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Abstract: The hypercube is one of the best models for the network topology of a distributed system.
Recently, Padovan cubes and Lucas–Padovan cubes have been introduced as new interconnection
topologies. Despite their asymmetric and relatively sparse interconnections, the Padovan and Lucas–
Padovan cubes are shown to possess attractive recurrent structures. In this paper, we determine the
cube polynomial of Padovan cubes and Lucas–Padovan cubes, as well as the generating functions for
the sequences of these cubes. Several explicit formulas for the coefficients of these polynomials are
obtained, in particular, they can be expressed with convolved Padovan numbers and Lucas–Padovan
numbers. In particular, the coefficients of the cube polynomials represent the number of hypercubes,
a symmetry inherent in Padovan and Lucas–Padovan cubes. Therefore, cube polynomials are very
important for characterizing these cubes.

Keywords: Padovan sequence; Lucas–Padovan sequence; Padovan cube; Lucas–Padovan cube;
cube polynomial

MSC: 05C31; 11B37; 11B39; 11B83

1. Introduction

In this paper, we are concerned with the enumeration of hypercubes in Padovan and
Lucas–Padovan cubes. Thus, we first represent n-dimensional hypercube or n-cube for
short as Qn. For a graph G = (V, E), let cn(G), for n ≥ 0, be the number of induced
subgraphs of G isomorphic to Qn. Note that, in particular, c0(G) = |V(G)|, c1(G) = |E(G)|,
and c2(G) are the number of induced 4-cycles. The cube polynomial, C(G, x), of G, is the
corresponding counting polynomial, that is, the generating function

C(G, x) = ∑
n≥0

cn(G)xn.

This polynomial was introduced in [1], where it was observed that it is multiplicative for
the Cartesian multiplication of graphs: C(G�H, x) = C(G, x)C(H, x) holds for any graphs
G and H.

As it is well known, the Fibonacci cube has become a popular interconnection topology.
The Fibonacci cube was first introduced by Hsu [2], and many scholars studied cube
polynomial in [1,3–9].

In [10,11], the authors introduced a new interconnection called the Padovan cube
and Lucas–Padovan cube by using the Padovan sequence and Lucas–Padovan sequence,
respectively. They gave a characterization of the Padovan cube and Lucas–Padovan cube,
respectively.

The Padovan sequence is named after Padovan [12,13], and Kritsana, Shannon [14–16]
and Lee [17,18] studied Padovan sequence.
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The Padovan sequence is the sequence of integers Pn defined by the initial values
P1 = P2 = P3 = 1 and the recurrence relation, for n ≥ 2,

Pn+2 = Pn + Pn−1.

The first few numbers of Pn are 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, . . . . Moreover, the
generating function of the Padovan sequence is

g({Pn}, x) =
1 + x

1− x2 − x3 . (1)

In [11], the authors introduced a new sequence called the Lucas–Padovan sequence.
The way the authors introduced the Lucas–Padovan sequence is similar to the way Dur-
sun [19] introduced the Gaussian Leonardo numbers as something new. The Lucas–
Padovan sequence is defined in the same way that we define the Lucas sequence for
the Fibonacci sequence. In this paper, we represent the Lucas–Padovan sequence as {LPn}.
The Lucas–Padovan sequence is defined by the following rules; let LP1 = 1 and, for n ≥ 2,

LPn = Pn−1 + Pn+1,

where Pn is the nth Padovan number. The first few numbers of the Lucas–Padovan sequence
LPn, for n ≥ 1, are 1, 2, 3, 3, 5, 6, 8, 11, 14, 19, 25, 33, 44, 58, 77, . . . . They also gave a recurrence
relation on the sequence of the Lucas–Padovan as follows: For n ≥ 2, LPn+2 = LPn + LPn−1.
Moreover, the generating function of the Lucas–Padovan sequence is, n ≥ 0,

g({LPn+1}, x) = ∑
n≥0

LPn+1xn =
1 + 2x + 2x2

1− x2 − x3 . (2)

In [20], the authors introduced Lucas cubes. They defined the Lucas cube as the graph
whose vertices are the binary strings of length n without either two consecutive 1s or a 1 in
the first and in the last position, and in which the vertices are adjacent when their Hamming
distance is exactly 1. Eventually, they were able to construct the Lucas cube by deriving it
from the Fibonacci cube. In [21], the author gave the structure of the k-Lucas cubes.

Lee and Kim [10] introduced the Padovan cube by using the odd-Padovan sequence.
The odd-Padovan sequence {an} is the sequence of integers defined by an = P2n+1 for n ≥ 1.
Then the first few numbers of the odd-Padovan sequence an are 1, 2, 4, 7, 12, 21, 37, 65, 114,
200, 351, 616, . . .. Furthermore, they gave a recurrence relation on the odd-Padovan se-
quences as follows: For n ≥ 5,

an = an−1 + an−2 + an−4.

In [11], the authors introduced the Lucas–Padovan cube by using odd-Lucas–Padovan
sequence. The odd-Lucas–Padovan sequence {ln} is defined by the following rules: let
l1 = LP1, l2 = LP2, and ln = LP2n−3 for n ≥ 3. Then the first few numbers of the odd-
Lucas–Padovan sequence ln are 1, 2, 3, 5, 8, 14, 25, 44, 77, 135, . . .. Furthermore, they gave a
recurrence relation on the odd-Lucas–Padovan sequence as follows: For n ≥ 7,

ln = ln−1 + ln−2 + ln−4.

Despite their asymmetric and relatively sparse interconnections, the Padovan and
Lucas–Padovan cubes are shown to possess attractive recurrent structures. Since they
can be embedded in a subgraph of the Boolean cube and can have a Fibonacci cube as
a subgraph, and since they are also a supergraph of other structures, it is possible that
the Padovan cubes can be useful in fault-tolerant computing. Moreover, Padovan and
Lucas–Padovan cubes contain hypercubes that are symmetric. Therefore, it is important to
study how Padovan cubes contain hypercubes.
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In this paper, from now on, we simply refer to Lucas–Padovan as Ludovan to express
it in one word. So, for example, the odd-Lucas–Padovan cube would be expressed as the
odd-Ludovan cube.

2. Expressing Padovan Number and Lucas–Padovan Number as Binomial Coefficients

In this section, before discussing the cube, we first look at how we can express Padovan
number Pn and Ludovan number LPn with binomial coefficients.

Theorem 1. For the (n + 1)th Padovan number Pn+1,

Pn+1 =
n

∑
k=0

(
k + 1

n− 2k

)
.

Proof. Using the generating function, from (1),

∑
n≥0

Pn+1xn = ∑
α≥0

(1 + x)α+1x2α = ∑
α≥0

α+1

∑
β=0

(
α + 1

β

)
x2α+β.

Set 2α + β = n. Then

∑
n≥0

Pn+1xn = ∑
n≥0

n

∑
k=0

(
k + 1

n− 2k

)
xn.

Therefore, the proof is completed.

Theorem 2. For the (n + 1)th Ludovan number LPn+1,

LPn+1 =
n

∑
k=0

((
k

n− 2k

)
+ 2
(

k + 1
n− 2k− 1

))
.

Proof. Using the generating function, from (2),

∑
n≥0

LPn+1xn = ∑
α≥0

(1 + x)αx2α + 2 ∑
α≥0

(1 + x)α+1x2α+1

= ∑
α≥0

α

∑
β=0

(
α

β

)
x2α+β + 2 ∑

α≥0

α+1

∑
γ=0

(
α + 1

γ

)
x2α+γ+1.

Let us look carefully at the next two expressions in the above equation:

∑
α≥0

α

∑
β=0

(
α

β

)
x2α+β, (3)

and

∑
α≥0

α+1

∑
γ=0

(
α + 1

γ

)
x2α+γ+1. (4)

In (3), if we set n = 2α + β, then β = n− 2α. Hence, we have

∑
α≥0

α

∑
β=0

(
α

β

)
x2α+β = ∑

n≥0

n

∑
k=0

(
k

n− 2k

)
xn. (5)
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In (4), if we set n = 2α + γ + 1, then γ = n− 2α− 1. Hence, we have

∑
α≥0

α+1

∑
γ=0

(
α + 1

γ

)
x2α+γ+1 = ∑

n≥0

n

∑
k=0

(
k + 1

n− 2k− 1

)
xn. (6)

From (5) and (6), we can obtain the conclusion.

Corollary 1. For nonnegative integers k and n,

n

∑
k=0

((
k

n− 2k

)
+

(
k + 1

n− 2k− 1

))
=

n+1

∑
k=0

(
k + 1

n− 2k + 1

)
.

Proof. Since LPn+1 = Pn + Pn+2, from Theorems 1 and 2, we have

n

∑
k=0

((
k

n− 2k

)
+ 2
(

k + 1
n− 2k− 1

))
=

n−1

∑
k=0

(
k + 1

n− 2k− 1

)
+

n+1

∑
k=0

(
k + 1

n− 2k + 1

)
.

If k = n, then ( n+1
n−2n−1) = 0. That is

n−1

∑
k=0

(
k + 1

n− 2k− 1

)
=

n

∑
k=0

(
k + 1

n− 2k− 1

)
.

Therefore, the proof is completed.

For example, if n = 10, then we have

10

∑
k=0

((
k

10− 2k

)
+

(
k + 1

9− 2k

))
= 16,

and
11

∑
k=0

(
k + 1

11− 2k

)
= 16.

Thus, we can obtain that

10

∑
k=0

((
k

10− 2k

)
+

(
k + 1

9− 2k

))
=

11

∑
k=0

(
k + 1

11− 2k

)
.

3. Padovan Cube Polynomial

In this section and the next section, we determine the cube polynomials of Padovan
cubes and Ludovan cubes and read off the number of induced Qk in Padovan cubes and
Ludovan cubes, respectively. First, we need definitions of the Padovan cubes and the
Ludovan cubes. In [10,11], the authors gave the definitions of the Padovan cube and the
Ludovan cube by using the odd-Padovan sequence {an} and the odd-Ludovan sequence
{ln}, respectively.

We will consider the Padovan cubes in this section and the Ludovan cubes in the
next section. In order to define the Padovan cubes, first, a definition of Hamming distance
is required.

Let I = (bn−1 . . . b2b1) and J = (b′n−1 . . . b′2b′1) be two binary numbers. The Hamming
distance between I and J, denoted by H(I, J), is the number of bits where the two binary
numbers differ. For example, if I = (1101) and J = (1011), then H(I, J) = 2.

Definition 1. [Padovan cube] For the nth odd-Padovan number an, let N denote an integer,
where 1 ≤ N ≤ an for some n. Let IP and JP denote the Padovan codes of i and j, 0 ≤ i, j ≤ N− 1.
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The Padovan cube of size N is a graph (V(N), E(N)) where V(N) = {0, 1, 2, . . . , N − 1} and
{i, j} ∈ E(N) if and only if H(IP, JP) = 1.

The Padovan cube of order n, denoted by Pn, is a Padovan cube with an vertices. Define
P0 = (∅, ∅).

In [10], the authors gave the following theorem for a characterization of the Padovan
cubes Pn .

Theorem 3. For n ≥ 5, the Padovan cube Pn can be decomposed into Pn−1, Pn−2, and Pn−4; the
three subgraphs are pairwise disjoint.

For convenience we consider the empty string and set P1 = K1.
We determine the cube polynomial of the Padovan cubes and read off the number of in-

duced Qn in Pn. To obtain a feeling, we list the first few of them (see Figure 1): C(P1, x) = 1,
C(P2, x) = 2 + x, C(P3, x) = 4 + 4x + x2, C(P4, x) = 7 + 9x + 3x2, C(P5, x) = 12 + 19x +
8x2 + x3, C(P6, x) = 21 + 40x + 22x2 + 4x3.
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Figure 1. Padovan cubes from P1 to P7.

function, we need the Cartesian product for the two graphs. The Cartesian product G�H of
graphs G and H has the vertex set V(G)×V(H), and {u, v} is adjacent to {u′, v′} if either
u = u′ and {v, v′} ∈ E(H), or {u, u′} ∈ E(G) and v = v′(see. [9]).

Theorem 4. For the Padovan cube Pn, the generating function of the sequence {C(Pn+1, x)}∞
n=0

is

g(C(Pn+1, x), y) = ∑
n≥0

C(Pn+1, x)yn =
1 + (1 + x)y + (1 + x)2y2 + (1 + x)2y3

1− y− (1 + x)y2 − (1 + 2x)y4 .

Proof. Clearly, C(P1, x) = 1, C(P2, x) = 2 + x, C(P3, x) = 4 + 4x + x2, and C(P4, x) =
7 + 9x + 3x2.

Let n ≥ 4 and let

Xn = {v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 = 0},

Yn = {v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 = 1, bn−2 = 0},
and

Zn = {v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 = bn−2 = 1, bn−3 = bn−4 = 0}.
Then Xn induces a subgraph of Pn isomorphic to Pn−1. The first two coordinates of a
vertex from Yn are 10, hence Yn induces a subgraph of Pn isomorphic to Pn−2. The first four
coordinates of a vertex from Zn are 1100, hence Zn induces a subgraph of Pn isomorphic

Figure 1. Padovan cubes from P1 to P7.

Now, let us determine the generation function for the sequence of cube polynomials
corresponding to the Padovan cube. In the process of obtaining the generation function,
we need the Cartesian product for the two graphs. The Cartesian product G�H of graphs
G and H has the vertex set V(G)×V(H), and {u, v} is adjacent to {u′, v′} if either u = u′

and {v, v′} ∈ E(H), or {u, u′} ∈ E(G) and v = v′(see [6]).
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Theorem 4. For the Padovan cube, Pn, the generating function of the sequence {C(Pn+1, x)}∞
n=0 is

g(C(Pn+1, x), y) = ∑
n≥0

C(Pn+1, x)yn =
1 + (1 + x)y + (1 + x)2y2 + (1 + x)2y3

1− y− (1 + x)y2 − (1 + 2x)y4 .

Proof. Clearly, C(P1, x) = 1, C(P2, x) = 2 + x, C(P3, x) = 4 + 4x + x2, and C(P4, x) =
7 + 9x + 3x2.

Let n ≥ 4 and let

Xn = {v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 = 0},

Yn = {v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 = 1, bn−2 = 0},
and

Zn = {v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 = bn−2 = 1, bn−3 = bn−4 = 0}.
Then, Xn induces a subgraph of Pn isomorphic to Pn−1. The first two coordinates of a
vertex from Yn are 10; hence, Yn induces a subgraph of Pn isomorphic to Pn−2. The first four
coordinates of a vertex from Zn are 1100; hence, Zn induces a subgraph of Pn isomorphic
to Pn−4. Moreover, every vertex from Yn has exactly one neighbor in Xn and these edges
form a matching, every vertex from Zn has exactly one neighbor in Xn and these edges
form a matching, and every vertex from Zn has exactly one neighbor in Yn and these edges
form a matching.

Hence, for a subgraph H of Pn isomorphic to Qk, we have exactly one of the following
exclusive possibilities: (i) H lies in the subgraph induced by Xn, (ii) H lies in the subgraph
induced by Yn, (iii) H lies in the subgraph induced by Zn, or (iv) H = K�K2, where K is
isomorphic to Qk−1 and the edges of K�K2 corresponding to K2 are edges between Xn and
Yn, Xn and Zn, and Yn and Zn. It follows that, for n ≥ 4,

C(Pn+1, x) = C(Pn, x) + (1 + x)C(Pn−1, x) + (1 + 2x)C(Pn−3, x).

Setting g(C(Pn+1, x), y) = ∑n≥0 C(Pn+1, x)yn, we have

g(C(Pn+1, x), y) = 1 + (2 + x)y + (4 + 4x + x2)y2 + (7 + 9x + 3x2)y3 + ∑
n≥4

C(Pn+1, x)yn. (7)

In (7),

∑
n≥4

C(Pn+1, x)yn = y ∑
n≥3

C(Pn+1, x)yn + (1 + x)y2 ∑
n≥2

C(Pn+1, x)yn

+ (1 + 2x)y4 ∑
n≥0

C(Pn+1, x)yn.

Since

y ∑
n≥3

C(Pn+1, x)yn = y(g(C(Pn+1, x), y)− 1− (2 + x)y− (4 + 4x + x2)y2),

(1 + x)y2 ∑
n≥2

C(Pn+1, x)yn = (1 + x)y2(g(C(Pn+1, x), y)− 1− (2 + x)y),

and
(1 + 2x)y4 ∑

n≥0
C(Pn+1, x)yn = (1 + 2x)y4g(C(Pn+1, x), y),

from (7), we can obtain
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g(C(Pn+1, x), y) = 1 + (2 + x)y + (4 + 4x + x2)y2 + (7 + 9x + 3x2)y3

+ y(g(C(Pn+1, x), y)− 1− (2 + x)y− (4 + 4x + x2)y2)

+ (1 + x)y2(g(C(Pn+1, x), y)− 1− (2 + x)y) + (1 + 2x)y4g(C(Pn+1, x), y).

Therefore, we can obtain

g(C(Pn+1, x), y) = ∑
n≥0

C(Pn+1, x)yn =
1 + (1 + x)y + (1 + x)2y2 + (1 + x)2y3

1− y− (1 + x)y2 − (1 + 2x)y4 .

For example, from Theorem 4, we can obtain C(P7, x) = 24+ 75x + 66x2 + 23x3 + 2x4.
That is, we know that c0(P7) = 24 = |V(P7)|, c1(P7) = 75 = |E(P7)|, c2(P7) = 66,
which is the number of induced Q2, c3(P7) = 23, which is the number of induced Q3, and
c4(P7) = 2, which is the number of induced Q4.

Qn can be represented as the Cartesian product of n copies of K2. Hence the property
C(G�H, x) = C(G, x)C(H, x) immediately implies that for any n ≥ 0,

C(Qn, x) = (2 + x)n =
n

∑
k=0

(
n
k

)
(1 + x)k.

Now, we consider the C(Pn+1, x) for Padovan cubes.

Lemma 1. The power series representation of 1
1−y−(1+x)y2−(1+2x)y4 is

1
1− y− (1 + x)y2 − (1 + 2x)y4 = ∑

n≥0

n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)
×(1 + x)n−k−3γ(1 + 2x)γyn.

Proof.

1
1− y− (1 + x)y2 − (1 + 2x)y4 = ∑

α≥0
(y + (1 + x)y2 + (1 + 2x)y4)α

= ∑
α≥0

α

∑
β=0

(
α

β

)
((1 + x)y + (1 + 2x)y3)βya

= ∑
α≥0

α

∑
β=0

(
α

β

)(
1 +

(
1 + 2x
1 + x

)
y2
)β

(1 + x)βyα+β

= ∑
α≥0

α

∑
β=0

β

∑
γ=0

(
α

β

)(
β

γ

)
(1 + x)β−γ(1 + 2x)γyα+β+2γ.

Set n = α + β + 2γ. Then we have

1
1− y− (1 + x)y2 − (1 + 2x)y4 = ∑

α≥0

α

∑
β=0

β

∑
γ=0

(
α

β

)(
β

γ

)
(1 + x)β−γ(1 + 2x)γyα+β+2γ

= ∑
n≥0

n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)
(1 + x)n−k−3γ

× (1 + 2x)γyn.
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Theorem 5. For nonnegative integer n, let

R(Pn+1, x) = ∑
n≥0

n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)
(1 + x)n−k−3γ(1 + 2x)γ,

S(Pn+1, x) = ∑
n≥0

n−1

∑
k=0

n−k−1

∑
γ=0

(
k

n− k− 2γ− 1

)(
n− k− 2γ− 1

γ

)
(1 + x)n−k−3γ(1 + 2x)γ,

T(Pn+1, x) = ∑
n≥0

n−2

∑
k=0

n−k−2

∑
γ=0

(
k

n− k− 2γ− 2

)(
n− k− 2γ− 2

γ

)
(1 + x)n−k−3γ(1 + 2x)γ,

U(Pn+1, x) = ∑
n≥0

n−3

∑
k=0

n−k−3

∑
γ=0

(
k

n− k− 2γ− 3

)(
n− k− 2γ− 3

γ

)
(1 + x)n−k−3γ−1(1 + 2x)γ.

Then
C(Pn+1, x) = R(Pn+1, x) + S(Pn+1, x) + T(Pn+1, x) + U(Pn+1, x).

Proof. From Theorem 4, we know that

∑
n≥0

C(Pn+1, x)yn =
1

1− y− (1 + x)y2 − (1 + 2x)y4 +
(1 + x)y

1− y− (1 + x)y2 − (1 + 2x)y4

+
(1 + x)2y2

1− y− (1 + x)y2 − (1 + 2x)y4 +
(1 + x)2y3

1− y− (1 + x)y2 − (1 + 2x)y4 .

From Lemma 1, we obtain

∑
n≥0

C(Pn+1, x)yn = ∑
n≥0

(
n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)
(1 + x)n−k−3γ(1 + 2x)γ

+
n−1

∑
k=0

n−k−1

∑
γ=0

(
k

n− k− 2γ− 1

)(
n− k− 2γ− 1

γ

)
(1 + x)n−k−3γ(1 + 2x)γ

+
n−2

∑
k=0

n−k−2

∑
γ=0

(
k

n− k− 2γ− 2

)(
n− k− 2γ− 2

γ

)
(1 + x)n−k−3γ(1 + 2x)γ

+
n−3

∑
k=0

n−k−3

∑
γ=0

(
k

n− k− 2γ− 3

)(
n− k− 2γ− 3

γ

)
(1 + x)n−k−3γ−1(1 + 2x)γ

)
yn.

Therefore, we can obtain C(Pn+1, x) = R(Pn+1, x) + S(Pn+1, x) + T(Pn+1, x)+
U(Pn+1, x).

For example, from Theorem 5, we can obtain C(P6, x) = 21 + 40x + 22x2 + 4x3 and
C(P7, x) = 24 + 75x + 66x2 + 23x3 + 2x4.

Recall that, for the odd-Padovan sequence {an}, a1 = 1, a2 = 2, a3 = 4, a4 = 7, and
for n ≥ 5, an = an−1 + an−2 + an−4. Now we consider the generating function of the
odd-Padovan sequence.

Lemma 2. The generating function of the odd-Padovan sequence {an} is

g({an}, y) =
1 + y + y2 + y3

1− y− y2 − y4 .

Proof. Since a1 = 1, a2 = 2, a3 = 4, a4 = 7, and for n ≥ 5, an = an−1 + an−2 + an−4, we
have

g({an}, y) = ∑
n≥0

an+1yn = 1 + 2y + 4y2 + 7y3 + y4 ∑
n≥4

an+1yn−4. (8)
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In (8),

y4 ∑
n≥4

an+1yn−4 = y ∑
n≥3

an+1yn + y2 ∑
n≥2

an+1yn + y4 ∑
n≥0

an+1yn

= y(g({an}, y)− a1 − a2y− a3y2) + y2(g({an}, y)− a1 − a2y) + y4g({an}, y).

Therefore, we can obtain

g({an}, y) = (y + y2 + y4)g({an}, y) + 1 + y + y2 + y3.

Therefore, the proof is completed.

Recall that the cn(G) is the number of induced subgraphs of G isomorphic to Qn
for n ≥ 0. We next determine, for a fixed k, the generating function of the sequence
{ck(Pn+1)}∞

n=0:

Theorem 6. For a fixed integer k ≥ 0, let g(ck(Pn+1), y) = ∑n≥0 ck(Pn+1)yn. And let δ(y) =
y2(1 + y)(1− y + 3y3 + y4 + 2y6 + y8). Then we have

g(c0(Pn+1), y) =
1 + y + y2 + y3

1− y− y2 − y4 , g(c1(Pn+1), y) =
y + 2y2 − y4

(1− y− y2 − y4)2 ,

and, for n ≥ 2 and k ≥ 2,

g(ck(Pn+1), y) = ∑
n≥0

ck(Pn+1)yn =
(y2 + 2y4)k−2δ(y)

(1− y− y2 − y4)k+1 .

Proof. Since c0(Pn+1) = |V(Pn+1)| = an+1, from Lemma 2, we have

g(c0(Pn+1), y) =
1 + y + y2 + y3

1− y− y2 − y4 .

As in the proof of Theorem 4, let n ≥ 4 and consider the partition of V(Pn) into the sets Xn =
{v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 = 0}, Yn = {v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 =
1, bn−2 = 0}, and Zn = {v = bn−1bn−2 . . . b1 ∈ V(Pn)|bn−1 = bn−2 = 1, bn−3 = bn−4 = 0}.
Then a subgraph H of Pn isomorphic to Qk either lies in the subgraph induced by Xn, it lies
in the subgraph induced by Yn, it lies in the subgraph induced by Zn, or it is of the form
K�K2 with K = Qk−1 and the edges of K�K2 corresponding to K2 are edges between Xn
and Yn, Xn and Zn, and Yn and Zn. Thus we have, for n ≥ 4,

ck(Pn+1) = ck(Pn) + ck(Pn−1) + ck(Pn−3) + ck−1(Pn−1) + 2ck−1(Pn−3). (9)

Note that c0(P1) = a1 = 1, c0(P2) = a2 = 2, c0(P3) = a3 = 4, c0(P4) = a4 = 7, c1(P1) = 0,
c1(P2) = 1, c1(P3) = 4, c1(P4) = 9, and

g(c1(Pn+1), y) = ∑
n≥0

c1(Pn+1)yn = y + 4y2 + 9y3 + ∑
n≥4

c1(Pn+1)yn. (10)

In (10), we have, from (9),
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∑
n≥4

c1(Pn+1)yn = y ∑
n≥3

c1(Pn+1)yn + y2 ∑
n≥2

c1(Pn+1)yn + y4g(c1(Pn+1), y)

+ y2 ∑
n≥2

c0(Pn+1)yn + 2y4g(c0(Pn+1), y)

= y(g(c1(Pn+1), y)− c1(P1)− c1(P2)y− c1(P3)y2)

+ y2(g(c1(Pn+1), y)− c1(P1)− c1(P2)y) + y4g(c1(Pn+1), y)

+ y2(g(c0(Pn+1), y)− c0(P0)− c1(P2)y) + 2y4g(c0(Pn+1), y)

= (y + y2 + y4)g(c1(Pn+1), y)− 2y2 − 7y3 + (y2 + 2y4)g(c0(Pn+1), y).

Therefore, we have

g(c1(Pn+1), y) = y + 4y2 + 9y3 + (y + y2 + y4)g(c1(Pn+1), y)− 2y2 − 7y3

+ (y2 + 2y4)g(c0(Pn+1), y).

Since g(c0(Pn+1), y) = 1+y+y2+y3

1−y−y2−y4 , we can obtain

g(c1(Pn+1), y) =
y + 2y2 − y4

(1− y− y2 − y4)2 .

Since c2(P1) = c2(P2) = 0, c2(P3) = 1, and c2(P4) = 3, a routine computation yields

g(c2(Pn+1), y) =
δ(y)

(1− y− y2 − y4)3 ,

where δ(y) = y2(1 + y)(1 − y + 3y3 + y4 + 2y6 + y8). Also, since c3(P1) = c3(P2) =
c3(P3) = c3(P4) = 0, a routine computation yields

g(c3(Pn+1), y) =
(y2 + 2y4)δ(y)

(1− y− y2 − y4)4 .

By induction on k ≥ 3, we can obtain

g(ck(Pn+1), y) =
(y2 + 2y4)k−2δ(y)

(1− y− y2 − y4)k+1 .

Therefore, the proof is completed.

Now, we define a sequence {rn} of positive integers by using the odd-Padovan
sequence {an}. Let {rn} be defined as following; r0 = a1, r1 = a1, r2 = a2, r3 = a1 + a2,
r4 = a2 + a3, and for n ≥ 5, rn = rn−1 + rn−2 + rn−4. The first few values of rn are
1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, . . ..

Lemma 3. The generating function of the sequence {rn} is

g({rn}, y) =
1

1− y− y2 − y4 .

Proof. Since
g({rn}, y) = 1 + y + 2y2 + 3y3 + 6y4 + y5 ∑

n≥5
rnyn−5,

and, for n ≥ 4, rn = rn−1 + rn−2 + rn−4, we have
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g({rn}, y) =
1

1− y− y2 − y4 .

Lemma 4. For the sequence {rn},

rn =
n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)
.

That is,

g({rn}, y) = ∑
n≥0

(
n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

))
yn.

Proof. Since
∑
n≥0

rnyn = ∑
α≥0

(1 + y + y3)αyα,

we have

∑
α≥0

(1 + y + y3)αyα = ∑
α≥0

α

∑
β=0

(
α

β

)
(1 + y2)βyα+β

= ∑
α≥0

α

∑
β=0

β

∑
γ=0

(
α

β

)(
β

γ

)
yα+β+2γ. (11)

Set n = α + β + 2γ. Then β = n− α− 2γ, and hence, if β = 0, then n = α + 2γ. So, from
(11), we can obtain

g({rn}, y) = ∑
n≥0

n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)
yn.

Therefore, the proof is completed.

Corollary 2. For nonnegative integer n, k,

2n+2

∑
k=0

(
k + 1

2n− 2k + 2

)
=

n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)

+
n−1

∑
k=0

n−k−1

∑
γ=0

(
k

n− k− 2γ− 1

)(
n− k− 2γ− 1

γ

)

+
n−2

∑
k=0

n−k−2

∑
γ=0

(
k

n− k− 2γ− 2

)(
n− k− 2γ− 2

γ

)

+
n−3

∑
k=0

n−k−3

∑
γ=0

(
k

n− k− 2γ− 3

)(
n− k− 2γ− 3

γ

)
.

Proof. From Lemma 4, we have, for i ≥ 0,

yi

1− y− y2 − y4 = ∑
n≥0

n−i

∑
k=0

n−k−i

∑
γ=0

(
k

n− k− 2γ− i

)(
n− k− 2γ− i

γ

)
yn.

And, from Theorem 6, we have
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∑
n≥0

an+1yn =
1 + y + y2 + y3

1− y− y2 − y4 .

Since an+1 = P2n+3 = ∑2n+2
k=0 ( k+1

2n−2k+2), we can obtain the conclusion.

Lee and Kim [10] gave the number of edges of the Padovan cube Pn as follows, for
n ≥ 4,

ε(Pn+1) = ε(Pn) + ε(Pn−1) + ε(Pn−3) + an−1 + 2an−3,

where ε(Pn) is the number of edges of the Padovan cube Pn. In this paper, we give the
number of edges of the Padovan cube Pn. To do this, we first introduce the convolution
of the two sequences. Let {An}∞

n=0 and {Bn}∞
n=0 be two sequences of numbers, then the

convolution of An and Bn is the sequence {(A ∗ B)n}∞
n=0 defined by (A ∗ B)n = ∑n

i=0 AiBn−i
(see [6]). From the definition, it is clear that the generating function of {(A ∗ B)n}∞

n=0 is the
product of those of {An}∞

n=0 and {Bn}∞
n=0 We will denote by A∗m the sequence defined by

A∗1 = A and A∗m = A ∗ A∗(m−1), m ≥ 2.

Theorem 7. The number of edges of the Padovan cube Pn+1 is, for n ≥ 4,

c1(Pn+1) = r∗2n−1 + 2r∗2n−2 − r∗2n−4,

where r∗2k = ∑k
i=0 rirk−i for k ≥ 0.

Proof. Note that c1(Pn+1) = |E(Pn+1)|. Since g({rn}, y) = 1
1−y−y2−y4 , we have

∞

∑
n=0

r∗2n yn =
1

(1− y− y2 − y4)2 .

Thus, the coefficient at yn in the expansion of 1
(1−y−y2−y4)2 is r∗2n and the coefficient at yn in

the expansion of yk

(1−y−y2−y4)2 is r∗2n−k. From Theorem 6, we know that

g(c1(Pn+1, y)) =
y + 2y2 − y4

(1− y− y2 − y4)2 .

Thus, the coefficient at yn in the expansion of y+2y2−y4

(1−y−y2−y4)2 is c1(Pn+1) = r∗2n−1 + 2r∗2n−2 −
r∗2n−4.

4. Lucas–Padovan Cube Polynomial

In this section, we determine the cube polynomial of Ludovan cubes and read off the
number of induced Qk in Ln. First, let us determine the generation function of the sequence
of cube polynomials corresponding to the Ludovan cube.

Definition 2. [Ludovan cube] For the nth odd-Ludovan number ln, let N denote an integer,
where 1 ≤ N ≤ ln for some n. Let IL and JL denote the Ludovan codes of i and j, 0 ≤ i, j ≤ N − 1.
The Ludovan cube of size N is a graph (V(N), E(N)) where V(N) = {0, 1, 2, . . . , N − 1} and
{i, j} ∈ E(N) if and only if H(IP, JP) = 1.

The Ludovan cube of order n, denoted by Ln, is a Ludovan cube with ln vertices. Define
L0 = (∅, ∅).

In [11], the authors gave the following theorem for a characterization of the Ludovan
cubes Ln.
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Theorem 8. For n ≥ 7, the Ludovan cube Ln can be decomposed into Ln−1, Ln−2, and Ln−4; the
three subgraphs are pairwise disjoint.

For convenience, we consider the empty string and set L1 = K1.
We determine the cube polynomial of the Ludovan cubes and read off the number

of induced Qn in Ln. To obtain a feeling, we list the first few of them (see Figure 2):
C(L1, x) = 1, C(L2, x) = 2 + x, C(L3, x) = 3 + 2x, C(L4, x) = 5 + 5x + x2, C(L5, x) =
8 + 10x + 3x2, C(L6, x) = 14 + 22x + 9x2 + x3.
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Theorem 9. For the Ludovan cube Ln, the generating function of the sequence {C(Ln+1, x)}∞
n=0 is

∑
n≥0

C(Ln+1, x)yn =
1 + (1 + x)y− (1 + 2x)y4 − (1 + 3x + 2x2)y5

1− y− (1 + x)y2 − (1 + 2x)y4 .

Proof. Clearly, C(L1, x) = 1, C(L2, x) = 2 + x, C(L3, x) = 3 + 2x, C(L4, x) = 5 + 5x + x2,
C(L5, x) = 8+ 10x + 3x2, C(L6, x) = 14+ 22x + 9x2 + x3. Let Xn = {v = bn−1bn−2 . . . b1 ∈
V(Ln)|bn−1 = 0}, Yn = {v = bn−1bn−2 . . . b1 ∈ V(Ln)|bn−1 = 1, bn−2 = 0}, and
Zn = {v = bn−1bn−2 . . . b1 ∈ V(Ln)|bn−1 = bn−2 = 1, bn−3 = bn−4 = 0} for n ≥ 6.

Similarly as in the proof of Theorem 4, we can obtain that, for n ≥ 5,

C(Ln+1, x) = C(Ln, x) + (1 + x)C(Ln−1, x) + (1 + 2x)C(Ln−3, x).

Set g(C(Ln+1, x), y) = ∑n≥0 C(Ln+1, x)yn, we have

g(C(Ln+1, x), y) = 1 + (2 + x)y + (3 + 2x)y2 + (5 + 5x + x2)y3 + (8 + 10x + 3x2)y4

+ (14 + 22x + 9x2 + x3)y5 + ∑
n≥6

C(Ln+1, x)yn. (12)

In (12), we can obtain

(1− y− (1 + x)y2 − (1 + 2x)y4)g(C(Ln+1, x), y) = 1 + (1 + x)y− (1 + 2x)y4 − (1 + 3x + 2x2)y5.

Therefore, we obtain

g(C(Ln+1, x), y) =
1 + (1 + x)y− (1 + 2x)y4 − (1 + 3x + 2x2)y5

1− y− (1 + x)y2 − (1 + 2x)y4 .



Symmetry 2023, 15, 1389 14 of 17

For example, from Theorem 9, we can obtain C(L7, x) = 25 + 48x + 26x2 + 4x3. That
is, we know that c0(L7) = 25 = |V(L7)|, c1(L7) = 48 = |E(L7)|, c2(L7) = 26, which is the
number of induced Q2, and c3(L7) = 4, which is the number of induced Q3.

Theorem 10. For nonnegative integer n, let

R′(Ln+1, x) = ∑
n≥0

n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)
(1 + x)n−k−3γ(1 + 2x)γ,

S′(Ln+1, x) = ∑
n≥0

n−1

∑
k=0

n−k−1

∑
γ=0

(
k

n− k− 2γ− 1

)(
n− k− 2γ− 1

γ

)
(1 + x)n−k−3γ(1 + 2x)γ,

T′(Ln+1, x) = ∑
n≥0

n−4

∑
k=0

n−k−4

∑
γ=0

(
k

n− k− 2γ− 4

)(
n− k− 2γ− 4

γ

)
(1 + x)n−k−3γ−4(1 + 2x)γ+1,

U′(Ln+1, x) = ∑
n≥0

n−5

∑
k=0

n−k−5

∑
γ=0

(
k

n− k− 2γ− 5

)(
n− k− 2γ− 5

γ

)
(1 + x)n−k−3γ−5

× (1 + 2x)γ(1 + 3x + 2x2).

Then
C(Ln+1, x) = R′(Ln+1, x) + S′(Ln+1, x) + T′(Ln+1, x) + U′(Ln+1, x).

Proof. From Theorem 9, we know that

∑
n≥0

C(Ln+1, x)yn =
1 + (1 + x)y− (1 + 2x)y4 − (1 + 3x + 2x2)y5

1− y− (1 + x)y2 − (1 + 2x)y4 .

As in the proof of Theorem 5, we can obtain C(Ln+1, x) = R′(Ln+1, x) + S′(Ln+1, x) +
T′(Ln+1, x) + U′(Ln+1, x).

For example, from Theorem 10, we have C(L7, x) = 25 + 48x + 26x2 + 4x3 and
C(L8, x) = 44 + 99x + 68x2 + 16x3 + x4.

Recall that, for the odd-Ludovan sequence {ln}, l1 = 1, l2 = 2, l3 = 3, l4 = 5, l5 = 8,
l6 = 14, and for n ≥ 7, ln = ln−1 + ln−2 + ln−4. Now, we consider the generating function
of the odd-Ludovan sequence {ln}.

Lemma 5. The generating function of the odd-Ludovan sequence {ln} is

g({ln}, y) =
1 + y− y4 − y5

1− y− y2 − y4 .

Proof. Since l1 = 1, l2 = 2, l3 = 3, l4 = 5, l5 = 8, l6 = 14, and for n ≥ 6, ln+1 =
ln + ln−1 + ln−3, we have

g({ln}, y) = 1 + 2y + 3y2 + 5y3 + 8y4 + 14y5 + y6 ∑
n≥6

ln+1yn−6.

As in the proof of Lemma 2, we obtain

g({ln}, y) = (y + y2 + y4)g({ln}, y) + 1 + y− y4 − y5.

Therefore, the proof is completed.
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Theorem 11. For a fixed k ≥ 0, let g(ck(Ln+1), y) = ∑n≥0 ck(Ln+1)yn. And let θ(y) =
y3 + 4y6 + 2y7 + 4y9 + 4y10 + y11. Then, we have

g(c0(Ln+1), y) =
1 + y− y4 − y5

1− y− y2 − y4 , g(c1(Ln+1), y) = ∑
n≥0

c1(Ln+1)yn =
y + 4y6 + 2y7 + y9

(1− y− y2 − y4)2 ,

and, for k ≥ 2,

g(ck(Ln+1), y) =
(y2 + 2y4)k−2θ(y)

(1− y− y2 − y4)k+1 .

Proof. Since c0(Ln+1) = |V(Ln+1)| = ln+1, we have, from Lemma 5,

g(c0(Ln+1), y) =
1 + y− y4 − y5

1− y− y2 − y4 .

As in the proof of Theorem 6, for n ≥ 5, we have

ck(Ln+1) = ck(Ln) + ck(Ln−1) + ck(Ln−3) + ck−1(Ln−1) + 2ck−1(Ln−3). (13)

Since c0(L1) = 1, c0(L2) = 2, c0(L3) = 3, c0(L4) = 5, c0(L5) = 8, c0(L6) = 14, c1(L1) = 0,
c1(L2) = 1, c1(L3) = 2, c1(L4) = 5, c1(L5) = 10, c1(L6) = 22, and

g(c1(Ln+1), y) = y + 2y2 + 5y3 + 10y4 + 22y5 + ∑
n≥6

c1(Ln+1)yn,

we can obtain

g(c1(Ln+1), y) = (y + y2 + y4)g(c1(Ln+1), y) + y− 2y4 − 3y5 + (y2 + 2y4)g(c0(Ln+1), y).

Since g(c0(Ln+1), y) = 1+y−y4−y5

1−y−y2−y4 , we have

g(c1(Ln+1), y) =
y + 4y6 + 2y7 + y9

(1− y− y2 − y4)2 .

Since c2(L1) = c2(L2) = c2(L3) = 0, c2(L4) = 1, c2(L5) = 3, c2(L6) = 9, a routine
computation, using (13), yields

g(c2(Ln+1), y) =
θ(y)

(1− y− y2 − y4)3 ,

where θ(y) = y3 + 4y6 + 2y7 + 4y9 + 4y10 + y11. Since c3(L1) = c3(L2) = c3(L3) =
c3(L4) = c3(L5) = 0 and c3(L6) = 1, a routine computation, using (13), yields

g(c3(Ln+1), y) =
(y2 + 2y4)θ(y)

(1− y− y2 − y4)4 .

By induction on k ≥ 3, we can obtain

g(ck(Ln+1), y) =
(y2 + 2y4)k−2θ(y)

(1− y− y2 − y4)k+1 .

Therefore, the proof is completed.

Corollary 3. For nonnegative integer n, k,
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2n−2

∑
k=0

((
k

2n− 2k− 2

)
+ 2
(

k + 1
2n− 2k− 3

))
=

n

∑
k=0

n−k

∑
γ=0

(
k

n− k− 2γ

)(
n− k− 2γ

γ

)

+
n−1

∑
k=0

n−k−1

∑
γ=0

(
k

n− k− 2γ− 1

)(
n− k− 2γ− 1

γ

)

−
n−4

∑
k=0

n−k−4

∑
γ=0

(
k

n− k− 2γ− 4

)(
n− k− 2γ− 4

γ

)

−
n−5

∑
k=0

n−k−5

∑
γ=0

(
k

n− k− 2γ− 5

)(
n− k− 2γ− 5

γ

)
.

Proof. From Lemma 4, we have, for i ≥ 0,

yi

1− y− y2 − y4 = ∑
n≥0

n−i

∑
k=0

n−k−i

∑
γ=0

(
k

n− k− 2γ− i

)(
n− k− 2γ− i

γ

)
yn,

and, from Lemma 5 and Theorem 11, we have

∑
n≥0

ln+1yn =
1 + y− y4 − y5

1− y− y2 − y4 .

Since

ln+1 = L2n−1 =
2n−2

∑
k=0

((
k

2n− 2k− 2

)
+ 2
(

k + 1
2n− 2k− 3

))
,

we can obtain the conclusion.

Lee and Kim [11] gave the number of edges of the Ludovan cube Ln as follows: for
n ≥ 6, Then

ε(Ln+1) = ε(Ln) + ε(Ln−1) + ε(Ln−3) + ln−1 + 2ln−3.

where ε(Ln) is the number of edges of the Ludovan cube Ln. From Theorem 11 and
Corollary 3, we can obtain another equation for the number of edges of the Ludovan
cube Ln.

Theorem 12. The number of edges of the Ludovan cube Ln+1 is, for n ≥ 9,

c1(Ln+1) = r∗2n−1 + 4r∗2n−6 + 2r∗2n−7 + r∗2n−9,

where r∗2k = ∑k
i=0 rirk−i.

5. Conclusions

In this paper, we covered how to express Padovan and Lucas–Padovan numbers in
terms of binomial coefficients by using generating functions. The main contribution of
this paper is to present the cube polynomials of Padovan and Lucas–Padovan cubes and
analyze their structural properties. The structure and applications of the Padovan cube and
the Lucas–Padovan cube have already been introduced in previous studies [10,11].

By obtaining the polynomial for the Padovan cube, we can know exactly how many
hypercubes of each degree exist in the Padovan cube. For the Lucas–Padovan cube, the cube
polynomial also tells us exactly how many hypercubes there are. This is a very important
step in characterizing the structure of both cubes.

However, since the Padovan and Lucas–Padovan sequences are not simple, the cubes
introduced by them are very complex, and the cube polynomials are also very complex.
In the future, if we study the properties of Padovan and Lucas–Padovan cubes to find a
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simpler way to represent them, and from that, we can more accurately determine the casting
of these cubes, and they can be used in various fields like binary cubes and Fibonacci cubes.
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