∞ +kAΦ

t∫
k

[‖ξ − ξ∗‖∞ + ‖ξ − ξ∗‖∞]dς

≤ ‖=ξ − ξ‖∞ + 2kAΦ(t− k)‖ξ − ξ∗‖∞.

Hence,
‖=ξ −=ξ∗‖ ≤ ‖=ξ − ξ‖∞ + 2kAΦ(t− k)‖ξ − ξ∗‖∞.
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It is clear that the mapping = fulfills (1) with `1 = 2kAΦ(t − k) < 1 and `2 = 0.
Therefore, all requirements of Theorem 1 are satisfied. Then, the sequence {ξ j} established
by the iterative scheme (7) strongly converges to the unique solution of Equation (28) with
(29).

8. Conclusion and Open Discussions

The FPs of contractive-like mappings were approximated in this work using a four-step
iterative method. It has been shown analytically that for contractive-like mappings, the new
iterative technique converges faster than the iterative approaches (6). Furthermore, we
have demonstrated numerically that our iterative method converges faster than numerous
well-known iterative schemes, such as (5) and (6) for ACMs. Similarly, the stability result of
the iterative scheme (7) was also obtained. Moreover, some weak and strong convergence
results are proved for SGNMs in UCBSs. Further, illustrative examples were investigated
to support our results. The considered iteration was applied to determine the existence of a
solution to a nonlinear Volterra integral equation. Ultimately, we identified the following
as potential future work:

• The variational inequality problem can be solved using our iteration (1) if we define
the mapping = in a Hilbert space Ω endowed with an inner product space. This
problem can be described as: find ℘∗ ∈ i such that

〈=℘∗,℘− ℘∗〉 ≥ 0 for all ℘ ∈ Ω,

where = : Ω→ Ω is a nonlinear mapping. In several disciplines, including engineer-
ing mechanics, transportation, economics and mathematical programming, variational
inequalities are a crucial and indispensable modeling tool; see [36,37] for more details.

• Our methodology can be extended to include gradient and extra-gradient projection
techniques, which are crucial for locating saddle points and resolving a variety of
optimization-related issues; see [38].

• We can accelerate the convergence of the proposed algorithm by adding shrinking
projection and CQ terms. These methods stimulate algorithms and improve their
performance to obtain strong convergence; for more details, see [39–42].

• If we consider the mapping = as an α-inverse strongly monotone and the inertial term
is added to our algorithm, then we have the inertial proximal point algorithm. This
algorithm is used in many applications such as monotone variational inequalities,
image restoration problems, convex optimization problems and split convex feasi-
bility problems, see [43,44]. For more accuracy, these problems can be expressed as
mathematical models such as machine learning and the linear inverse problem.

• In addition, second-order differential equations and fractional differential equations,
which Green’s function can be used to transform into integral equations, can be solved
using our approach. Therefore, they are simple to treat and resolve using the same
method as in Section 7.
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Abbreviations

FPs Fixed points
BSs Banach spaces
CCS Closed convex subset
⇀ Weak convergence
−→ Strong convergence
ACMs Almost contraction mappings
NIEs Nonlinear integral equations
SGNMs Suzuki generalized nonexpansive mappings
UCBSs Uniformly convex Banach spaces
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