
Citation: Radwan, A.; Alenezi, T.A.;

Alrashdan, W.; Hwang, W.J.

Balancing Tradeoffs in Network

Queue Management Problem via

Forward–Backward Sweeping with

Finite Checkpoints. Symmetry 2023,

15, 1395. https://doi.org/10.3390/

sym15071395

Academic Editors: Ranjit Kumar

Upadhyay and Ramalingam

Udhayakumar

Received: 5 June 2023

Revised: 4 July 2023

Accepted: 6 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Balancing Tradeoffs in Network Queue Management Problem
via Forward–Backward Sweeping with Finite Checkpoints
Amr Radwan 1,2,* , Taghreed Ali Alenezi 1, Wejdan Alrashdan 3 and Won-Joo Hwang 4

1 Department of Mathematics, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
2 Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
3 Department of Mathematics, College of Science, Hail University, Hail P.O. Box 2440, Saudi Arabia
4 Department of Biomedical Convergence Engineering, Pusan National University,

Yangsan 50612, Republic of Korea; wjhwang@pusan.ac.kr
* Correspondence: amaradwan@ju.edu.sa

Abstract: Network queue management can be modelled as an optimal control problem and is aimed
at controlling the dropping rate, in which the state and control variables are the instantaneous queue
length and the dropping rate, respectively. One way to solve it is by using an indirect method, namely
forward–backward sweeping based on the Pontryagin minimum principle to derive control the
trajectory of the dropping rate. However, there exists some performance balance issues in the network
queue, such as memory usage versus runtime of the algorithm, or dropping rate versus network
queue length. Many researchers have exploited symmetry for constrained systems, controllers, and
model predictive control problems to achieve an exponential memory reduction and simple, intuitive
optimal controllers. In this article, we introduce the integration of the checkpointing method into
forward–backward sweeping to address such balancing issues. Specifically, we exploit the revolve
algorithm in checkpointing and choose a finite number of checkpoints to reduce the complexity. Both
numerical and simulation results in a popular network simulator (ns-2) are provided through two
experiments: varying bandwidth and offered load, which solidify our proposal in comparison to
other deployed queue management algorithms.

Keywords: network queue; optimal control; automatic differentiation; parametric optimization;
checkpointing technique

1. Introduction

Queue management problems with network devices has been an attractive research
area in recent decades because of its strong impact on network performance in cases of
congestion. Due to simplicity, DropTail is the current default queue management in most
network routers and input/output (I/O) cards of personal computers, or it is integrated
into the operating system’s kernel. It drops packets only when the buffer is fully occupied.
Having been used for a long time with high link utilization, DropTail, however, has some
weaknesses in terms of performance balancing that need to be addressed. Firstly, using
DropTail, buffer size directly interacts with the performance of transport protocols and
damages them in some rare cases [1]. A big excess buffer generates excessive queuing
latency and poor recovery as a result of long retransmission time-outs. A limited buffer,
on the other hand, can lead to low link utilization with frequent packet drops. DropTail
as passive queue management might occur in bursts of packet drops, resulting in several
packet drops from a single-traffic burst, irrespective of the buffer size. Secondly, DropTail
might result in bad fairness and sharing among TCP connections [2]. Moreover, the queue
length at a bottleneck point can extend high, especially when the buffer size is large, so that
users at the receiver side might experience long delays. These reasons lead to the urgent
need for deployed active queue management (AQM). Several approaches to model and
derive an AQM algorithm include the additive-increase/multiplicative-decrease (AIMD)

Symmetry 2023, 15, 1395. https://doi.org/10.3390/sym15071395 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15071395
https://doi.org/10.3390/sym15071395
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2664-5635
https://doi.org/10.3390/sym15071395
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15071395?type=check_update&version=2

Symmetry 2023, 15, 1395 2 of 15

model of interaction between transport control protocol (TCP) and AQM [3], followed by
using control theory or optimization tools to analyse bottleneck performance. Moreover,
researchers established a memory reduction technique for the symmetric controllers [4].
Alternatively, a recent approach is to model the queue management problem of symmetrical
differential equations using an optimal control approach and then solve it by the forward–
backward sweeping method (FBSM) based on the Pontryagin minimum principle. In the
first-order method based on gradient, FBSM is simple to implement and can run fast. Two
sweeps are executed over the time interval: forward and backward (adjoint) sweeps. The
basic idea is to implement FBSM straight forward and memorize all intermediate states
in every sweep for state variable (queue length) and control variable (dropping rate). In
addition, an AQM algorithm requires memory efficiency due to limited memory resources
in network devices. In order to implement AQM with the indirect method, setting a
finite number of checkpoints instead of storing all intermediate values is necessary; the
checkpointing method has been addressed in the literature [5–7]. Briefly, checkpointing can
provide us with memory efficiency by selecting only a finite checkpoint instead of storing
all intermediate values; thus, solutions of OCQ as AQM are feasible. However, to reach
memory efficiency, we sometimes have to sacrifice the other performance criterion. An
example is the memory usage and runtime, which are two important requirements when
implementing integrated algorithms into network devices’ firmware, e.g., Wi-Fi access
points, mobile nodes, routers, etc, which own limited memory resources. In [5], the authors
point out that higher memory usage is not equivalent to a higher runtime of an algorithm.
An AQM algorithm should be lightweight, proactive and plain to implement in wired or
mobile ad hoc networks [8,9]. Performance balancing of an AQM algorithm should be
reached as well, i.e., the balance between performance criteria results. Within the current
literature can be found some trade-offs, for instance, between queue length and packet
drop rate. Higher drop rate results in shorter queue length. We want a short queue length,
or a short delay experience for users, but “why do we should drop good packets” [10].
An algorithm that brings a good balanced result between such performance criteria is
desirable. In this paper, we investigate the performance trade-off between different AQM
disciplines and derive a novel AQM that has a good performance balance when compared to
others. Optimal control has been exploited to investigate queue performance in computer
networks in [11,12]. We analyze the FBSM-AQM algorithm with and without the use
of the adoption of checkpointing. By integrating checkpointing into FBSM-AQM, the
numerical and simulation results demonstrate that we can efficiently reduce memory
usage by reasonable choosing the number of checkpoints, therefore making it easier for
implementation. Our contributions are summarized as follows:

• From the Optimal Control Queue model (OCQ) of a network queue, with the objective
of minimizing a weighted cost function of queue length and drop rate, we propose to
solve it using an indirect method and derive a Forward–Backward Sweeping Method
FBSM-AQM scheme (Sections 3.1 and 5).

• We extend this method with checkpointing (FBSM-AQM-CP), which can deal with
the trade-off between the memory usage and runtime of an algorithm by choosing a
finite checkpoint (Section 6).

• We conduct and provide numerical and simulation results (ns2) to evaluate the pro-
posed method FBSM-AQM-CP under dumb-bell network topology. We then suggest
for designers a choice for the number of checkpoints to balance performance in
Sections 7.1 and 7.3.

• The simulation results in Section 7.3 give some insights into the performance of our
proposed AQM scheme and the others to be compared: queue length, packet drop
rate and link utilization.

2. Related Works

In order to handle such an AQM scheme, common methods are based on the lin-
earization of the TCP core model with control theory from Hollot et al. [3] and consist of

Symmetry 2023, 15, 1395 3 of 15

random early detection (RED) [13], and proportional integral derivative (PID) [14] and
contribute a large portion to the queue management field [15]. The primary objectives
were to propose more specific design guidelines to improve stability and responsiveness;
moreover, the behaviour of RED under a change in network circumstances, namely link
bandwidth capacity, is more understandable. Using control theory, one can classify them
into three different types of control: classical, fuzzy logic, and robust. Using feedback
control, traditional PID controller-based algorithms have been developed as other AQM
methods to fulfil certain internet criteria. Hollot et al. [3] investigated RED as an I-controller
and suggested two options for improving RED, the proportional (P) and the proportional
integral (PI) controllers. The Routh stability test is used to identify the stable zone of the
control gain for dynamic-RED (DRED), with a load-dependent probability of ignoring
packets at random once a buffer gets congested. It keeps the average queue size near to a
predefined limit while allowing transient traffic bursts to be queued and while avoiding
unessential packet drops. Its primary benefit is that there is no need to gather state data
for individual flows. A robust control approach was also investigated in order to improve
classical control. The DC-AQM algorithm, which is based on the internal mode compen-
sation (IMC) principle, was used to address the issue of large delay with a large buffer
in a bufferbloat [16]. They aimed to reduce latency by tuning the classical PID controller
parameters Kp, Ki, and Kd using the derived IMC controller. To deal with the high delay,
a Gain Adaptive Smith Predictor with a PI controller (GAS-PI) in [17] was designed to
enhance robustness. Thus, in [18], a predictive PID controller is suggested for TCP/AQM.
They employed the generalized predictive control method to find appropriate values for
Kp, Ki and Kd, making the system more robust to changes in model parameters like offered
load, round-trip time, etc. Fuzzy Control RED (FCRED) was suggested in [19]. It is made
up of a fuzzy controller, adjusting the Pmax parameter of the RED algorithm. The fuzzy
controller is made up of three parts: the fuzzification unit, a fuzzy-interference engine
with fuzzy-rule base, and a de-fuzzification unit. The fuzzification module converts the
controllable input values into a fuzzy set (i.e., membership functions). The fuzzy base is
responsible for connecting the incoming signals to the proper outcome variable. Fuzzy
logic rules can be created by trial and error—requiring the knowledge and expertise of an
expert in the field of TCP congestion control— and they are sometimes not distributed and
are hard to implement. Recently, new promising AQM schemes have been proposed to
improve network performance balancing. An interesting commonality in their designs is
that they are lightweight and easy to implement. In [20], they established a Proportional
Integral controller Enhanced (PIE) controller as a lightweight AQM that did not require
per-packet extra processing. Hence, small overhead could be achieved, and the algorithm
was simple to implement in both hardware and software. In [21], Controlled Delay (CoDel)
tackled the bufferbloat issue by directly controlling delay instead of queue length, as other
AQMs do. Cascade Probability Control (CPC) is the most recent other method that we have
developed for reducing queueing delay in wired networks [22]. To determine the delay
stable interval of the transportation network, the authors in [23] exploited the nonlinear
dynamics of TCP/AQM.

3. Model Description of Optimal Control Queue Model

The following dynamical system is the result of the mathematical formulation of the
model that includes control dropping rate

ẋ(t) = f (x(t), u(t), t) (1)

with initial condition x(t = 0) = x0. The model’s flow diagram is shown in Figure (Figure 1b),
while the dynamical system’s inputs are listed in Table 1. Consider the system represented
in Figure 1, which shows a standard network buffer layout. The model’s flow diagram is
shown in (Figure 1b), while the dynamical system’s inputs are listed in Table 1. Consider the
system represented in Figure 1b, which shows a standard network buffer layout. A certain
number of packets arrive into the system every second in this scenario. In accordance with

Symmetry 2023, 15, 1395 4 of 15

the number of packets x(t) existing in the buffer and the network service rate µ, it might
be advantageous to drop a portion of this forthcoming flow. The dynamic system of the
buffer load is represented by Equation (1). In order to minimize the cost functional, control
variable u(t) should be chosen, which creates a balance between dropping rate and queue
length. The following objective can be used to express this purpose mathematically:

min
0≤u(t)≤w

∫ t f

t=0
x(t) + R(w− u(t)) (2)

where R, w stand for weight on dropping rate and input rate, respectively.

Table 1. Entries of Model (1).

Notation Description Role
a parameter for different type of queueing model; Constant

here, a = 1, for the sake of simplicity,
to model an M/M/1 queue.

µ service rate (bandwidth capacity); Constant
u dropping rate Control variable
x queue length State variable

Source 1

Source 2

Source 40

DestinationRouter
...

..
.

(a) Queuing Network

x(t): queue lengthu(t):
actual rate

w(t):
input rate

d(t) = w(t) - u(t):
drop rate

service rate

(b) Queuing Model

Figure 1. Optimal Control Queue Model.

3.1. Characterization of Optimal Control

According to Pontryagin’s minimum principle PMP [24], it can be used to solve the
problem of restricted dynamical optimization of queuing network (2) subject to (1) (named
Figure 1b in [25]). To get started, we will need to define the Hamiltonian function:

H(ψ(t), x(t), u(t)) = x(t) + R(w(t)− u(t)) + ψ(t)(u(t)− µx(t)
a + x(t)

) (3)

where ψ(t) denotes the adjoint function that satisfies:

ψ̇(t) = −Hx(ψ(t), x(t), u(t)), ψ(t f) = 0 (4)

When the constraint is relaxed by one unit, the objective function computed on the
optimal solution changes.

Proposition 1. Given an optimal control u∗(t) and its corresponding state trajectory x∗(t) of the
system (1), then there exists an adjoint function ψ(t) : [0, t f]→ R satisfying

ψ̇(t) = −1 + ψ(t)
aµ

(a + x(t))2 , (5)

furthermore,
u∗(t) = arg min

0≤u(t)≤w
H(ψ∗, x∗, u) (6)

Symmetry 2023, 15, 1395 5 of 15

Proof. The adjoint equation with transversality condition (5) is standard for PMP, which
establishes the necessary condition for the optimality of u∗(t). Because the control is
bounded, these necessary optimality requirements can be written in the following way [24]:

u∗(t) =

0 if Hu ≥ 0
using if Hu = 0
w if Hu ≤ 0

Since H does not depend on u, PMP gives no information about u∗ when Hu = 0.
A fluid flow buffer’s optimal control is a class of bang-bang control with a potential of
singular arc [t1, t2]:

d(i)

dt(i)
[Hu] = 0, ∀i ∈ N, ∀t ∈ [t1, t2]

d
dt
[Hu] = ψ̇ = −1 + ψ(t)

aµ

(a + x(t))2

At ψ = R, then x∗ =
√

aRµ− a. The second derivative of Hu with respect to the t is
then

d2

dt2 [Hu] = ψ̇
aµ

(a + x(t))2 + ψ
−2aµ

(a + x(t))3 ẋ = 0

then,

using = µ(1−
√

a
Rµ

)

In a more unified and symmetric way, we can get the optimal control u∗(t):

u∗(t) =

0 if Hu ≥ 0
µ(1−

√
a

Rµ) if Hu = 0

w if Hu ≤ 0

To tackle the problem ((1) and (2)), we present a forward–backward sweeping tech-
nique (FBSM) with two sweeps based on an indirect approach in optimal control. A control
trajectory of control variable u(t) (dropping rate in queue) can be produced as an output
after numerically solving it with the FBSM [26,27] Using this control trajectory, an algo-
rithm for active queue management, namely FBSM-AQM (1), is able to be implemented in
network simulation ns2 by modifying the dropping function. Here, we detail the procedure
we use to solve the problem of optimal control queue (OCQ) and propose our algorithm
using an indirect method from optimal control theory.

4. Forward–Backward Sweeping Method (FBSM)

Since U and H are convex, the control function can be computed in a particular way
for each t. We introduce the symmetric problem of minimizing the Hamiltonian with regard
to the control u:

min
u∈U

H(ψ, x, u) ∀ t ∈ [t0, t f]

Optimal control u is usually written explicitly as a function of the trajectory, adjoint,
and times as u = u(ψ, x, t). And after insertion it into the system, a boundary value problem
(BVP) is derived. We linearise around the solution u(t) and get the variation equation of
u(t) as:

0 = Hu
> + Huuδu(t) (7)

Equation (7) can be approximated using Strong Legendre-Clebsch condition as:

δu(t) = arg min
δu∈{U−u}

Haug(ψ, x, u + δu, t) (8)

Symmetry 2023, 15, 1395 6 of 15

Here, Haug = H(ψ, x, u + δu, t) + β‖ δu ‖2 represents the augmented Hamiltonian
function. In order to calculate the control iteratively using Equation (8), a parametric
optimization technique has been proven to be an efficient way [27]. If β = 0, the set U
is convex, and the function H is convex with regard to the control u, then δu is a descent
direction. In case of an absence of the reduction of the objective, we try different β until
the reduction is satisfied. The indirect approach motivates us to design FBSM-AQM
Algorithm 1 [26,27].

Algorithm 1 FBSM-AQM.

1: Initialization:
unew(t) = u(t), δu(t), ∀t ∈ [t0, t f];
Jold = ∞, γ = 0, β, ρ ∈ (0, 1);
Step = 1, MaxStep , ε.

2: while Step ≤ MaxStep do
3: procedure INTEGRATE FORWARD
4: xnew(t0) = x0,Jnew(t0) = 0.
5: Sweep 1: t : t0 → t f
6: if Step > 1 then
7: δu(t) = arg min

δu
Haug(x(t), u(t) + δu, ψ(t), t);

8: unew(t) = u(t) + δu(t).
9: end if

10: ẋnew(t) = f (xnew(t), unew(t), t).
11: ˙Jnew(t) = l(xnew(t), unew(t), t).
12: end procedure
13: Jnew = Jnew(t f).
14: if Jnew < Jold then
15: Jold = Jnew, β = βρ.
16: else
17: β = β/ρ; go to Integrate Forward
18: end if
19: procedure BACKWARD SWEEP
20: ψ(t f) = 0, γ(t0) = 0.
21: Sweep 2: t : t f → t0.
22: x(t) = xnew(t), u(t) = unew(t).
23: ψ̇(t)> = − ∂H(ψ(t),x(t),u(t),t)

∂x

24: ū(t) = ∂H(ψ(t),x(t),u(t),t)
∂u .

25: γ̇(t) =‖ ū(t) ‖2 .
26: γ = γ(t f).
27: end procedure
28: if ‖γ‖ < ε then
29: terminate;
30: end if
31: Step← Step + 1.
32: end while

5. FBSM-AQM without Checkpointing

FBSM Algorithm 1 is made up of two sweeps over the time interval [t0, t f] forward and
adjoint sweeps, respectively. The adjoint integration has to be executed backward in time,
and the entire forward trajectory x = (x0, . . . , xN−1) is required. A specific sequence of
intermediate states is to be calculated through the evaluation of a forward simulation F. The
FBSM Algorithm 1 is made up of two forward and adjoint sweeps through the time interval
[t0, t f], respectively. The adjoint integration must be conducted backwards in time, and the
entire forward trajectory x = (x0, . . . , xN−1) must be completed. During the computation
of a forward simulation F, it is necessary to compute a specific sequence of intermediate

Symmetry 2023, 15, 1395 7 of 15

states. Each transition from one intermediate state to the next is a time step. Fi (see Figure 2).
As a result, we could claim that the computation of a particular forward simulation F may
be described as a calculation of N time intervals Fi(xi−1, ui−1, ti−1), 1 ≤ i ≤ N(as shown in
Figure 2). If the time step Fi is applied to the preceding state xi−1, the intermediate state
xi could be computed. Based upon only the date from the preceding state xi−1, the time
step Fi(xi−1, ui−1, ti−1) computes the intermediate state xi. For the adjoint integration, one
may use ψi−1 = F̄i(ψi, xi−1, ui−1, ti−1) motivated by the adjoint equation that belongs to
the differential equation depicting the state. This forward simulation F must be reversed
(as seen in Figure 2) if one solves the adjoint problem affiliated with a presumed forward
simulation F.

x̄Nx̄N−1x̄ix̄1x̄0

F̄NF̄N−1F̄i+1F̄iF̄2F̄1

F̄

x0 x1 xi xN−1 xN

F1 F2 Fi Fi+1 FN−1 FN

F

Figure 2. Forward Sweep: xi = Fi(xi−1, ui−1, ti−1), i = 1, . . . , N; Backward Sweep: ψi−1 =

F̄i(ψi, xi−1, ui−1, ti−1), i = N, . . . , 1.

The basic scheme [5,7] is the simplest approach for implementing FBSM Algorithm 1,
storing all intermediate states of each sweep and restoring them when needed. The amount
of memory required for the method is commensurate to the number N of time steps in a
forward simulation F (see Algorithm 2). As a result, it has the potential to be enormous.
This strategy, on the other hand, can only be satisfied if there is enough memory available.

Algorithm 2 FBSM-AQM-NoCP.

1: Computing & Recording: Set x to the initial value x0
2: while i = 0, N − 1, 1 do
3: Execute xi+1 = Fi(xi−1, ui−1, ti−1)
4: end while
5: Returning: Set ψ to the terminate value ψN
6: while i = N, 1,−1 do
7: Execute ψi−1 = F̄i(ψi, xi−1, ui−1, ti−1)
8: end while

6. FBSM-AQM with Checkpointing

A different method for reversing a forward simulation F does not necessitate memo-
rizing all intermediate states, but only a subset of them. Memorized intermediate states are
known as checkpoints. Thus, the approach is known as checkpointing [5,7,27,28]. We can
only memorize a small number of intermediate states at a time, depending on available
memory capacity. As a result, this method drastically minimizes the amount of memory
required. The computation of some intermediate trajectories at some time intervals may run
numerous times through the reversal of a forward simulation F. As a result, the evaluation
procedure must be conducted several times. A forward simulation F does not need to
be restarted from the primary intermediate state. A proper checkpoint can be used to
relaunch it.

Definition 1 (Reversal Schedule S [5]). Assume a forward sweep F with N time intervals
Fi, 1 ≤ i ≤ N. Let c ∈ I checkpoints be accessible, each of which can accommodate the data of an
elementary intermediate state. N represents the current final time step, j represents the number of
memorized checkpoints, and i represents the current state. Initially, i = i0 ≥ 0, j = j0 ≥ 0, and
i < N ≤ ∞. With q ≥ 1 and starting with N ≥ 1, i = 0. Thus, a reversal schedule S is made up of
a bounded sequence of the next operations:

Symmetry 2023, 15, 1395 8 of 15

• Advance operation Ak = make forward computations by increment i by k ∈ [1, N − i− 1];
• Takeshot operation Cj = memorize state i to checkpoint j ∈ [1, q];
• Restore operation Rj = reset i to checkpoint j ∈ [1, q];
• Firs-turn and youturn operations D = do the first reversal step if i = N and one reversal step

by decrement N by 1 if i = N − 1, respectively.

Up to N has been reduced to zero.

Every schedule defined in this way for a given combination (N, c) is known to be
admissible. We suppose that each admissible reversal S starts with the operation C0, which
reads an initial intermediate state from the checkpoint j0, without loss of generality. The
operation A is represented by Ak if it is repeated up to k times. For example, let N = 6 and
c = 2 be given. The time intervals Fi are plotted vertically on the y-axis, while the time
necessary to evaluate single operations is plotted horizontally on the x-axis The time is
measured in w-units. Because the initial checkpoint includes data from the intermediate
state x0 and is located on it, the computational axis represents a checkpoint. The following
describes the evaluation of the reversal schedule S as depicted in Figure 3: Firstly, the
operation C0 is executed, i.e., the first checkpoints j0 = 0 are used to read out the initial
intermediate state x0. Following that, the three time intervals F1, F2, and F3 are evaluated
in order, as described by the operation A3. The operation C1 then saves the intermediate
state x3 into the first checkpoint. The action A2 performs the following two time intervals
F4 and F5 in a sequential order. Operation D is then executed for the first time, allowing
the adjoint step F̄6 to be assessed. Then, using operation R0, data from the intermediate
state x3 is read out of the first checkpoints. Procedure A1 evaluates the time step F4 using
this data. Using operation D, it is now able to do the adjoint step F̄5. Following that, a
similar idea is repeated multiple times up until all adjoint steps F̄1, . . . , F̄6 are completed in
order. Furthermore, memory is in demand for the storing of data generated throughout
a single time step Fi, 1 ≤ i ≤ 6 , as well as for the execution of a corresponding adjoint
step F̄i, 1 ≤ i ≤ 6. Consider the operator � that orders the evaluation in such a way that
the left hand one is realized before the right hand one. Now, the reversal schedule S of the
example can be represented by:

S = C0 � A3 � C1 � A2 � D � R0 � A1 � D � R0 �
D � R1 � A1 � C1 � A1 � D � R0 � D � R1 � D.

It can be executed using 20w units requiring only the memory of 2 checkpoints.
Memory is required to store the data generated over each time step Fi to calculate the
matching adjoint step. If Algorithm 2 is applied, 12w units are required to carry out six
adjoint steps F̄i, 1 ≤ i ≤ 6; however, all intermediate states xi, 1 ≤ i ≤ 6, in addition
to the data produced over all single time intervals Fi, 1 ≤ i ≤ 6, that is needed for the
implementation of corresponding adjoint steps F̄i, 1 ≤ i ≤ 6, will be memorized. The
main issue is deciding where to place the checkpoint (c). Let ς(c, t) denote the maximum
length, i.e., the maximum number of time intervals, of any computational chain that can be
reversed with a maximum of c checkpoints and a maximum of t forward steps from any
of the states. Then, Griewank [6,7] shows that ς(c, t) = (c+t

c), and with this equality, the
memory requirement and the number of operations have a logarithmic dependence on the
runtime of the function evaluation. If the values of the first two quantities are known, the
third quantity can be calculated. Specifically, the maximum number of steps, checkpoints,
and repeated forward steps can be found without recording of intermediate. For instance,
if there are 6 time intervals, and three checkpoints can be stored, t = 2 is obtained. After the
initial one at zero, the value of ς(c, t− 1) (here ς(2, 1) = 3) determines the next checkpoint.
As a result, state 3 is marked as checkpointed, as shown in Figure 3.

Symmetry 2023, 15, 1395 9 of 15

𝒕 𝑪𝟎

N

6

1

1 10 20 𝑹𝟏 𝑹𝟏

𝑨𝟑

𝑨𝟐 𝑨𝟏

𝑫 𝑫

𝑫
𝑫

𝑫
𝑫

𝑪𝟏

𝑪𝟏
𝑨𝟏
𝑨𝟏

𝑹𝟎

𝑹𝟎 𝑹𝟎

Figure 3. Reversal Schedule S with N(S) = 6 and c(S) = 2.

7. Performance Evaluation and Discussion
7.1. Tradeoff: Runtime & Memory Usage

In this portion, we measure the runtime of the suggested algorithms. We choose the
time-step of 1000 and vary the number of checkpoints to check the performance of FBSM-
AQM when and when not applying checkpointing. Firstly, without the checkpointing
method and a large time-step, the algorithm might not run and display some errors, i.e.,
segmentation fault (core dumped). But if we use the checkpointing method and vary the
number of checkpoints from 10 to 1000, the algorithm can run at different rates or runtimes.
In Figure 4, let us define the ratio of runtime as the ratio between the runtime needed by the
reversal schedule and the straight forward approach (Algorithm 2). From that definition,
we describe it as the following:

ratio-run-time =
RunTime (FBSM-AQM-CP)

RunTime (FBSM-AQM-NoCP)
. (9)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 100 1000

R
a
ti
o
 o

f
R

u
n
-T

im
e

Number of checkpoints

FBSM-AQM-CP

Figure 4. Runtime of FBSM-AQM algorithm versus number of checkpoints.

For instance, in Figure 4, when the number of checkpoints is equal to ≈40, the ratio
runtime is ≈2. It implies that the runtime required by algorithm FBSM-AQM-CP is twice as
much as the runtime required by algorithm FBSM-AQM-NoCP. When we increase the num-
ber of checkpoints up to 500, the ratio runtime is approximately equal to 1, which implies
the runtime of the algorithm using checkpoint is reduced as the number of checkpoints
is increased. The stage at which the ratio runtime is ≈1 is the saturated stage. This stage
implies that we cannot choose the number of checkpoints to be less than the maximum
time intervals (1000). So far, Figure 4 tells us that using more checkpoints can decrease
the runtime of the algorithm. However, the memory usage is increased at the same time
if we use more checkpoints because we have to store more intermediate values of the

Symmetry 2023, 15, 1395 10 of 15

state variable. In fact, depending on the memory of the network devices, by applying
checkpointing for AQM, we suggest choosing the number of checkpoints at which the
ratio of runtime is about 1 to 1.5 to deal with the runtime and memory usage trade-off.
From now on, we choose the number of checkpoints in FBSM-AQM-CP to be 200 points to
test the performance of our algorithm under a packet-level simulator ns2 [29] in the next
sections.

7.2. Comparison: AQM Schemes

Related AQM schemes to be compared include:

• DropTail

The DropTail queuing approach is the easiest way to manage network router queues.
Routers accept all arriving packets and forward them so long as buffer space is available
for the next incoming packet. If a packet comes and the the queue is presently whole, the
incoming packet is discarded. The sender then recognizes the packet loss event and shrinks
its transimission window. DropTail is the most widely used due to its easiness and relative
effectiveness, but it has some weaknesses, such as its bad fairness sharing among TCP
connections, and its throughput and bottleneck link effectiveness suffer severe degradation
if congestion worsens.

• Random Early Detection (RED)

RED [3,13] was offered with the aim of minimizing packet loss and queuing delays,
and additionally, avoiding the global synchronization of TCP sources to improve fairness
weakness. To fulfil these targets, RED uses two thresholds, minth and maxth, and an expo-
nentially weighted moving average (EWMA) formula to predict average queue length [2].
When the queue length exceeds a predetermined threshold, the connection is considered
congested, and a drop operation is executed. An interim growth in queue length reports
temporary congestion, while a growth in average queue length mirrors long-term conges-
tion. Derived from such information, RED routers send randomized feedback signals to the
sender to make decisions to reduce the congestion window. RED has high fairness between
connections due to the randomized response mechanism by [30].

• Proportional Integral (PI)

PI has several different design versions; however, the core idea stays the same [3,18,20].
PI employs a feedback-based model for TCP arrival rates to allow queue occupancy to con-
verge to a target value, but it requires prior knowledge of round trip times and the number
of data flows traversing the router [2]. It upgrades TCP flow mechanism responsiveness
through proportional control, stabilizes queue length to a target value through integral (I)
control, and marks or drops each packet with probability (P).

p(t + 1)− p(t) = a(q(t + 1)− qre f)− b(q(t)− qre f). (10)

The weakness of PI is that the choice of a and b heavily depends on specific network
scenarios and network parameters, e.g., bandwidth, number of flows, etc. Even it can be
solved by a pre-defined dataset file using experiments, it is still difficult to adapt PI for
different network environments.

• Controlled Delay (CoDel)

CoDel [21] is the newest suggested AQM and is very promising for dealing with the
bufferbloat issue in the queue management area. CoDel controls delay directly, not implic-
itly through queue length like others. Moreover, CoDel has no knob and no parameters to
be adjusted.

7.3. Comparison: Results

In this portion, we conduct a simulation of our proposed active queue management
scheme with checkpointing in ns2. The chosen dumb-bell topology is based on the rec-
ommendation to evaluate any AQM scheme from [31] (Figure 5). All clients send data

Symmetry 2023, 15, 1395 11 of 15

through intermediate routers to their dedicated sinks. To establish an artificial bottleneck,
we install data-sending events that start at the same time. We exploit the existing ns2 TCP
evaluation tool [32] to facilitate simulation processes due to its simple usage. With some
modifications, we add a code block to extend [32] to be able to simulate our proposed and
compared AQMs. Each AQM variant has its own advantages and disadvantages, and we
would like to find out which achieves the most balanced performance trade-offs in network
scenarios. We pick three performance criteria: queue length, link utilization and packet
drop rate. For each criterion, the bottleneck link bandwidth and offered load as number of
of FTP flows ranges from 1 to 1000.

FTP

HTTP

Voice

Video

Bottleneck Link

Queue

Dumb-bell Topology: A Single Bottleneck Link

Figure 5. Simulation topology.

7.3.1. Mean Queue Length

Figure 6a,b shows the mean queue length results in percentages for different disci-
plines. Our proposed FBSM-AQM-CP, however, can still achieve a low queue length value.
At high bandwidth, the percentage of occupied packet in bottleneck queue using FBSM-
AQM-CP is reduced to as low as possible (5%). When the offered load is low (1 to 10), we
observe the interesting result that FBSM-AQM-CP can maintain queue length even lower
than the RED algorithm. We also note that the PI scheme can achieve the lowest queue
length performance of the remaining schemes because PI controls queue length directly.
However, as we discuss in Section 7.2, PI has a minor problem with parameter adjustment
such that it cannot adapt to different scenarios easily. By exploiting checkpointing, our
proposed FBSM-AQM-CP can reduce overhead and memory usage to solve the queue
management problem using dynamic optimization. Therefore, our algorithm is adaptive
and flexible when network parameters are dynamically changing.

Symmetry 2023, 15, 1395 12 of 15

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
e
a
n
 Q

u
e
u
e
 L

e
n
g
th

 (
%

)

Link Bandwidth (Mbps)

DropTail
RED

FBSM-AQM-CP
PI

CoDel

(a) versus link bandwidth

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
e
a
n
 Q

u
e
u
e
 L

e
n
g
th

 (
%

)

Offered Load: Number of FTP Flows

DropTail
RED

FBSM-AQM-CP
PI

CoDel

(b) versus number of FTP flows

Figure 6. Queue length results.

7.3.2. Packet Drop Rate

Because removing bias against burstly sources is one of the piriorties of an AQM
algorithm and to achieve higher throughput, maintaining a consistent and low drop rate is
critical. In Figure 7a,b, our proposed FBSM-AQM-CP with checkpointing shows that the
packet drop rate is nearly same as that of RED and CoDel, which have the lowest. When
the higher link bandwidth is above 50 (Mbps), the packet drop rates of all schemes are reset
to approximately zero, and there is no drop (Figure 7a). On the other hand, if the offered
load increases so high, we observe that the drop rate can go up to infinity (Figure 7b).

Symmetry 2023, 15, 1395 13 of 15

 0

 2

 4

 6

 8

 1 10 100 1000

P
a
c
k
e
t
D

ro
p
 R

a
te

 (
%

)

Link Bandwidth (Mbps)

DropTail
RED

FBSM-AQM-CP
PI

CoDel

(a) versus link bandwidth

 0

 2

 4

 6

 8

 1 10 100 1000

P
a
c
k
e
t
D

ro
p
 R

a
te

 (
%

)

Offered Load: Number of FTP Flows

DropTail
RED

FBSM-AQM-CP
PI

CoDel

(b) versus number of FTP flows

Figure 7. Packet drop rate results.

7.3.3. Link Utilization

Finally, Figure 8a,b presents link utilization in percentages when we vary FTP flows
number and link bandwidth. The link is busy or occupied in the case of higher link
utilization, while the lower one indicates that the link is under-utilized. Interestingly,
our algorithm, FBSM-AQM-CP, reaches the intermediate value of link utilization when
compared to the remaining schemes. To compete with RED, although the performance
of FBSM-AQM-CP and RED are nearly same, we admit that by reducing the number of
checkpoints to implement FBSM-AQM-CP, without using many parameters except the
update interval ρ of time intervals, our algorithm is a good alternative to the AQM solution
and can be considered to be implemented in realistic network scenarios.

 20

 40

 60

 80

 100

 1 10 100 1000

L
in

k
 U

ti
liz

a
ti
o
n
 (

%
)

Link Bandwidth (Mbps)

DropTail
RED

FBSM-AQM-CP
PI

CoDel

(a) versus link bandwidth

 20

 40

 60

 80

 100

 1 10 100 1000

L
in

k
 U

ti
liz

a
ti
o
n
 (

%
)

Offered Load: Number of FTP Flows

DropTail
RED

FBSM-AQM-CP
PI

CoDel

(b) versus number of FTP flows

Figure 8. Bottleneck link utilization results.

8. Conclusions

We have introduced the adoption of the checkpointing method for an AQM algorithm
in network devices, namely FBSM-AQM-CP. The checkpointing method’s simulation results
and discussion are promising in some aspects. Its benefit is that it supports researchers
and engineers when making a decision on choosing the number of checkpoints to solve
a queue management problem with optimal control. We also compare our proposal to
the other popular AQM schemes under the ns2 simulation. The latter simulation results
demonstrate that FBSM-AQM-CP still achieves the same performance as the original
algorithm FBSM-AQM, but it stores a smaller number of states than before, thus reducing
memory usage. Future research will focus on the implementation of this algorithm into a
network router’s firmware.

Symmetry 2023, 15, 1395 14 of 15

Author Contributions: All authors contributed equally to this manuscript. Conceptualization, A.R.
and W.A.; methodology, A.R., W.A. and T.A.A.; software, A.R.; validation, W.A. and T.A.A.; formal
analysis, W.A., T.A.A. and W.-J.H.; investigation, W.A., T.A.A. and W.-J.H.; resources, W.-J.H.; data
curation, A. R. and W.-J.H.; writing—original draft preparation, T.A.A. and A.R.; writing—review and
editing, W.A. and T.A.A.; visualization, A.R. and W.-J.H.; supervision, W.-J.H.; project administration,
A.R. and W.-J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gettys, J. Bufferbloat: Bufferbloat: Dark Buffers in the Internet. Internet Comput. IEEE. 2011, 15, 96. [CrossRef]
2. Jahwan, K.; Seongjin, A.; Jinwook, C. A comparative study of queue, delay, and loss characteristics of AQM schemes in

QoS-enabled networks Comput. Artif. Intell. 2004, 23, 317–335.
3. Hollot, C.V.; Misra, V.; Towsley, D.; Gong, W.-B. A control theoretic analysis of RED. In Proceedings IEEE INFOCOM 2001,

Proceedings of the Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No.01CH37213), Anchorage, AK, USA, 22–26 April 2001; IEEE: Manhattan, NY, USA, 2001.

4. Danielson, C.; Borrelli, F. Symmetric constrained optimal control. IFAC Pap. Online 2015, 48, 366–371. [CrossRef]
5. Griewank, A.; Walther, A. Algorithm 799: Revolve: An Implementation of Checkpointing for the Reverse or Adjoint Mode of

Computational Differentiation. ACM Trans. Math. Softw. 2000, 26, 19–45. [CrossRef]
6. Griewank A. Achieving Logarithmic Growth Of Temporal And Spatial Complexity In Reverse Automatic Differentiation. Optim

Methods Softw.1992, 1, 35–54. [CrossRef]
7. Griewank, A.; Walther, A. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd ed.; Society for

Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008; 460p.
8. Kulkarni, P.; Nazeeruddin, M.; McClean, S.; Parr, G.; Black, M.; Scotney, B.; Dini, P. Deploying Lightweight Queue Management

for improving performance of Mobile Ad-hoc Networks (MANETs). In Proceedings of the 2006 International Conference on
Networking and Services (ICNS 2006), Silicon Valley, CA, USA, 16–21 July 2006; p. 102.

9. Kumar, K.D.; Ramya, I.; Masillamani, M.R. Queue Management in Mobile Adhoc Networks (Manets). In Proceedings of the
IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social
Computing, Hangzhou, China, 18–20 December 2010.

10. May, M.; Bolot, J.; Diot, C.; Lyles, B. Reasons Not to Deploy RED. In Proceedings of the Seventh International Workshop on
Quality of Service. IWQoS’99 (Cat. No. 98EX354), London, UK, 31 May–4 June 1999.

11. Iyer, M.; Tsai, W.K. Time-optimal network queue control: The case of a single congested node. In Proceedings of the Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), San Francisco,
CA, USA, 30 March–3 April 2003.

12. Hassan, M.; Sirisena, H. Optimal control of queues in computer networks. In Proceedings of the IEEE International Conference
on Communications, Conference Record (Cat. No. 01CH37240), Helsinki, Finland, 11–14 June 2001.

13. Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. Netw. IEEE/ACM Trans. 1993, 1, 397–413.
[CrossRef]

14. Kahe, G.; Jahangir, A.H.; Ebrahimi, B. A compensated PID active queue management controller using an improved queue
dynamic model. Int. J. Commun. Syst. 2014, 27, 4543–4563. [CrossRef]

15. Adams, R. Active Queue Management: A Survey. Commun. Surv. Tutor. IEEE 2013, 15, 1425–1476. [CrossRef]
16. Ren, F.; Lin, C.; Wei, B. Design a robust controller for active queue management in large delay networks. In Proceedings of the

Ninth International Symposium on Computers And Communications (IEEE Cat. No. 04TH8769), Alexandria, Egypt, 28 June–1
July 2004.

17. Xiang, S.; Xu, B.; Wu, S.; Peng, D. Gain Adaptive Smith Predictor for Congestion Control in Robust Active Queue Management.
In Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006.

18. Zhu, R.; Teng, H.; Fu, J. A predictive PID controller for AQM router supporting TCP with ECN. In Proceedings of the 2004 Joint
Conference of the 10th Asia-Pacific Conference on Communications and the 5th International Symposium on Multi-Dimensional
Mobile Communications Proceeding, Beijing, China, 29 August–1 September 2004.

19. Jinsheng, S.; Zukerman, M.; Palaniswami, M. Stabilizing RED using a Fuzzy Controller. In Proceedings of the 2007 IEEE
International Conference on Communications, Glasgow, UK, 24–28 June 2007.

http://doi.org/10.1109/MIC.2011.56
http://dx.doi.org/10.1016/j.ifacol.2015.11.307
http://dx.doi.org/10.1145/347837.347846
http://dx.doi.org/10.1080/10556789208805505
http://dx.doi.org/10.1109/90.251892
http://dx.doi.org/10.1002/dac.2634
http://dx.doi.org/10.1109/SURV.2012.082212.00018

Symmetry 2023, 15, 1395 15 of 15

20. Rong, P.; Natarajan, P.; Piglione, C.; Prabhu, M.S.; Subramanian, V.; Baker, F.; VerSteeg, B. PIE: A lightweight control scheme to
address the bufferbloat problem. In Proceedings of the 2013 IEEE 14th International Conference on High Performance Switching
and Routing (HPSR), Taipei, Taiwan, 8–11 July 2013.

21. Nichols, K.; Van, J. Controlling Queue Delay. Acmqueue 2012, 10, 20–34.
22. To, H.L.; Thi, T.M.; Hwang, W.J. Cascade Probability Control to Mitigate Bufferbloat under Multiple Real-World TCP Stacks.

Math. Probl. Eng. 2015, 2015, 628583. [CrossRef]
23. Jin, H.-L.; Di, T.-L.; Yu, H.; Zhang, R.-R. On the τ Decomposition Method for the Stability and Bifurcation of the TCP/AQM

Networks versus Time Delay. Symmetry 2022, 14, 463. [CrossRef]
24. Teo, K.L.; Li, B.; Yu, C.; Rehbock, V. Applied and Computational Optimal Control; Springer Optimization and Its Applications

Springer: Cham, Switzerland, 2021.
25. Guffens, V.; Bastin, G. Optimal adaptive feedback control of a network buffer. In Proceedings of the 2005, American Control

Conference, Portland, OR, USA, 8–10 June 2005.
26. Radwan, A.; Hoang-Linh, T.; Won-Joo, H. Optimal Control for Bufferbloat Queue Management Using Indirect Method with

Parametric Optimization. Sci. Program. 2016, 2016, 4180817. [CrossRef]
27. Radwan, A.; Vasilieva, O.; Enkhbat, R.; Griewank, A.; Guddat, J. Parametric approach to optimal control. Optim. Lett. 2012, 6,

1303–1316. [CrossRef]
28. Sternberg, J.; Griewank, A. Reduction of Storage Requirement by Checkpointing for Time-Dependent Optimal Control Problems

in ODEs. In Automatic Differentiation: Applications, Theory, and Implementations; Springer: Berlin/Heidelberg, Germany, 2006;
Volume 50, pp. 99–110.

29. Issariyakul, T.; Hossain, E. Introduction to Network Simulator NS2, 2nd ed.; Springer Publishing Company, Incorporated: New
York, NY, USA, 2011; 536p.

30. Reddy, T.B.; Ahammed, A. Performance Comparison of Active Queue Management Techniques. J. Comput. Sci. 2008, 4, 1020–1023.
[CrossRef]

31. Braden, B.; Clark, D.; Crowcroft, J.; Davie, B.; Deering, S.; Estrin, D.; Floyd, S.; Jacobson, V.; Minshall, G.; Partridge, C.; et al.
RFC2309: Recommendations on Queue Management and Congestion Avoidance in the Internet; RFC Editor: Marina del Rey, CA,
USA, 1998.

32. Gang, W.; Yong, X.; David, H. An NS2 TCP Evaluation Tool. In Internet-Draft IETF; IETF: Fremont, CA, USA, 2007; 15p.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2015/628583
http://dx.doi.org/10.3390/sym14030463
http://dx.doi.org/10.1155/2016/4180817
http://dx.doi.org/10.1007/s11590-011-0377-0
http://dx.doi.org/10.3844/jcssp.2008.1020.1023

	Introduction
	Related Works
	Model Description of Optimal Control Queue Model
	Characterization of Optimal Control

	Forward–Backward Sweeping Method (FBSM)
	FBSM-AQM without Checkpointing
	FBSM-AQM with Checkpointing
	Performance Evaluation and Discussion
	Tradeoff: Runtime & Memory Usage
	Comparison: AQM Schemes
	Comparison: Results
	Mean Queue Length
	Packet Drop Rate
	Link Utilization

	Conclusions
	References

