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Abstract: In this article, a new modified asymmetric Topp–Leone distribution is created and devel-
oped from a theoretical and inferential point of view. It has the feature of extending the remarkable
flexibility of a special one-shape-parameter lifetime distribution, known as the inverse Topp–Leone
distribution, to the bounded interval [0, 1]. The probability density function of the proposed truncated
distribution has the potential to be unimodal and right-skewed, with different levels of asymmetry.
On the other hand, its hazard rate function can be increasingly shaped. Some important statistical
properties are examined, including several different measures. In practice, the estimation of the model
parameters under progressive type-II censoring is considered. To achieve this aim, the maximum
likelihood, maximum product of spacings, and Bayesian approaches are used. The Markov chain
Monte Carlo approach is employed to produce the Bayesian estimates under the squared error and
linear exponential loss functions. Some simulation studies to evaluate these approaches are discussed.
Two applications based on real-world datasets—one on the times of infection, and the second dataset
is on trading economics credit rating—are considered. Thanks to its flexible asymmetric features, the
new model is preferable to some known comparable models.

Keywords: maximum likelihood and Bayesian estimations; inverse Topp–Leone distribution; max-
imum product spacing estimation; Markov chain Monte Carlo; entropy and extropy; progressive
type-II censoring

1. Introduction

The (probability) distributions with support [0, 1] play a crucial role in various fields.
They allow us to model and analyze random events with limited outcomes, such as
probabilities and proportions. They are vital in statistics, enabling us to estimate uncertainty
and make informed decisions. Their significance extends to machine learning, where
they aid in generating realistic data and estimating probabilities. Understanding and
utilizing such distributions empowers us to grasp the inherent uncertainty of real-world
phenomena accurately.

One of the most helpful existing distributions with support [0, 1] is the so-called Topp–
Leone (TL) distribution with one shape parameter η, presented in [1]. The hazard rate
function (HRF) of the TL distribution has great flexibility; it can be of bathtub shape or be
of non-increasing shape, based on the values of the shape parameter η. For these reasons, it
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is particularly successful for modelling lifetime data. Theoretically, its probability density
function (PDF) is defined as

k(y; η) = 2ηyη−1(1− y)(2− y)η−1, 0 ≤ y ≤ 1, η > 0, (1)

and k(y; η) = 0 for y /∈ [0, 1], and the associated cumulative distribution function (CDF) is

K(y; η) = yη(2− y)η , 0 ≤ y ≤ 1, η > 0, (2)

and K(y; η) = 0 for y < 0 and K(y; η) = 1 for y > 1. The TL distribution and its extensions
have received a lot of interest in the literature over the past few years. Among these
extensions, there are the TL family of distributions introduced in [2–4], the transmuted
TL-generated family proposed in [5], the Fréchet TL-generated family discussed in [6], the
exponentiated generalized TL-generated family studied in [7], the new generalized TL-
generated family explored in [8], the type-II TL-generated family discussed in [9], the new
power TL-generated family proposed in [10], the power TL distribution proposed in [11],
the odd log-logistic TL-generated family explored in [12] and the Burr III-TL-generated
family discussed in [13].

Based on a random variable Y that follows the TL distribution, the authors of [14]
employed the transformed random variable Z = 1

Y − 1 and investigated its distributional
and statistical properties. In particular, the distribution of Z, called the inverse TL (ITL)
distribution, is defined by the following CDF and PDF, respectively:

G(z; η) = 1−
{
(1 + 2z)η

(1 + z)2η

}
, z ≥ 0, η > 0, (3)

and G(z; η) = 0 for z < 0, and

g(z; η) = 2ηz(1 + z)−2η−1(1 + 2z)η−1, z ≥ 0, η > 0, (4)

where g(z; η) = 0 for z < 0. There are many advantages and reasons that motivate us to
emphasize this distribution. We specify them as follows: (i) It is a very simple distribution
with a closed form for its CDF; (ii) its PDF and HRF are unimodal and right-skewed; (iii) it
has a closed form for the mode and quantiles, and these open the door for more statistical
properties; (iv) since it has a single shape parameter, it is interesting for statisticians to use
it in inference using different methods. In light these qualities, many authors considered
Equations (3) and (4) to investigate new extensions of the ITL distribution, such as the new
exponential ITL [15], new ITL [16] and truncated Cauchy power ITL [17] distributions.

On the other hand, by restricting the domain of any statistical distribution, a truncated
distribution may be created. Therefore, when occurrences are limited to values above or
below a specified threshold or within a particular range, truncated distributions are used.
Ref. [18] discussed a truncated random variable Z on [0, 1] with the following PDF:

f (z) =
g(z)

G(1)− G(0)
, z ∈ [0, 1], (5)

where f (z) = 0 for z 6∈ [0, 1], and G(z) and g(z) are the CDF and PDF on a distribution
with support containing [0, 1]. The associated CDF is obtained as

F(z) =
G(z)− G(0)
G(1)− G(0)

, z ∈ [0, 1], (6)

where F(z) = 1 for z > 1 and F(z) = 0 for z < 0. Many statisticians have utilized
Equations (5) and (6) to create new [0, 1] truncated distributions as well as new generating
families of distributions. On this general topic, we may mention the truncated Fréchet-G
family [19]. Furthermore, ref. [20] investigated the truncated inverted Kumaraswamy family.
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Ref. [21] introduced the generalized truncated Fréchet-G family and [22] proposed a new
truncated Muth-G family. This [0, 1] truncated scheme, combined with the TIL distribution,
will be at the heart of the article, as detailed more precisely after.

Furthermore, a clear statistical framework must be provided in order to motivate the
statistical contributions of the present work. In the literature on life testing and reliability
analysis, progressive type-II censoring (PCT-II) has recently received a lot of attention.
The fundamental benefit of this censorship over conventional censoring type-II (CT-II) is
that live units may be removed under it at intermediate stages, whereas under CT-II, live
units may only be removed after the experiment is terminated. The process that follows
can be used to obtain lifetime data under this scheme. Assume a sample of n distinct,
identical units is placed through a life-test experiment. Assume further that unit lifetimes
follow a common distribution with PDF f (z; θ) and CDF F(z; θ), where θ is a vector of
unknown parameters. As the experiment progresses, test units will begin to fail. Let
us assume that the first failure happens at a random time Z(1). Then, as a result of this
censoring, at time Z(1), S1 live units are eliminated from the experiment’s remaining n− 1
units. After the second failure, Z(2), units from the remaining n− 2− S1 are also randomly
removed, and so on, with the experiment coming to an end when the rth failure happens,
all remaining n− r− S1− S2− . . .− Sr−1 units are eliminated. Here, failure numbers r and
censoring scheme S = (S1, S2, . . . , Sr) are predetermined and fixed. A useful description
and good summary of progressive censoring (PC) can be found in [23–34]. It should be
noted that, when S1 = S2 = . . . = Sr−1 = 0 and Sr = n− r, this censoring reduces to CT-II.
Additionally, for r = n and Si = 0, i = 1, 2, . . . , n, it reduces to a complete sample. Figure 1
represents this PC strategy.

Figure 1. Presentation of the PCT-II scheme.

In light of the preceding paragraphs, we will focus our efforts in this article on a
novel truncated distribution known as the truncated ITL (TITL) distribution. It is especially
interesting for the following reasons: (i) It has a very simple PDF and CDF with only
one shape parameter; (ii) its PDF can be unimodal, and right-skewed, reaching various
levels of asymmetry; (iii) it has an increasing HRF; (iv) the corresponding mode and
quantile have closed-form expressions; (v) some important statistical properties such as
the mode, quantiles, median, Bowley’s skewness, Moor’s kurtosis, moments, incomplete
moments, Lorenz and Bonferroni curves, and probability-weighted moments (PWMs) can
be calculated; (vi) several different measures of uncertainty, such as the Rényi (RI) entropy,
Tsallis (TS) entropy, Arimoto (AR) entropy, Havrda and Charvat (HC) entropy, Awad and
Alawneh 1 (AA1) entropy, Awad and Alawneh 2 (AA2) entropy, Mathai–Haubold (MH)
entropy, extropy, and residual extropy can be computed; (vii) different Bayesian and non-
Bayesian estimation approaches under the PCT-II, such as the maximum likelihood (ML),
maximum product of spacings (MPS), and Bayesian approach under the squared error (SE)
loss function and linear exponential (LIN) loss function can be used efficiently to estimate
the shape parameter of the TITL distribution; and (viii) on the practical side, we analyze
two numerous datasets, showing that the TITL distribution can be a better alternative to
strong competitors, such as the TL, power XLindley (PXL), inverse power Lindley (IPL),
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Kumaraswamy (Kw), beta (B), truncated Weibull (TW), unit-Weibull (UW), exponentiated
Kw (EKw), unit-Rayleigh (UR), Kavya–Manoharan Kw (KMKw) and transmuted Kw
(TKw) distributions.

The rest of this article is organized as follows: Section 2 presents the construction of
the TITL distribution. Several of its general properties are described in Section 3, with the
help of graphics and numerical tables when appropriate. In Section 4, some measures of
uncertainty are discussed. In Section 5, the classical methods of estimation, such as the ML
and MPS methods, are examined under the PCT-II. In Section 6, the Bayesian estimation is
proposed. Section 7 covers the simulation findings. Section 8 uses two real-world datasets
to show the TITL distribution’s applicability and flexibility. In addition, the conclusion is
made at the end of the article in Section 9.

2. The New TITL Distribution

This section describes the main functions defining the TITL distribution. First, by
employing Equations (3) and (4) into Equations (5) and (6), the associated PDF and CDF of
the TITL distribution are given as

f (z; η) =
2η

A
z(1 + z)−2η−1(1 + 2z)η−1, z ∈ [0, 1], η > 0, (7)

where A = 1− (0.75)η and f (z; η) = 0 for z 6∈ [0, 1], and

F(z; η) =
1
A

[
1−

{
(1 + 2z)η

(1 + z)2η

}]
, z ∈ [0, 1], η > 0, (8)

where F(z; η) = 0 for z < 0 and F(z; η) = 1 for z > 1, respectively. Another form of the
PDF in Equation (7), which can make the calculation of the statistical and mathematical
properties easy, can be written as follows:

f (z; η) =
2η

A
z(1 + z)−η−2

(
1 +

z
1 + z

)η−1
, z ∈ [0, 1], η > 0. (9)

In power form, which is recommended for estimation purposes, we can write it as

f (z; η) =
2ηz

A(1 + 2z)(1 + z)

[
1 + 2z

(1 + z)2

]η

, z ∈ [0, 1], η > 0. (10)

Furthermore, the survival function (SF), HRF, reversed HRF, and cumulative HRF are
supplied by

S(z; η) = 1− 1
A

[
1−

{
(1 + 2z)η

(1 + z)2η

}]
, z ∈ [0, 1],

where S(z; η) = 1 for z < 0,

h(z; η) =
2ηz(1 + z)−2η−1(1 + 2z)η−1

A−
[

1−
{

(1+2z)η

(1+z)2η

}] , z ∈ [0, 1],

and h(z; η) = 0 for z 6∈ [0, 1],

τ(z; η) =
2ηz(1 + z)−2η−1(1 + 2z)η−1

1−
{

(1+2z)η

(1+z)2η

} , z ∈ [0, 1],
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and τ(z; η) = 0 for z 6∈ [0, 1], and

H(z; η) = − log

[
1− 1

A

[
1−

{
(1 + 2z)η

(1 + z)2η

}]]
, z ∈ [0, 1],

and H(z; η) = 0 for z > 1, respectively. The plots of the PDF and HRF are displayed in
Figure 2. It can be noticed that the PDF can be uni-modal and right-skewed, with several
degrees of asymmetry. In addition, the HRF can increase with “concave then convex”
shapes. Figures 3 and 4 complete Figure 2; they show the 3D plots of the PDF and HRF
with respect to z and η. We still observe that the PDF can be uni-modal and right-skewed,
and that the HRF can be increasing in a smooth manner with respect to z and η.
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Figure 2. Plots of the PDF and HRF of the TITL distribution.
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Figure 4. 3D Plot of the HRF of the TITL distribution.

3. General Statistical-Related Properties

In this section, we examine some general structural features of the TITL distribution.

3.1. Mode

A mode of the TITL distribution is a maximum point of the PDF in Equation (7). It can
be identified by equating d log[ f (z;η)]

dz with zero, as shown below:

d log[ f (z; η)]

dz
=

1
z
− 2η + 1

1 + z
+

2η − 2
1 + 2z

= 0. (11)

After some simplifications, Equation (11) reduces to

2(η + 1)z2 − 1 = 0.

Then, the mode of the TITL distribution is unique, and it is simply given by

zM =
1√

2(1 + η)
. (12)

Clearly, this result is an advantage of the TITL distribution. Indeed, the analytical
expression of the mode facilitates the understanding and interpretation of the underlying
distribution, enabling researchers and analysts to gain insights into the shape, symmetry,
and potential clustering of the data. By identifying the mode, one can discern patterns,
detect outliers, and make informed inferences about the data’s characteristics, aiding in
hypothesis testing and drawing meaningful conclusions.

3.2. Quantile Function

The quantile function is defined as Q(u; η) = F−1(u; η), u ∈ (0, 1). It is naturally
computed by inverting Equation (8) as

1
A

[
1−

{
(1 + 2Q(u; η))η

(1 + Q(u; η))2η

}]
= u.
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After some algebraic simplifications, we arrive at

wQ(u; η)2 + 2(w− 1)Q(u; η) + w− 1 = 0,

where w = (1− uA)
1
η . By solving the above quadratic equation with respect to Q(u; η)

with the coefficients a = w, b = 2(w− 1) and c = w− 1, we obtain

Q(u; η) =
1− w +

√
1− w

w
. (13)

This simple expression is also an advantage of the TITL distribution. Indeed, having
the analytical expression of the quantile function of a distribution provides precise and
efficient calculation of specific percentiles, reducing computational complexity. Addition-
ally, it allows for a deeper understanding of the distribution’s behaviour and facilitates
the analysis and interpretation of data. In particular, setting u = 0.25, 0.5, and 0.75 in
Equation (13), we obtain the first (Q1), second (median) (Q2), and third (Q3) quantiles.
Moreover, based on the quantiles, Bowley’s skewness (α1) and Moor’s kurtosis (α2) are
provided, respectively, by

α1 =
Q(0.75; η)− 2Q(0.5; η) + Q(0.25; η)

Q(0.75; η)−Q(0.25; η)
,

and

α2 =
Q(0.875; η)−Q(0.625; η)−Q(0.375; η) + Q(0.125; η)

Q(0.75; η)−Q(0.25; η)
.

Some numerical values of the first, second (median), third quartiles, α1 and α2 are
given in Table 1.

From Table 1, we can notice that when η increases, the values of Q1, Q2, and Q3
decrease, but the values of α1 and α2 increase then decrease. Figures 5–7 show the 3D plots
of Bowley’s skewness, Moor’s kurtosis and median. These figures support the numerical
values in Table 1. We can notice that the median can be decreasing, but Bowley’s skewness
and Moor’s kurtosis increase and then decrease.
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Figure 5. 3D Plot of Bowley’s skewness for the TITL distribution.
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Table 1. Numerical values of Q1, Q2, Q3, α1 and α2 of the TITL distribution.

η Q1 Q2 Q3 α1 α2

2 0.311 0.517 0.738 0.036 1.06
5 0.256 0.434 0.653 0.103 1.117
7 0.227 0.387 0.595 0.13 1.162
10 0.195 0.331 0.516 0.151 1.215
13 0.171 0.289 0.45 0.156 1.244
15 0.158 0.267 0.415 0.155 1.253
20 0.135 0.226 0.348 0.149 1.256
25 0.12 0.198 0.302 0.142 1.252
27 0.115 0.189 0.288 0.14 1.25
30 0.108 0.178 0.27 0.136 1.248
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3.3. Moments

Examining moments and moment measures of a distribution is crucial for understand-
ing its properties and making informed decisions. They provide valuable insights into
the central tendencies, spread, and shape of the data, aiding in statistical analysis and
hypothesis testing. The rest of this section is devoted to these aspects.

Hereafter, we consider a random variable Z with the TITL distribution.
For any integer k, the kth moment of Z is defined as

µ′k = E(Zk) =
∫ 1

0
zk f (z; η)dz =

2η

A

∫ 1

0
zk+1(1 + z)−η−2

(
1 +

z
1 + z

)η−1
dz. (14)

For the integral in Equation (14), we have no a way to determine this integral in an
algebraic manner. For this reason, we must investigate a manageable expansion of it.

To this end, let us recall the generalized binomial expansion. For any real non-integer
ζ > 0 and |u| < 1, we have

(1 + u)ζ =
∞

∑
i=0

(
ζ
i

)
ui. (15)

We also have

(1 + u)−ζ =
∞

∑
j=0

(−1)j
(

ζ + j− 1
j

)
uj. (16)

By employing Equation (15) in the last term of Equation (14), we obtain

µ′k =
2η

A

∞

∑
i=0

(
η − 1

i

) ∫ 1

0
zk+i+1(1 + z)−η−i−2dz. (17)

On the other hand, by using Equation (16) in Equation (17), we obtain

µ′k =
∞

∑
i,j=0

∫ 1

0
wi,jzk+i+j+1dz, (18)

where wi,j =
2η
A (−1)j

(
η + i + j + 1

j

)(
η − 1

i

)
.

Then the kth moment of Z can be expanded as

µ′k =
∞

∑
i,j=0

wi,j

k + i + j + 2
, (19)

which is quite manageable from a computational viewpoint.
Furthermore, the kth central moment (µk ) of Z is given by

µk = E[(Z− µ′1)
k] =

k

∑
i=0

(−1)i
(

k
i

)
(µ′1)

iµ′k−i.

Table 2 shows the numerical values of the first four moments µ′1, µ′2, µ′3 and µ′4, as well
as the numerical values of the variance of Z (σ2), coefficient of skewness of Z (γ1 = µ3

µ1.5
2

),

coefficient of kurtosis of Z (γ2 = µ4
µ2

2
), coefficient of variation of Z (CV = σ

µ′1
) and mode

for the TITL distribution. From this table, as the values of η increase, the values of σ2 and
mode decrease, whereas γ2 increases, but γ1 and CV increase and then decrease. One can
also observe that the TITL distribution is mainly right-skewed, leptokurtic (since γ2 > 3 ),
and platykurtic (since γ2 < 3) .
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Table 2. Results of some moments, γ1, γ2, CV and mode for the TITL distribution.

η µ′1 µ′2 µ′3 µ′4 σ2 γ1 γ2 CV Mode

2 0.524 0.341 0.25 0.196 0.067 0.036 1.935 0.494 0.408
5 0.462 0.277 0.191 0.144 0.063 0.299 2.097 0.545 0.289
7 0.424 0.239 0.158 0.115 0.059 0.461 2.308 0.573 0.250

10 0.373 0.19 0.117 0.081 0.051 0.679 2.742 0.606 0.213
13 0.331 0.152 0.086 0.056 0.043 0.86 3.256 0.628 0.189
15 0.307 0.132 0.071 0.044 0.038 0.956 3.606 0.636 0.177
20 0.26 0.095 0.044 0.025 0.028 1.113 4.36 0.643 0.154
25 0.227 0.072 0.029 0.014 0.021 1.172 4.807 0.638 0.139
27 0.216 0.065 0.025 0.012 0.019 1.177 4.898 0.635 0.134
30 0.202 0.057 0.021 0.009 0.016 1.172 4.961 0.63 0.127

3.4. Incomplete Moments

The incomplete moments of a distribution hold valuable insights, capturing the dy-
namics beyond simple means and variances. They reveal the asymmetries and tails of
the distribution, shedding light on extreme events and helping in risk assessment and
decision making. Embracing these incomplete moments deepens our understanding of the
underlying data, making them vital for robust statistical analysis.

For any integer k, the kth lower incomplete moment of Z is computed from the follow-
ing formula:

Φk(t) = E(Zk1{Z≤t}) =
∫ t

0
zk f (z; η)dz =

2η

A

∫ t

0
zk+1(1 + z)−η−2

(
1 +

z
1 + z

)η−1
dz, 0 < t < 1.

Thus, after algebraic developments similar to those employed for the kth moment, the
kth lower incomplete moment of the TITL distribution is

Φk(t) =
∞

∑
i,j=0

wi,jtk+i+j+2

k + i + j + 2
. (20)

By applying t→ ∞, we obtain the kth moment of Z.
Based on this, we can express the Lorenz (Ω1) and Bonferroni (Ω2) curves, which are

essential in reliability, economics, medicine, demography, and insurance [35]. In the setting
of the TITL distribution, they are computed as follows:

Ω1 =
Φ1(t)
E(Z)

=

∞
∑

i,j=0

wi,jti+j+3

i+j+3

∞
∑

i,j=0

wi,j
i+j+3

,

and

Ω2 =
Ω1

F(t; η)
=

∞
∑

i,j=0

wi,jti+j+3

i+j+3(
∞
∑

i,j=0

wi,j
i+j+3

)(
1
A

[
1−

{
(1+2t)η

(1+t)2η

}]) ,

respectively.

3.5. Probability Weighted Moments

Probability-weighted moments (PWMs) play a crucial role in understanding the
characteristics of a distribution. By incorporating both the probabilities and the values
of a distribution, PWMs provide a comprehensive measure of the central tendency and
dispersion, enabling more accurate analysis and decision making. Ref. [36] reported further
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information on this subject. For any integers s and v, the (s, v)th PWM of Z is calculated as
follows:

τs,v = E[ZsF(Z; η)v] =
∫ 1

0
zsF(z; η)v f (z; η)dz. (21)

As a direct calculation is not possible, we investigate a series expansion. Substituting
Equations (8) and (9) into Equation (21), we obtain

τs,v =
2η

Av+1

∫ 1

0
zs+1(1 + z)−η−2

(
1 +

z
1 + z

)η−1
[

1−
{(

1 + z
1+z
)η

(1 + z)η

}]v

dz. (22)

Since v is an integer, the standard binomial expansion gives[
1−

{(
1 + z

1+z
)η

(1 + z)η

}]v

=
v

∑
i=0

(−1)i
(

v
i

)(1 + z
1+z
)ηi

(1 + z)ηi . (23)

By setting Equation (23) in Equation (22), we obtain

τs,v =
2η

Av+1

v

∑
i=0

(−1)i
(

v
i

) ∫ 1

0
zs+1(1 + z)−η(i+1)−1

(
1 +

z
1 + z

)η(i+1)−1
dz. (24)

By using the binomial expansion in Equation(15) in Equation (24), we obtain

τs,v =
2η

Av+1

v

∑
i=0

∞

∑
j=0

(−1)i
(

v
i

)(
η(i + 1)− 1

j

) ∫ 1

0
zs+j+1(1 + z)−η(i+1)−j−1dz.

By employing the binomial theory in Equation (16) in the above equation, we get

τs,v =
v

∑
i=0

∞

∑
j,k=0

wi,j,k

∫ 1

0
zs+j+k+1dz,

where wi,j,k =
2η

Av+1 (−1)i+k
(

v
i

)(
η(i + 1)− 1

j

)(
η(i + 1) + j + k

k

)
.

Then the (s, v)th PWM of Z can be expanded as

τs,v =
v

∑
i=0

∞

∑
j,k=0

wi,j,k

s + j + k + 2
.

By taking v = 0, we obtain the sth moment of Z.

4. Measures of Uncertainty

The entropy of a distribution provides a measure of its unpredictability or information
content. It is crucial in various fields such as information theory, statistical physics, and
machine learning. A higher entropy implies greater uncertainty and diversity, fostering
exploration, randomness, and robustness in systems. Different measures of entropy exist.
Some of them are investigated below in the context of the TITL distribution.

4.1. Different Measures of Entropy

The RI entropy [37] of the TITL distribution is defined as follows:

R∗∗(ρ) = (1− ρ)−1 log(∆), (25)
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where ρ 6= 1, ρ > 0 and ∆ =
∫ 1

0 f (z; η)ρdz. Furthermore, a direct calculation is not possible;
therefore, we investigate a series expansion. The integral ∆ is computed as follows:

∆ =

(
2η

A

)ρ ∫ 1

0
zρ(1 + z)−ρ(η+2)

(
1 +

z
1 + z

)ρ(η−1)
dz.

By using binomial expansion in Equation (15) in the above equation, we obtain

∆ =

(
2η

A

)ρ ∞

∑
i=0

(
ρ(η − 1)

i

) ∫ 1

0
zρ+i(1 + z)−ρ(η+2)−idz.

Furthermore, employing the binomial expansion in Equation (16), we get

∆ =
∞

∑
i,j=0

πi,j

∫ 1

0
zρ+i+jdz,

where πi,j =
(

2η
A

)ρ
(−1)j

(
ρ(η − 1)

i

)(
ρ(η + 2) + i + j− 1

j

)
. Then, we establish that

∆ =
∞

∑
i,j=0

πi,j

ρ + i + j + 1
. (26)

By inserting Equation (26) into Equation (25), the RI entropy is

R∗∗(ρ) = (1− ρ)−1 log

[
∞

∑
i,j=0

πi,j

ρ + i + j + 1

]
.

On the other hand, the next formula is utilized to calculate the TS entropy [38] of the
TITL distribution:

T∗∗(ρ) =
1

ρ− 1
(1− ∆), (27)

where ρ 6= 1, ρ > 0. By inserting Equation (26) into Equation (27), we obtain the TS entropy
as follows:

T∗∗(ρ) =
1

ρ− 1

[
1−

∞

∑
i,j=0

πi,j

ρ + i + j + 1

]
.

The next formula, for ρ 6= 1, ρ > 0, is employed to compute the AR entropy [39] of the
TITL distribution:

A∗∗(ρ) =
ρ

1− ρ

(
∆

1
ρ − 1

)
. (28)

By employing Equation (26) in Equation (28), we obtain

A∗∗(ρ) =
ρ

1− ρ

( ∞

∑
i,j=0

πi,j

ρ + i + j + 1

) 1
ρ

− 1

.

For ρ 6= 1, ρ > 0, the HC entropy [40] of the TITL distribution is calculated as follows:

HC∗∗(ρ) =
1

21−ρ − 1

(
∆

1
ρ − 1

)
. (29)

Substituting Equation (26) into Equation (29), it is given by

HC∗∗(ρ) =
1

21−ρ − 1

( ∞

∑
i,j=0

πi,j

ρ + i + j + 1

) 1
ρ

− 1

.
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For ρ 6= 1, ρ > 0, the AA1 and AA2 entropies [41] of the TITL distribution are given,
respectively, as

AA1∗∗ =
1

ρ− 1
log

[ sup
0<z<1

f (z; η)

]1−ρ

∆

, (30)

and

AA2∗∗ =
1

21−ρ − 1


[

sup
0<z<1

f (z; η)

]1−ρ

∆

− 1

, (31)

where

sup
0<z<1

f (z; η) = f (zM; η) =
2η

A

(√
2(1 + η)

)η+1 (
1 +

√
2(1 + η)

)−2η−1(
2 +

√
2(1 + η)

)η−1
.

By inserting Equation (26) in Equations (30) and (31), the AA1 and AA2 entropies are,
respectively, given by

AA1∗∗ =
1

ρ− 1
log

[
f (zM; η)1−ρ

∞

∑
i,j=0

πi,j

ρ + i + j + 1

]
,

and

AA2∗∗ =
1

21−ρ − 1

[{
f (zM; η)1−ρ

∞

∑
i,j=0

πi,j

ρ + i + j + 1

}
− 1

]
.

For ρ 6= 1, ρ < 2, the MH entropy [42] of the TITL distribution is calculated as follows:

MH∗∗(ρ) =
1

ρ− 1
(∇− 1), (32)

where

∇ =
∫ 1

0
f (z; η)2−ρdz =

∞

∑
i,j=0

Di,j

3− ρ + i + j
, (33)

and Di,j =
(

2η
A

)(2−ρ)
(−1)j

(
(2− ρ)(η − 1)

i

)(
(2− ρ)(2η + 1) + i + j− 1

j

)
.

By inserting Equation (33) into Equation (32), it is given by

MH∗∗(ρ) =
1

ρ− 1

[
∞

∑
i,j=0

Di,j

3− ρ + i + j
− 1

]
.

Table 3 displays some numerical measures of the introduced entropies. We con-
clude that:

• More variability is produced when the value of ρ increases, and for a fixed value of η,
the values of R∗∗, HC∗∗, A∗∗ and T∗∗ decrease, resulting in more variability, whereas
the values of AA1∗∗, AA2∗∗ and MH∗∗ increase, resulting in more information.

• As the value of η increases and for a fixed value of ρ, the values of R∗∗, HC∗∗, A∗∗, T∗∗

and MH∗∗ decrease, resulting in more variability, but the values of AA1∗∗ decrease
and then increase, while the values of AA2∗∗ increase and then decrease.



Symmetry 2023, 15, 1396 14 of 36

Table 3. Numerical values of entropy measures for the TITL distribution.

ρ η R** HC** A** T** AA1** AA2** MH**

2 −0.026 −0.031 −0.025 −0.026 −0.177 0.223 −0.053
5 −0.035 −0.042 −0.035 −0.035 −0.329 0.432 −0.088
7 −0.055 −0.066 −0.054 −0.055 −0.426 0.573 −0.144

10 −0.102 −0.120 −0.097 −0.100 −0.544 0.754 −0.261
0.5 13 −0.163 −0.189 −0.150 −0.156 −0.627 0.888 −0.398

15 −0.208 −0.239 −0.188 −0.198 −0.666 0.953 −0.493
20 −0.329 −0.366 −0.280 −0.303 −0.722 1.049 −0.721
25 −0.447 −0.484 −0.361 −0.401 −0.742 1.084 −0.925
27 −0.492 −0.527 −0.389 −0.436 −0.744 1.089 −1.000
30 −0.557 −0.587 −0.427 −0.486 −0.745 1.09 −1.104

2 −0.036 −0.048 −0.036 −0.036 −0.167 0.228 −0.046
5 −0.052 −0.070 −0.052 −0.052 −0.312 0.433 −0.073
7 −0.084 −0.112 −0.083 −0.083 −0.398 0.557 −0.118

10 −0.153 −0.203 −0.150 −0.151 −0.493 0.697 −0.215
0.8 13 −0.239 −0.313 −0.232 −0.233 −0.551 0.784 −0.328

15 −0.300 −0.391 −0.289 −0.291 −0.574 0.819 −0.406
20 −0.451 −0.580 −0.427 −0.431 −0.599 0.856 −0.592
25 −0.589 −0.747 −0.547 −0.555 −0.600 0.858 −0.756
27 −0.638 −0.806 −0.590 −0.599 −0.598 0.855 −0.814
30 −0.708 −0.888 −0.649 −0.660 −0.594 0.848 −0.895

2 −0.046 −0.071 −0.046 −0.046 −0.156 0.238 −0.036
5 −0.072 −0.113 −0.073 −0.073 −0.292 0.438 −0.052
7 −0.117 −0.183 −0.118 −0.118 −0.365 0.543 −0.083

10 −0.210 −0.331 −0.214 −0.215 −0.436 0.645 −0.151
1.2 13 −0.317 −0.506 −0.326 −0.328 −0.472 0.696 −0.233

15 −0.390 −0.627 −0.403 −0.406 −0.484 0.713 −0.291
20 −0.560 −0.915 −0.587 −0.592 −0.490 0.722 −0.431
25 −0.704 −1.167 −0.747 −0.756 −0.485 0.715 −0.555
27 −0.754 −1.258 −0.804 −0.814 −0.482 0.711 −0.599
30 −0.823 −1.383 −0.883 −0.895 −0.478 0.705 −0.660

2 −0.052 −0.090 −0.052 −0.053 −0.150 0.247 −0.026
5 −0.086 −0.150 −0.087 −0.088 −0.278 0.444 −0.035
7 −0.139 −0.246 −0.142 −0.144 −0.342 0.537 −0.055

10 −0.246 −0.446 −0.256 −0.261 −0.400 0.619 −0.100
1.5 13 −0.363 −0.680 −0.386 −0.398 −0.426 0.655 −0.156

15 −0.441 −0.842 −0.475 −0.493 −0.433 0.665 −0.198
20 −0.616 −1.231 −0.683 −0.721 −0.434 0.667 −0.303
25 −0.760 −1.579 −0.865 −0.925 −0.429 0.659 −0.401
27 −0.811 −1.706 −0.931 −1.000 −0.426 0.655 −0.436
30 −0.879 −1.885 −1.022 −1.104 −0.422 0.650 −0.486

4.2. Measures of Extropy

Extropy is a brand-new uncertainty measurement recently established in [43] as the
complement dual of entropy [44]. Using the total log scoring method, extropy may be
utilized statistically to grade forecasting distributions. The extropy of the TITL distribution
is defined as follows:

ξ = −1
2

∫ 1

0
f (z; η)2dz. (34)

A series expansion is needed to have a computational aspect to this integral. By
employing the PDF in Equation (9) in Equation (34) and after some simplifications, the
extropy of the TITL distribution is given by

ξ = −1
2

[
∞

∑
i,j=0

νi,j

i + j + 3

]
,



Symmetry 2023, 15, 1396 15 of 36

where νi,j =
(

2η
A

)2
(−1)j

(
2(η − 1)

i

)(
2η + i + j + 3

j

)
.

The residual extropy was described in [45]. It is defined as

ξt = −
1

2S(t; η)2

∫ 1

t
f (z; η)2dz. (35)

Using the PDF in Equation (9) in Equation (35), the residual extropy of the TITL
distribution is given by

ξt = −
1

2S(t; η)2

[
∞

∑
i,j=0

νi,j
(
1− ti+j+3)

i + j + 3

]
.

Table 4 displays some numerical values of the proposed extropy measures. We con-
clude from Table 4 that:

• When the value of η increases, the values of the extropy and residual extropy decrease,
providing more uncertainty.

• When the value of t increases and for a fixed value of η, the residual extropy decreases,
leading to more variability.

Table 4. Numerical values of the extropy measures for the TITL distribution.

η Extropy
Residual Extropy

t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.8 t = 0.9

2 −0.531 −0.564 −0.723 −1.010 −1.674 −2.505 −5.003
5 −0.556 −0.600 −0.778 −1.060 −1.707 −2.527 −5.014
7 −0.593 −0.648 −0.841 −1.115 −1.743 −2.552 −5.026
10 −0.671 −0.747 −0.970 −1.229 −1.817 −2.602 −5.051
13 −0.763 −0.866 −1.130 −1.374 −1.914 −2.668 −5.085
15 −0.827 −0.952 −1.249 −1.486 −1.991 −2.722 −5.112
20 −0.988 −1.176 −1.577 −1.808 −2.223 −2.884 −5.195
25 −1.142 −1.401 −1.928 −2.172 −2.504 −3.087 −5.301
27 −1.200 −1.491 −2.071 −2.325 −2.627 −3.178 −5.350
30 −1.284 −1.624 −2.287 −2.560 −2.823 −3.326 −5.429

5. Classical Estimation

The inferential aspect of the TITL distribution is explored in this section.

5.1. Maximum Likelihood Estimation

Assume that z(1) ≤ z(2) ≤ . . . ≤ z(r) represents a PCT-II sample of size r from a
sample of size n with the TITL distribution, i.e., with the PDF in Equation (10), the CDF in
Equation (8) and the censoring scheme S1, S2, . . . , Sr. Then the likelihood function under
the PCT-II sample is

L(η) = c◦
r

∏
i=1

f
(

z(i); η
)[

1− F
(

z(i); η
)]Si

= c◦
r

∏
i=1

2ηz(i)(
1− (0.75)η)(1 + 2z(i))(1 + z(i))

[
1 + 2z(i)
(1 + z(i))

2

]η[
1− 1

1− (0.75)η

[
1−

(
1 + 2z(i)
(1 + z(i))

2

)η]]Si

,

(36)

where c◦ = n(n− S1 − 1)(n− S1 − S2 − 2) . . . n− r + 1−
r−1
∑

i=1
Si. As a result, the constant

is the number of different ways in which the r PCT-II order statistics might arise if the
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observed failure times are z(1), z(2), . . . , z(r). The log-likelihood function of Equation (36) is
given by

L = log L(η) = r log 2c◦ + r log η − r log(A) +
r

∑
i=1

log[Ci]

+η
r

∑
i=1

log(Bi) +
r

∑
i=1

Si log
[[

1− A−1[1− (Bi)
η]]], (37)

where A = 1 − (0.75)η , Bi =
1+2z(i)
(1+z(i))

2 and Ci =
z(i)

(1+2z(i))(1+z(i))
. Here, we present the

ML estimate (MLE) of η denoted as ˆ̂η, reporting that it is defined by maximizing the log-
likelihood function. A derivative is just a technique to obtain it, not essential to the method.
From Equation (37), we derive the first partial derivative for L with respect to η as

dL

dη
=

r
η
− rE

A
+

r

∑
i=1

log(Bi) +
r

∑
i=1

SiDi
Fi

+
r

∑
i=1

SiGi
Fi

, (38)

where E = dA
dη = −(0.75)η log(0.75), Di = A−1E

[
1− (Bi)

η], Fi = A + (Bi)
η − 1, and

Gi = (Bi)
η log(Bi). Solving non-linear Equation (38) after setting it to zero, the MLE of η

can be found using the Newton–Raphson iteration technique.
The theoretical findings presented above can be further specialized in one situation.

First, the MLE ˆ̂η is yielded when S1 = S2 = . . . = Sr−1 = 0 and Sr = n − r via CT-II
samples. Second, we obtain the recommended MLE of η for S1 = S2 = . . . = Sr = 0 via
complete samples.

Now, the asymptotic variance–covariance matrix (V-CM) of ˆ̂η can be obtained by
inverting the observed information matrix with the elements that are negative of the
expected values of the second-order derivatives of logarithms of the likelihood function
taken at the considered random sample. Thus, it is defined by

I(η) =
[
−E
( d2L

dη2

)]
,

where considering the observations instead of the random variable versions, we have

d2L

dη2 = − r
η2 −

r
(

JA− E2)
A2 +

r

∑
i=1

Si(HiFi − DiKi)

Fi
2 +

r

∑
i=1

Si(MiFi − GiKi)

Fi
2 ,

and J = dE
dη = E log(0.75), Hi =

dDi
dη = −A−1E2Di +

JDi
E − A−1EGi, Ki =

dFi
dη = E + Gi,

and Mi =
dGi
dη = Gi log(Bi).

Ref. [46] concluded that the approximation V-CM might be constructed by substituting
anticipated values for their MLEs. The estimated sample information matrix is now
generated as

I( ˆ̂η) = −
[

d2L
dη2

]
, (39)

and hence the approximation of V-CM of ˆ̂η is

[
σ11
]
= −

[
d2L
dη2

]−1

η= ˆ̂η
. (40)

Based on the subjacent distribution of the MLE of η, the confidence interval (CI)
for η is computed. It is established from the empirical distribution of the MLE of η that
( ˆ̂η) − (η) → N

(
0, I−1( ˆ̂η)

)
, where N(·) is the normal distribution and I(·) is the Fisher

information matrix (FIM) which is defined in Equation (39).
Considering specific regularity constraints, the two-sided 100(1 − γ)%, 0 < γ < 1,

asymptotic CI (Asy-CI) for η can be obtained as ˆ̂η± Z γ
2

√
σ11, where σ11 is the asymptotic vari-

ance of the MLE of η, and Z γ
2

is the upper γ
2

th percentile of the standard normal distribution.



Symmetry 2023, 15, 1396 17 of 36

5.2. Maximum Product of Spacings Estimation

The MPS approach was established by Cheng and Amin [47]. It is crucial in statistical
analysis for its ability to estimate the distribution parameters with high accuracy. By
maximizing the product of the ordered spacings between data points, it provides robust
estimates. In addition, the MPS estimate (MPSE) preserves most of the attributes of the
MLE, including the invariance property (see [48,49]). Based on a PCT-II sample, according
to [50], the MPS function may be expressed as follows:

M(η) =
r+1

∏
i=1

[
F
(

z(i), η
)
− F

(
z(i−1), η

)] r

∏
i=1

[
1− F

(
z(i), η

)]Si
. (41)

It may be calculated using Equations (8) and (41) as follows:

M(η) = A−r−1
r+1

∏
i=1

[
(Bi−1)

η − (Bi)
η] r

∏
i=1

[
1− A−1[1− (Bi)

η]]Si
. (42)

The natural logarithm of Equation (42), represented by log M(η), has the follow-
ing form:

log M(η) = −(r + 1) log(A) +
r+1

∑
i=1

log
[
(Bi−1)

η − (Bi)
η]+ r

∑
i=1

Si log
[
1− A−1[1− (Bi)

η]]. (43)

The MPSE maximizes the MPS function, and it can be obtained by differentiating
Equation (43) with respect to η. The MPSE of η, denoted by η̃, is derived by concurrently
solving the following equation:

d[log M(η)]

dη
= −−(r + 1)E

A
+

Gi−1 − Gi

(Bi−1)
η − (Bi)

η +
r

∑
i=1

SiDi
Fi

+
r

∑
i=1

SiGi
Fi

= 0,

where Bi−1 =
1+2z(i−1)

(1+z(i−1))
2 and Gi−1 = (Bi−1)

η log(Bi−1).

The MPSE η̃ may be obtained using the Newton–Raphson iteration approach.

6. Bayesian Estimation

In Bayesian inference, it is supposed that the unknown parameters are random vari-
ables with a joint prior density function. The prior density function may be calculated
using previous information and experience. When no prior information is available, non-
informative priors can be used for Bayesian inference. Here, we suppose that η is a gamma
random variable having a prior density as follows:

π(η) = ηa1−1e−b1η , η > 0. (44)

In this formula, the hyperparameters a1 and b1 are employed to reflect previous
knowledge of the unknown parameter.

The informative prior is used to elicit the hyperparameters. The above informative
priors will indeed be deduced from the MLE for η by equating the mean and variance of ˆ̂η j

with both the mean and variance of the regarded gamma priors, where j = 1, 2, . . . , d and d
is the number of available observations from the TITL distribution. Thus, according to [51],
equating the mean and variance of ˆ̂η j with the mean and variance of the gamma priors, we
acquire

1
d

d

∑
j=1

ˆ̂η j =
a1

b1
and

1
d− 1

d

∑
j=1

(
ˆ̂η j − 1

d

d

∑
j=1

ˆ̂η j
)2

=
a1

b2
1

.

After solving the above equations, the derived hyperparameters are
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a1 =

( 1
d

d
∑

j=1
ˆ̂η j)2

1
d−1

d
∑

j=1

(
ˆ̂η j − 1

d

d
∑

j=1
ˆ̂η j
)2 and b1 =

1
d

d
∑

j=1
ˆ̂η j

1
d−1

d
∑

j=1

(
ˆ̂η j − 1

d

d
∑

j=1
ˆ̂η j
)2 .

In the case of non-informative priors (Non-IP), the Bayesian estimate (BE) is achieved
by determining the hyperparameters a1 = b1 = 0 and using the same Markov chain Monte
Carlo (MCMC) technique.

The following formula may be used to generate the posterior distribution of η:

π∗(η | z
¯
) =

π(η) L(η)∫ ∞
0 π(η) L(η) dη

, (45)

where z
¯
= (z1, . . . , zn). The SE loss function is taken into account as a symmetrical loss

function that indicates an equal loss due to overestimation and underestimation. The
posterior distribution is obtained by

π∗(η | z
¯
) ∝ 2rηr+a1−1e−b1η

r

∏
i=1

z(i)(
1− (0.75)η)(1 + 2z(i))(1 + z(i))

[
1 + 2z(i)
(1 + z(i))

2

]η

×
[

1− 1
1− (0.75)η

[
1−

(
1 + 2z(i)
(1 + z(i))

2

)η]]Si

.

(46)

Based on the SE loss function, the BE of η, say η̂SE, is as follows:

η̂SE = E[η | z
¯
] =

[∫ ∞

0
ηπ∗(η | z

¯
)dη

]
. (47)

Based on the LIN loss function, the BE of η, say η̂LIN , is as follows:

η̂LIN = − 1
τ

log E
[
e−τη | z

¯

]
= − 1

τ
log
[∫ ∞

0
e−τηπ∗(η | z

¯
)dη

]
. (48)

Nevertheless, because the posterior in Equation (46) is not in a standard form, Gibbs
sampling is not a viable alternative. As a result, for the MCMC approach to be implemented,
Metropolis–Hastings (M-H) sampling is necessary. The M-H algorithm stages are expressed
as follows:

1. Start with initial values η(0) = ˆ̂ηML.
2. Let j = 1.

3. Use the M-H algorithm to generate η(j) from π∗
(

η(j−1) | z
¯

)
with the normal distribu-

tions N
(

η(j−1), Sη

)
.

4. Generate a required η∗ from N
(

η(j−1), Sη

)
. The choices of Sη are thought to be the

asymptotic V-CM, say I−1( ˆ̂ηML
)
, where I(.) is the FIM.

(i) Find the acceptance probabilities

Ωη = min

[
1,

π∗(η∗ | z
¯
)

π∗
(
η(j−1) | z

¯

)].

(ii) From the uniform [0, 1] distribution, generate the value u1.
(iii) If u1 < Ωη , accept the proposal and set η(j) = η∗; otherwise set η(j) = η(j−1).

5. Set j = j + 1.
6. Repeat steps (3)–(5) N times, and obtain η(i) , i = 1, 2, . . . N.
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7. To compute the credible CI (C-CI) of η(i) as η(1) < η(2) . . . < η(N), then the 100(1−
γ)% C-CI of η is

(
η(N γ/2), η(N (1−γ/2))

)
.

To assure convergence and remove the bias of initial value choice, the first M simulated
variations are deleted. The chosen samples are then η(i) , j = M + 1, . . . N, for sufficiently
large N. The approximate BE of η depending on the SE loss function is supplied by

η̂ =
1

N −M

N

∑
j=M+1

η(j). (49)

7. Numerical Outcomes

Here, Monte Carlo simulations utilizing PCT-II samples are presented to contrast the
efficiency of the MLEs and MPSEs in non-BE on the one hand and the efficiency of the BEs
employing MCMC under the SE and LIN loss functions at τ = 0.5 and τ = −0.5 on the
other. The simulation results are examined and produced in terms of the average (Avg)
estimates, root-mean-squared error (RMSE), relative bias (RB), the average length (AL)
under Asy-CI/C-CI, and coverage probabilities (CPs). We obtain the MLEs, MPSEs and
the BEs under the SE and LIN loss functions and choose four schemes, namely Scheme 1
(Sch.1), Scheme 2 (Sch.2), Scheme 3 (Sch.3), and Scheme 4 (Sch.4) from PCT-II samples with
numerous values of (n, r)= (100, 50), (100, 70), (200, 100) and (200, 140) for η =1.5 and 3.0.
The estimates are derived by taking into account the four censoring schemes listed below.

1. Sch.1: S1 = n− r and S2 = . . . = Sr = 0.
2. Sch.2: S1 = n−r

2 , S2 = . . . = Sr−1 = 0 and Sr =
n−r

2 .
3. Sch.3: S1 = . . . = S r

2−1 = 0, S r
2
= n−r

2 , S r
2+1 = n−r

2 and S r
2+2 = . . . = Sr = 0, where r

is an even number.
4. Sch.4: S1 = . . . = Sr−1 = 0 and Sr = n− r.

We generate 10,000 MCMC samples with a burn-in duration of 2000 to acquire the BEs
using the SE loss function. The procedure is repeated 1000 times. For computations, we
utilized R, a statistical programming language. From Tables 5–8, it is observed that:

(a) For the non-BE

1. The RMSE and AL decrease when r increases for the ML and MPS approaches.
2. In almost all situations, using the MPS, the RMSE of η̃ is smaller than the MSE of

ˆ̂η using ML.
3. In almost all situations, using the ML, the RB of ˆ̂η is smaller than the RB of η̃

using MPS.
4. In most situations, using the ML, Sch.4 gives the lowest value of the MSE for ˆ̂η.
5. In most situations, using the ML, Sch.3 gives the lowest value of the RB for ˆ̂η.
6. In most situations, using the MPS, Sch.4 gives the smallest values of the RMSE

and RB for η̃.
7. The CP is greater than or equal 91.30% at γ = 0.05.
8. In almost all situations, using the ML, Sch.4 gives the smallest AL for η.
9. In almost all situations, using the MPS, Sch.4 gives the smallest AL for η.

(b) For the BE

1. The RMSE decreases when r increases for the MCMC method using the SE and
LIN loss functions.

2. The AL decreases when r increases for the MCMC method using the SE and LIN
loss functions.

3. In almost all situations, the RMSE and RB of η̂ using the IP is less than the
RMSE of η̂ using the non-IP under the MCMC method using the SE and LIN loss
functions.

4. The RMSE of η̂LIN at τ = 0.5 is less than the RMSE of η̂LIN at τ = −0.5 in most
of situations for the IP and non-IP.
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5. The RB of η̂LIN at τ = −0.5 is less than the RB of η̂SE, and η̂LIN at τ = 0.5, in
almost all situations, for the non-IP.

6. In almost all situations, the RB of η̂SE is less than the RB of η̂LIN at τ = 0.5 and
τ = −0.5 for the IP.

7. In almost all situations, using the MCMC under the non-IP, Sch.4 gives the
smallest values of the RMSE for η̂.

8. In almost all situations, using the MCMC under the non-IP, Sch.2 gives the
smallest values of the RB for η̂.

9. In the majority of situations, the RB of η̂LIN at τ = 0.5 is less than the RMSE of
η̂SE and η̂LIN at τ = −0.5 for the IP and non-IP.

10. In almost all situations, using the MCMC under the IP, Sch.4 gives the smallest
values of the RMSEs for η̂.

11. In almost all situations, using the MCMC under the IP, Sch.3 gives the smallest
values of the RB for η̂.

12. The CP is more than or equal 95.0% at γ = 0.05.
13. In almost all situations, using the MCMC under the non-IP, Sch.2 gives the lowest

AL for η.
14. In almost all situations, using the MCMC under the IP, Sch.4 gives the lowest AL

for η.
15. In almost all situations, using the MCMC, the AL under the IP is less than the

AL under the non-IP for η.
16. In almost all situations, using the MCMC, the RMSE under the IP is less than the

RMSE using the ML and MPS.
17. In almost all situations, using the MCMC, the RB under the IP is less than the RB

using the ML and MPS.
18. In almost all situations, using the MCMC, the AL under the IP is less than the

AL under the ML and MPS for η.

Table 5. Point estimation at η = 1.5.

(n, r) Sch. Measures

Non-Bayesian Bayesian

ML MPS

Non-IP IP

SE
LIN

SE
LIN

τ = 0.5 τ = −0.5 τ = 0.5 τ = −0.5

(100, 50)

Sch.1
Avg 1.7694 1.8546 1.1726 1.0625 1.2905 1.6736 1.6148 1.8143

RMSE 1.6327 1.6299 1.7446 1.6739 1.8287 1.3017 1.2445 1.3564

RB 0.1796 0.2364 0.2183 0.2900 0.1400 0.1157 0.0800 0.2100

Sch.2
Avg 1.6812 1.6661 0.9769 0.8560 1.1097 1.5611 1.4730 1.6610

RMSE 1.2507 1.1929 1.4258 1.3867 1.4812 0.9954 0.9397 1.0680

RB 0.1208 0.1107 0.3487 0.4300 0.2600 0.0407 0.0200 0.1100

Sch.3
Avg 1.7016 1.8839 1.0272 0.9106 1.1593 1.6430 1.5266 1.7421

RMSE 1.4085 1.3915 1.5492 1.5102 1.6084 1.1102 1.0653 1.1701

RB 0.1344 0.2559 0.3152 0.3900 0.2300 0.0953 0.0200 0.1600

Sch.4
Avg 1.6995 1.7175 1.0276 0.9111 1.1610 1.4931 1.4370 1.6328

RMSE 1.2424 1.1621 1.4444 1.4211 1.4853 1.0441 1.0001 1.0809

RB 0.1330 0.1450 0.3149 0.3900 0.2300 0.0046 0.0400 0.0900
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Table 5. Cont.

(n, r) Sch. Measures

Non-Bayesian Bayesian

ML MPS

Non-IP IP

SE
LIN

SE
LIN

τ = 0.5 τ = −0.5 τ = 0.5 τ = −0.5

(100, 70)

Sch.1
Avg 1.5696 1.6641 0.9890 0.8983 1.0885 1.5629 1.4895 1.6885

RMSE 1.3337 1.2882 1.5135 1.4817 1.5554 1.0253 0.9627 1.0877

RB 0.0464 0.1094 0.3407 0.4000 0.2700 0.0419 0.0100 0.1300

Sch.2
Avg 1.6398 1.7147 1.0468 0.9462 1.1554 1.6197 1.5064 1.7123

RMSE 1.1640 1.1310 1.3791 1.3523 1.4140 1.0063 0.9712 1.0716

RB 0.0932 0.1431 0.3021 0.3700 0.2300 0.0798 0.0000 0.1400

Sch.3
Avg 1.5682 1.6259 0.9768 0.8728 1.0902 1.5582 1.5166 1.6445

RMSE 1.2199 1.2100 1.3919 1.3636 1.4350 1.0381 0.9891 1.0736

RB 0.0455 0.0839 0.3488 0.4200 0.2700 0.0388 0.0100 0.1000

Sch.4
Avg 1.5909 1.6244 1.0180 0.9260 1.1191 1.5809 1.5248 1.7182

RMSE 1.2355 1.1635 1.4526 1.4209 1.4955 0.9692 0.9179 0.9983

RB 0.0606 0.0829 0.3213 0.3800 0.2500 0.0540 0.0200 0.1500

(200, 100)

Sch.1
Avg 1.5914 1.6617 1.0325 0.9343 1.1392 1.4841 1.4393 1.6312

RMSE 1.1465 1.0981 1.3969 1.3737 1.4320 0.9343 0.8840 0.9596

RB 0.0610 0.1078 0.3116 0.3800 0.2400 0.0106 0.0400 0.0900

Sch.2
Avg 1.6240 1.6316 1.0430 0.9455 1.1482 1.6870 1.6031 1.7511

RMSE 1.0374 0.9869 1.2554 1.2428 1.2776 0.9575 0.9037 1.0206

RB 0.0827 0.0878 0.3046 0.3700 0.2300 0.1247 0.0700 0.1700

Sch.3
Avg 1.4956 1.6016 0.9448 0.8546 1.0418 1.4674 1.3837 1.5495

RMSE 1.0593 0.9811 1.2496 1.2410 1.2673 0.8229 0.8043 0.8590

RB 0.0030 0.0677 0.3701 0.4300 0.3100 0.0217 0.0800 0.0300

Sch.4
Avg 1.5119 1.5242 0.9381 0.8393 1.0469 1.4186 1.3454 1.4571

RMSE 0.9886 0.9308 1.2163 1.2159 1.2264 0.8380 0.8210 0.8848

RB 0.0079 0.0161 0.3746 0.4400 0.3000 0.0543 0.1000 0.0300

(200, 140)

Sch.1
Avg 1.5384 1.6169 0.8937 0.8034 0.9924 1.4882 1.3955 1.5833

RMSE 1.0634 0.9900 1.2371 1.2285 1.2574 0.8772 0.8564 0.9154

RB 0.0256 0.0780 0.4042 0.4600 0.3400 0.0079 0.0700 0.0600

Sch.2
Avg 1.5997 1.6211 0.9914 0.8996 1.0920 1.4423 1.3615 1.5286

RMSE 0.9215 0.9025 1.1910 1.1917 1.1980 0.8258 0.8060 0.8574

RB 0.0665 0.0807 0.3391 0.4000 0.2700 0.0385 0.0900 0.0200

Sch.3
Avg 1.5219 1.5614 0.8847 0.7977 0.9802 1.4203 1.3354 1.4787

RMSE 0.9114 0.8739 1.1818 1.1836 1.1906 0.7534 0.7431 0.7858

RB 0.0146 0.0409 0.4102 0.4700 0.3500 0.0531 0.1100 0.0100

Sch.4
Avg 1.4641 1.4990 0.8610 0.7822 0.9460 1.4294 1.3860 1.4859

RMSE 0.9213 0.8396 1.1646 1.1714 1.1643 0.7557 0.7247 0.7723

RB 0.0239 0.0007 0.4260 0.4800 0.3700 0.0471 0.0800 0.0100
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Table 6. Point estimation at η = 3.0.

(n, r) Sch. Measures

Non-Bayesian Bayesian

ML MPS

Non-IP IP

SE
LIN

SE
LIN

τ = 0.5 τ = −0.5 τ = 0.5 τ = −0.5

(100, 50)

Sch.1
Avg 3.1857 3.3117 2.5174 2.3583 2.6805 3.0145 2.8488 3.1843

RMSE 1.6952 1.7022 2.2439 2.2420 2.2573 1.1379 1.1050 1.2020

RB 0.0619 0.1039 0.1609 0.2100 0.1100 0.0048 0.0500 0.0600

Sch.2
Avg 3.0733 3.0361 2.4320 2.2468 2.6287 3.0112 2.8591 3.1665

RMSE 1.5074 1.4077 2.0734 2.0853 2.0827 1.1064 1.0845 1.1608

RB 0.0244 0.0120 0.1893 0.2500 0.1200 0.0037 0.0500 0.0600

Sch.3
Avg 3.1584 3.2552 2.5072 2.3500 2.6671 3.0299 2.8700 3.1955

RMSE 1.5976 1.5722 2.1247 2.1190 2.1452 1.0900 1.0606 1.1519

RB 0.0528 0.0851 0.1643 0.2200 0.1100 0.0100 0.0400 0.0700

Sch.4
Avg 2.9309 2.8805 2.2926 2.1375 2.4544 2.9092 2.7593 3.0618

RMSE 1.5531 1.4300 2.1900 2.1889 2.1992 1.0662 1.0634 1.0945

RB 0.0230 0.0398 0.2358 0.2900 0.1800 0.0303 0.0800 0.0200

(100, 70)

Sch.1
Avg 3.0399 3.1030 2.2936 2.1307 2.4655 3.0083 2.8487 3.1692

RMSE 1.4542 1.4628 2.0123 2.0296 2.0089 1.0493 1.0244 1.1052

RB 0.0133 0.0343 0.2355 0.2900 0.1800 0.0028 0.0500 0.0600

Sch.2
Avg 3.0791 3.0884 2.5252 2.3634 2.6957 3.0375 2.8905 3.1880

RMSE 1.5008 1.3427 2.0200 2.0248 2.0284 1.2183 1.1874 1.2697

RB 0.0264 0.0295 0.1583 0.2100 0.1000 0.0125 0.0400 0.0600

Sch.3
Avg 3.1232 3.1737 2.4937 2.3233 2.6754 2.9741 2.8318 3.1208

RMSE 1.3495 1.3469 1.9196 1.9285 1.9281 1.0471 1.0272 1.0917

RB 0.0411 0.0579 0.1688 0.2300 0.1100 0.0086 0.0600 0.0400

Sch.4
Avg 2.9834 2.9780 2.3157 2.1516 2.4875 2.9074 2.7616 3.0555

RMSE 1.2857 1.2024 1.8625 1.8930 1.8452 0.9258 0.9217 0.9612

RB 0.0055 0.0073 0.2281 0.2800 0.1700 0.0309 0.0800 0.0200

(200, 100)

Sch.1
Avg 2.9100 2.9386 2.1268 1.9754 2.2821 2.8911 2.7592 3.0249

RMSE 1.2443 1.2555 1.9211 1.9512 1.8988 0.9155 0.9199 0.9310

RB 0.0300 0.0205 0.2911 0.3400 0.2400 0.0363 0.0800 0.0100

Sch.2
Avg 2.8227 2.8668 2.3326 2.1872 2.4829 2.9339 2.8118 3.0577

RMSE 1.2312 1.0460 1.6599 1.6879 1.6458 0.8421 0.8377 0.8654

RB 0.0591 0.0444 0.2225 0.2700 0.1700 0.0220 0.0600 0.0200

Sch.3
Avg 3.0518 3.0979 2.4813 2.3155 2.6512 2.9538 2.8356 3.0757

RMSE 1.1745 1.1385 1.6552 1.6873 1.6377 0.8944 0.8953 0.9121

RB 0.0173 0.0326 0.1729 0.2300 0.1200 0.0154 0.0500 0.0300

Sch.4
Avg 3.0054 2.9491 2.4945 2.3379 2.6565 2.9293 2.8131 3.0480

RMSE 1.0441 0.9971 1.5006 1.5525 1.4655 0.8225 0.8234 0.8447

RB 0.0018 0.0170 0.1685 0.2200 0.1100 0.0236 0.0600 0.0200
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Table 6. Cont.

(n, r) Sch. Measures

Non-Bayesian Bayesian

ML MPS

Non-IP IP

SE
LIN

SE
LIN

τ = 0.5 τ = −0.5 τ = 0.5 τ = −0.5

(200, 140)

Sch.1
Avg 3.0491 3.0710 2.5690 2.4049 2.7384 2.9325 2.8090 3.0578

RMSE 1.0803 1.0890 1.5435 1.5884 1.5166 0.9277 0.9234 0.9503

RB 0.0164 0.0237 0.1437 0.2000 0.0900 0.0225 0.0600 0.0200

Sch.2
Avg 2.9620 2.9742 2.5609 2.4179 2.7083 2.9301 2.8176 3.0444

RMSE 0.9560 0.8874 1.3854 1.4229 1.3661 0.7808 0.7798 0.8019

RB 0.0127 0.0086 0.1464 0.1900 0.1000 0.0233 0.0600 0.0100

Sch.3
Avg 2.9919 3.0252 2.5167 2.3757 2.6583 2.9099 2.7998 3.0213

RMSE 1.0398 1.0098 1.4560 1.4891 1.4409 0.8384 0.8366 0.8584

RB 0.0027 0.0084 0.1611 0.2100 0.1100 0.0300 0.0700 0.0100

Sch.4
Avg 3.0546 3.0421 2.6801 2.5430 2.8199 2.9415 2.8323 3.0527

RMSE 0.9185 0.8724 1.2904 1.3226 1.2744 0.7526 0.7579 0.7667

RB 0.0182 0.0140 0.1066 0.1500 0.0600 0.0195 0.0600 0.0200

Table 7. Interval estimation at η = 1.5.

(n, r) Sch.

Asy-CI C-CI

ML MPS Non-IP IP

AL CP AL CP AL CP AL CP

(100, 50)

Sch.1 3.9669 91.30 5.0978 96.00 4.8511 95.30 4.1933 95.40

Sch.2 3.9723 97.30 4.4908 98.30 3.8292 95.20 3.6945 95.20

Sch.3 4.0224 95.00 4.6183 98.20 4.2337 95.40 3.7491 96.50

Sch.4 4.0418 97.30 4.1896 98.20 3.9481 95.00 3.3572 95.00

(100, 70)

Sch.1 3.4406 92.30 4.4736 98.30 4.0581 95.30 3.4969 95.90

Sch.2 4.0052 98.30 4.18 98.90 3.7449 95.00 3.6709 95.80

Sch.3 3.5526 95.00 4.0874 97.60 3.6224 95.30 3.5855 95.20

Sch.4 3.4021 94.00 3.9504 96.90 3.9395 95.20 3.3492 95.20

(200, 100)

Sch.1 3.2903 93.33 3.9173 97.33 3.7283 95.27 3.3874 95.32

Sch.2 3.1681 95.33 3.4049 97.97 3.4248 95.24 3.3308 96.38

Sch.3 3.0185 93.67 3.4255 96.93 3.2714 95.21 3.0017 95.07

Sch.4 3.0123 95.67 3.1343 96.22 3.1363 95.17 2.9732 95.50

(200, 140)

Sch.1 2.8741 92.67 3.3921 97.67 3.1682 95.33 3.0918 95.69

Sch.2 3.1814 96.00 3.2003 96.25 3.0873 95.22 2.9764 95.18

Sch.3 2.8884 95.67 3.1556 97.00 2.9926 95.32 2.7684 95.06

Sch.4 2.6618 92.67 2.9786 97.65 2.9186 95.29 2.8176 95.58
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Table 8. Interval estimation at η = 3.0.

(n, r) Sch.

Asy-CI C-CI

ML MPS Non-IP IP

AL CP AL CP AL CP AL CP

(100, 50)

Sch.1 6.0590 97.00 6.1989 96.94 6.5888 95.24 3.9302 95.92

Sch.2 5.1527 96.33 5.3652 97.67 5.8769 95.33 4.0306 96.33

Sch.3 5.4113 96.67 5.5617 96.63 6.3835 95.29 3.8114 96.30

Sch.4 4.6693 94.67 4.9554 96.67 6.1642 95.33 3.8919 96.30

(100, 70)

Sch.1 5.2310 98.33 5.3245 98.32 5.5444 95.30 3.8680 96.30

Sch.2 4.7743 95.32 4.9354 95.65 5.8743 95.30 4.3126 95.32

Sch.3 4.9676 97.00 5.0530 97.00 5.7158 95.33 3.7499 96.33

Sch.4 4.6157 97.67 4.7183 97.65 5.1431 95.30 3.3610 96.64

(200, 100)

Sch.1 4.5177 96.70 4.5753 96.70 5.2294 95.30 3.1906 97.00

Sch.2 3.7061 95.70 3.9551 97.70 4.6005 95.30 3.0899 96.00

Sch.3 4.0586 95.30 4.1348 96.00 5.1036 95.30 3.2155 96.00

Sch.4 3.6459 95.60 3.7428 96.70 4.6793 95.30 2.8018 95.70

(200, 140)

Sch.1 3.9742 96.70 3.9908 96.70 5.0981 95.70 3.1734 95.70

Sch.2 3.6055 97.70 3.6837 98.30 4.4782 95.30 2.9590 96.30

Sch.3 3.6442 98.00 3.6969 98.00 4.6904 95.30 2.9808 96.00

Sch.4 3.4424 96.70 3.4879 97.70 4.5827 95.30 2.7998 98.30

8. Applications

In this section, two real-world datasets are used to demonstrate the efficiency of the
TITL distribution in a data-fitting scenario. Thus, when we turn our view towards model
tools, the TITL model is contrasted with many rival models, such as the TL model, PXL
model (see [52]), IPL model (see [53]), Kw model (see [54]), B model (see [55]), TW model
(see [56]), UW model (see [57]), EKw model (see [58]), UR model (see [59]), KMKw model
(see [60]) and TKw model (see [61]).

We take into account nine well-referenced measures of goodness of fit to compare the
related models, including the Kolmogorov–Smirnov statistic (KS), the Anderson–Darling
statistics (A∗), the Hannan–Quinn information criterion (HQIC), the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), the consistent AIC (CAIC), and
the Cramér–von Mises statistic (W∗). The model that meets these statistics and statistical
measures in the lowest possible way is the one that is best. The p value (PKS) connected to
the KS test is also extracted. A model with the highest PKS values is the best.

8.1. The First Dataset

To begin, we examine the number of months it takes for renal dialysis patients to
become infected, as indicated by [62]. The times of infection data are: 12.5, 13.5, 3.5, 4.5,
5.5, 6.5, 6.5, 7.5, 3.5, 7.5, 12.5, 3.5, 2.5, 2.5, 7.5, 8.5, 9.5, 10.5, 11.5, 7.5, 14.5, 14.5, 21.5, 25.5,
27.5, 21.5, 22.5, and 22.5. We now execute a normalization operation by dividing these data
by thirty, yielding values ranging from 0 to 1. The collected data are updated: 0.450000,
0.483333, 0.116667, 0.850000, 0.116667, 0.25000, 0.28333, 0.316667, 0.116667, 0.15000, 0.18333,
0.216667, 0.916667, 0.216667, 0.25000,0.25000, 0.08333, 0.08333,0.25000, 0.35000, 0.38333,
0.416667, 0.416667, 0.750000, 0.483333, 0.716667, 0.716667, and 0.750000.

Table 9 shows the MLEs with their standard errors (SErs) for this first dataset. Table 10
also displays the numerical values for the AIC, BIC, CAIC, HQIC, KS, PKS, W∗, and A∗

statistics for the first dataset. Table 11 discusses the provided estimates, upper bounds
(UBs), and lower bounds (LBs) of the CIs, in addition to the SErs for the TITL model’s
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parameters via PCT-II samples for the first dataset. Figure 8 shows the initial PDF shape
mentioned using the non-parametric kernel density estimation approach. From Figure 8,
we note that the shape of the PDF is asymmetric. Furthermore, the normality condition is
checked via the quantile–quantile (QQ) plot in the same figure. The outliers can also be
spotted using the box plot. Henceforth, we can say that there are outliers in the first dataset
(the circle with red color in Figure 8 represents the median but the blue dots represents the
data). Figure 9 demonstrates how the first dataset’s profile log-likelihood behaves pretty
clearly, as we can see that the root of the parameter is a global maximum. Figures 10 and 11
show the estimated PDFs and CDFs of the competitive models. Figure 12 displays the
probability–probability (PP) plots of the competitive models for the first dataset. The charts
in Figures 10–12 show that our model fits the data in a satisfying manner.
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Figure 8. Some basic non-parametric plots for the first dataset.
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Figure 9. The profile log-likelihood of the TITL distribution for the first dataset.
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Table 9. MLEs and SErs for the first dataset.

Distributions
MLE SEr

η β α η β α

TITL 9.6584 - - (2.7069) - -
TL 1.3778 - - (0.2604) - -

PXL 1.637 4.2239 - (0.2409) (0.9428) -
IPL 1.1641 0.3153 - (0.1421) (0.0827) -
Kw 1.265 2.0797 - (0.2544) (0.5714) -
B 1.3567 2.1058 - (0.3332) (0.5496) -

TW 3.3328 1.5218 - (1.1901) (0.2712) -
UW 0.6124 1.6991 - (0.1424) (0.2669) -
EKw 0.0146 1.7156 868.6461 (0.0135) (0.2635) (1354.074)
UR 0.5222 - - (0.0987) - -

KMKw 1.4419 1.867 - (0.2706) (0.5664) -
TKw 1.3879 1.7814 0.4852 (0.2695) (0.7043) (0.4496)

Table 10. Measures of fitting for the first dataset.

Models AIC BIC CAIC HQIC KS PKS W∗ A∗

TITL −8.0555 −6.7233 −7.9017 −7.6482 0.11687 0.83901 0.0533 0.386
TL −5.7049 −4.3727 −5.551 −5.2976 0.14415 0.60568 0.1067 0.6679

PXL −3.5549 −0.8905 −3.0749 −2.7404 0.12081 0.80843 0.0627 0.465
IPL 0.2734 2.9378 0.7534 1.0879 0.13099 0.72263 0.1012 0.7071
Kw −3.325 −0.6606 −2.845 −2.5104 0.13772 0.66296 0.1136 0.7049
B −3.5552 −0.8908 −3.0752 −2.7407 0.14118 0.63213 0.1101 0.6859

TW −4.8828 −2.2184 −4.4028 −4.0683 0.1195 0.81882 0.0712 0.4882
UW −6.1223 −3.4579 −5.6423 −5.3077 0.124 0.78239 0.066 0.4415
EKw −4.0392 −0.0426 −3.0392 −2.8174 0.12535 0.77113 0.067 0.4475
UR −6.965 −5.6328 −6.8112 −6.5578 0.15798 0.48692 0.0857 0.4132

KMKw −4.5907 −1.9263 −4.1107 −3.7762 0.12921 0.73815 0.09 0.5785
TKw −2.2297 1.7669 −1.2297 −1.0079 0.12939 0.73658 0.0942 0.6043
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Figure 10. Estimated PDF plots of the competitive distributions for the first dataset.
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Figure 11. Estimated CDF plots of the competitive distributions for the first dataset.
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Figure 12. The PP plots of the fitted distributions for the first dataset.
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Table 11. ML, MPS and BE for the TITL distribution under the PCT-II for the first dataset.

Sch. Methods
Point Estimation Interval Estimation

Estimate SEr LB UB

Sch.1

ML 8.7305 2.8327 3.1784 14.2825

MPS 8.4375 2.6270 3.2887 13.5863

Bayesian at SE 6.7562 1.3419 4.1858 9.9519

Bayesian at LIN τ = 0.5 6.3493

Bayesian at LIN τ = −0.5 7.2675

Sch.2

ML 8.7305 2.8327 3.1784 14.2825

MPS 8.4375 2.6270 3.2887 13.5863

Bayesian at SE 6.7562 1.3419 4.1858 9.9519

Bayesian at LIN τ = 0.5 6.3493

Bayesian at LIN τ = −0.5 7.2675

Sch.3

ML 7.1133 2.6262 1.9661 12.2604

MPS 6.7383 2.4336 1.9685 11.5081

Bayesian at SE 4.9507 1.3278 2.4091 8.0893

Bayesian at LIN τ = 0.5 4.5502

Bayesian at LIN τ = −0.5 5.4473

Sch.4

ML 8.7305 2.8327 3.1784 14.2825

MPS 8.4375 2.6270 3.2887 13.5863

Bayesian at SE 6.7562 1.3419 4.1858 9.9519

Bayesian at LIN τ = 0.5 6.3493

Bayesian at LIN τ = −0.5 7.2675

8.2. The Second Dataset

The second dataset represents the trading economics credit rating of the 145 countries
(2023). It shows the score of the creditworthiness of a country between 100 (riskless) and
0 (likely to default). We execute a normalization operation by dividing these data by 100,
yielding values ranging from 0 to 1. The dataset was obtained from the following electronic
address: https://tradingeconomics.com/country-list/rating (26 March 2023). The dataset
is reported in Table 12.

Table 13 shows the MLEs with their SErs for this second dataset. Table 14 also displays
the numerical values for the AIC, BIC, CAIC, HQIC, KS, PKS, W∗, and A∗ statistics. Table 15
discusses the provided estimates, UBs and LBs of the CIs, in addition to the SErs for the
TITL model’s parameters via the PCT-II samples for the second dataset. Figure 13 shows the
initial PDF shape mentioned using the non-parametric kernel density estimation approach
for the second dataset. From Figure 13, we can note that the shape of the PDF is asymmetric.
Furthermore, the normality condition is checked via the QQ plot in the same figure. The
outliers can also be spotted using the box plot. Henceforth, we can say that there are outliers
in the second dataset (the circle with red color in Figure 13 represents the median but the
blue dots represents the data). Figure 14 demonstrates how the second dataset’s profile
log-likelihood behaves pretty clearly, as we can see that the root of the shape parameter is a
global maximum. Figures 15 and 16 show the estimated PDFs and CDFs of the competitive
models for the second dataset. Figure 17 shows the PP plots of the competitive models.
The charts in Figures 15–17 show that our model fits the real data above well.

https://tradingeconomics.com/country-list/rating
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Table 12. The trading economics (TE) credit rating of 145 countries (2023).

Country TE Country TE Country TE

Norway 99 Mauritius 60 Swaziland 30
Sweden 99 Mexico 60 Tanzania 30

European Union 98 Kazakhstan 58 Togo 30
Singapore 98 Panama 58 Zambia 30

United States 98 Uruguay 58 Cameroon 28
Austria 96 Cyprus 56 Mongolia 28
Finland 96 India 56 Turkey 28

New Zealand 95 Colombia 55 Bosnia and Herzegovina 27
France 92 Montserrat 55 Cape Verde 27

Hong Kong 90 Romania 55 Kyrgyzstan 27
Taiwan 90 Aruba 52 Papua New Guinea 27

United Arab Emirates 90 Azerbaijan 50 Angola 25
Belgium 87 Morocco 50 Bolivia 25

Isle of Man 87 San Marino 50 Gabon 25
Macau 87 Trinidad and Tobago 50 Madagascar 25

United Kingdom 87 Paraguay 48 Moldova 25
Qatar 86 Serbia 48 Nicaragua 25

South Korea 86 Greece 46 Solomon Islands 25
Cayman Islands 85 Georgia 45 St Vincent & Grenadines 25
Czech Republic 85 Guatemala 45 Tajikistan 25

Estonia 83 Macedonia 45 Iraq 23
Ireland 81 Vietnam 45 Nigeria 23
Israel 81 Oman 43 Tunisia 23

Kuwait 81 Brazil 42 Barbados 22
China 80 South Africa 41 Congo 22

Bermuda 78 Bangladesh 40 Maldives 22
Japan 77 Dominican Republic 40 Pakistan 21

Lithuania 76 Ivory Coast 40 Burkina Faso 20
Saudi Arabia 76 Namibia 40 Ecuador 20

Slovakia 76 Uzbekistan 38 Mozambique 18
Chile 75 Bahamas 37 Republic of the Congo 18

Iceland 75 Honduras 37 Belize 17
Malta 75 Senegal 37 El Salvador 16

Slovenia 75 Jordan 36 Ethiopia 16
Latvia 73 Albania 35 Ghana 16

Portugal 72 Fiji 35 Argentina 15
Poland 71 Montenegro 35 Cuba 15
Spain 71 Seychelles 35 Laos 15

Malaysia 68 Turkmenistan 35 Mali 15
Botswana 67 Bahrain 33 Suriname 15
Thailand 65 Benin 33 Ukraine 15
Andorra 63 Jamaica 33 Armenia 14

Italy 62 Rwanda 33 Russia 14
Bulgaria 61 Costa Rica 31 Belarus 11

Peru 61 Uganda 31 Lebanon 11
Philippines 61 Cambodia 30 Sri Lanka 11

Croatia 60 Egypt 30 Venezuela 11
Hungary 60 Kenya 30
Indonesia 60 Lesotho 30

https://tradingeconomics.com/country-list/rating (26 March 2023.)

https://tradingeconomics.com/country-list/rating


Symmetry 2023, 15, 1396 30 of 36

Histogram

data

F
re

q
u

e
n

c
y

0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

2
5

3
0

−0.2 0.2 0.6 1.0

0
.0

0
.5

1
.0

1
.5

Kernel density

N = 145   Bandwidth = 0.08613

D
e

n
s
it
y

0
.2

0
.4

0
.6

0
.8

1
.0

Violin plot

0.2 0.4 0.6 0.8 1.0

Box plot

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(i
/n

)

−2 −1 0 1 2

0
.2

0
.4

0
.6

0
.8

1
.0

QQ plot

Theoretical Quantiles
S

a
m

p
le

 Q
u

a
n

ti
le

s

Figure 13. Some basic non-parametric plots for the second dataset.

Table 13. MLEs and SErs for the second dataset.

Distributions
MLE SEr

η β α η β α

TITL 4.0725 - - (1.0342) - -
TL 2.0397 - - (0.1694) - -

PXL 1.989 3.4907 - (0.1317) (0.3172) -
IPL 1.3356 0.3777 - (0.0714) (0.0403) -
Kw 1.3552 1.3722 - (0.1319) (0.1534) -
B 1.4096 1.3895 - (0.1555) (0.153) -

TW 2.0867 1.7079 - (0.4652) (0.1568) -
UW 1.0519 1.3462 - (0.0902) (0.0939) -
EKw 0.0084 1.3441 647.545 (0.0032) (0.0925) (401.9746)
UR 0.8683 - - (0.0721) - -

KMKw 1.5544 1.1978 - (0.1402) (0.1478) -
TKw 1.4985 1.1078 0.5516 (0.1396) (0.1999) (0.2078)
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Figure 14. The profile log-likelihood of the TITL distribution for the second dataset.

Table 14. Measures of fitting for the second dataset.

Models AIC BIC CAIC HQIC KS PKS W∗ A∗

TITL −21.8691 −18.8924 −21.8411 −20.6596 0.0706 0.46518 0.2192 1.3184
TL 6.6854 9.6622 6.7134 7.895 0.11114 0.05564 0.3701 2.2434

PXL 1.7966 7.7501 1.8812 4.2157 0.09056 0.1853 0.2868 1.8143
IPL 36.2007 42.1542 36.2852 38.6198 0.12858 0.01655 0.4778 3.3536
Kw −5.387 0.5664 −5.3025 −2.968 0.11684 0.03817 0.4012 2.4364
B −5.9722 −0.0187 −5.8877 −3.5531 0.11783 0.03567 0.3947 2.3972

TW −15.6395 −9.686 −15.555 −13.2204 0.09274 0.16499 0.2733 1.6344
UW −13.9249 −7.9714 −13.8404 −11.5058 0.10304 0.09199 0.291 1.7599
EKw −11.7021 −2.7719 −11.5319 −8.0735 0.10306 0.09188 0.2948 1.7832
UR 22.2578 25.2345 22.2857 23.4673 0.16523 0.00073 0.2738 1.7402

KMKw −12.3769 −6.4234 −12.2924 −9.9578 0.10565 0.07854 0.3144 1.9033
TKw −8.9 0.0302 −8.7298 −5.2713 0.10629 0.07554 0.336 2.0198
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Figure 15. Estimated PDF plots of the competitive distributions for the second dataset.
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Figure 16. Estimated CDF plots of the competitive distributions for the second dataset.
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Figure 17. The PP plots of the fitted distributions for the second dataset.



Symmetry 2023, 15, 1396 33 of 36

Table 15. ML, MPS and BE for the TITL distribution under the PCT-II for the second dataset.

Sch. Methods Point Estimation Interval Estimation

Estimate SEr LB UB

Sch.1

ML 3.06563 1.5164 0.0936 6.0377

MPS 3.12188 1.5297 0.1237 6.1200

Bayesian at SE 0.50815 0.7391 0.0000 2.2492

Bayesian at LIN τ = 0.5 0.39678

Bayesian at LIN τ = −0.5 0.67640

Sch.2

ML 3.81 × 10−7 0.1077 0.0000 0.2111

MPS 1.34 × 10−6 0.2080 0.0000 0.4076

Bayesian at SE 0.00628 0.0291 0.0332

Bayesian at LIN τ = 0.5 0.00608

Bayesian at LIN τ = −0.5 0.00650

Sch.3

ML 0.00031 0.4417 0.0000 0.8661

MPS 0.00031 0.9955 0.0000 1.9514

Bayesian at SE 0.09273 0.2754 0.0000 0.8017

Bayesian at LIN τ = 0.5 0.07649

Bayesian at LIN τ = −0.5 0.11514

Sch.4

ML 3.81 × 10−7 0.0239 0.0000 0.0467

MPS 1.34 × 10−6 0.2063 0.0000 0.4043

Bayesian at SE 0.00524 0.0184 0.0000 0.0298

Bayesian at LIN τ = 0.5 0.00516

Bayesian at LIN τ = −0.5 0.00533

9. Conclusions

In this article, we investigated and studied a new asymmetric distribution with one
shape parameter in the domain [0, 1], called the truncated inverse Topp–Leone distribution.
As evidence of its functional interest, its probability density function can be unimodal
or right-skewed. On the other hand, the hazard rate function can be increased. Some
important statistical properties, such as the mode, quantile function, median, Bowley’s
skewness, Moor’s kurtosis, moments, incomplete moments, Lorenz and Bonferroni curves,
probability-weighted moments, and numerical tables, were determined. Several different
measures of uncertainty, such as the Rényi entropy, Tsallis entropy, Arimoto entropy,
Havrda and Charvat entropy, Awad and Alawneh 1 entropy, Awad and Alawneh 2 entropy,
Mathai–Haubold entropy, extropy, and residual extropy, were computed. To estimate the
model parameters under progressive type-II censoring, the maximum likelihood, maximum
product spacing, Bayesian using the squared error and Linex loss functions, were employed.
Two applications employing real-world datasets explained the significance of the new
truncated model in comparison to existing statistical models such as the Topp–Leone,
power XLindley, inverse power Lindley, Kumaraswamy, beta, truncated Weibull, unit-
Weibull, exponentiated Kumaraswamy, unit-Rayleigh, Kavya–Manoharan Kumaraswamy,
and transmuted Kumaraswamy models. Finally, it is important to point out that one of the
limitations of the progressive type-II censoring is that the time of the experiment can be
very long if the units are highly reliable. As a result, more advanced schemes will need to
be utilized in future studies.
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