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Abstract: The aim of this research study is to establish a novel subclass of meromorphic functions in
the mean of g-derivatives in combination with the well-known polylogarithm function. Two additional
subfamilies for this class are also defined. Furthermore, the coefficient inequality and distortion bounds
are highlighted. Finally, the convex families and related set structures are thoroughly investigated.
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1. Introduction

The evolution of polylogarithm function, also known as Jonquiere’s function, was
started in 1696 by two eminent mathematicians, Leibniz and Bernoulli [1]. In their work, the
polylogarithm function was defined using an absolute convergent series. The development
of this function was so significant that it was utilized in the research work of other promi-
nent mathematicians such as Euler, Spence, Abel, Lobachevsky, Rogers, Ramanujan, etc.,
allowing them to discover various functional identities of great importance as a result [2].
It should come as no surprise that the increased utilization of the polylogarithm function
appears to be related to its importance in a number of key areas of mathematics and physics
such as topology, algebra, geometry, complex analysis quantum field theory, and mathe-
matical physics [3-6]. In order to better understand their features, several new subclasses
of meromorphic functions associated with polylogarithm functions and its analogues were
developed, and their properties were investigated using various operators [7-9].

From another perspective, many special functions in analytic number theory and
mathematical physics were used to derive new operators of a convolution attitude with nu-
merous applications. This evidently enriched the geometric function theory and prompted
many researchers to pursue their research in this area. One of the most important operators
is derived from a well-known branch of mathematics, namely quantum calculus (or simply
g-calculus), which has served as a bridge between mathematics and physics through its
magnificent applications in many fields including number theory, quantum theory, dif-
ferential equations, combinatorics, orthogonal polynomials, hypergeometric functions,
electronics and most recently in quantum computing [10,11].

The methodical invention of g-calculus, and hence the stemmed g-derivative operator,
is credited to the initial founder Jackson [12,13], who established it in the early twentieth
century. Ever since and up until three decades ago, the appreciation of g-calculus applica-
tions by researchers in many domains of mathematics and physics was not discernible. In
1990, Ismail et al. [14] reported on a first attempt to use g-calculus in geometric function
theory. They employed g-derivatives to define a generalized version of what is known
as g-starlike functions and then analyzed its properties. Since then, the implementation
of g-calculus, notably in geometric function theory, has risen substantially. For instance,
Sirivastava has demonstrated a great interest in g-derivatives by extensively researching
their significance in geometric function theory, as seen in his research effort [15].
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Of late, a new research direction has taken a detour towards uncovering the signifi-
cance of a g-derivative operator by applying it in the creation of new subclasses of special
functions based on bi-univalent, univalent and meromorphic functions and then examining
its characteristics [16-24]. Nonetheless, the involvement of g-derivatives in the develop-
ment and examination of novel subclasses of meromorphic functions and their features,
particularly those linked with polylogarithm functions, has not been reported before. Thus,
our current investigation is deemed the first of its type, focusing on the implementation
of a g-derivative operator to the previously established polylogarithm function based on
a meromorphic function. This genuine piece of work could pave the way for future re-
searchers to utilize this approach to introduce and explore the properties of new subclasses
of meromorphic functions with potential applications in geometric function theory.

Let X denotes the class of functions of the form

1 o0
f(z) = St Y a2 ag >0, (1)
k=1

which are analytic in the punctured open unit disk
U :={z:2€C,0<|z| <1} = U\{0}.

A function f(z) in X is said to be meromorphically starlike of order 7 if and only if

(T sy qew), @

for some (0 < 57 < 1). We denote by X*(1) the class of all meromorphically starlike
functions of order 5. The Hadamard product of two functions has been widely used in
factorizing a newborn function (see, [25-27]). For functions f € X given by (1), and g € &
given by

1 [ee]
g(z) ==+ Y b by >0,
Z =

the Hadamard product (or convolution) of f and g is defined by
1 & k
(Fx8)(z) = - + L abiz",
k=1

which is used in introducing the following function.
Let Li(z) denote the well-known polylogarithm function, which was invented in 1696
by Leibniz and Bernoulli, as mentioned in [1].

© k
. z
Lic(z) =) w (]z| <1,¢>2).
k=1

In 2014, Alhindi and Darus [28] defined the new operator Q). f (z) in conjunction with
the meromorphic functions as follows:

Qcf(z) = Pe(2) * f(2)

1 k *
= —_ _— M >
+) (k+2)cak2’ (zeU*c>2), ©)]

where the function ®.(z) is given by

@ (z) = 27 2Lic(z) = % + i
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Gasper and Rahman [29] defined the g—derivative (0 < g < 1) of a meromorphic
function f of the form (1), by

flaz) = f(2). ]

Dyf(z) = =1z (zeU"). (4)
From (3) and (4) we obtain:
D,Qcf(z) = 3 kg (z € U, c > 2); (5)
=1
where
_1-g" _ 2, 3 k-1
klg = =g =l4+q+g°+qg +..+q .

Simple calculation yields to the following equation:

lim DyQcf(z) = Q.f(2)

q—1-

Definition 1. Let X;(a, B,17) denote the subclass of X. of functions f of the form (1) that satisfies
the condition:

2(D4Qef(2)) — 3
, 6
122 (DgQef(2)) + (L +1)§ — & <F ©)

where Dy Q) f(z) is given in (5),0< g <1,0<a<1,0<y<1land0<p <1

2. Main Results

In this section, we state coefficient estimates for functions that belong to the class
%;(a, B,17), then we discuss some characteristics of sub-classes of X, followed by studying
the convexity and connectedness.

Firstly, we determine the coefficient estimates for functions belonging to the class
%;(a, B, 17) in the following theorem.

Theorem 1. Suppose f(z) € L, then f(z) € X4(a, B, 1) if and only if:

i (k=1+3p)q T < 1. @)

B(n+1)(1—a)

The result is sharp for G(z) given by

1 B 1-a)
&= -1 © ®

Proof. Let f(z) € X;(a, B, 1), then (6) holds true. By replacing (5) in (6), we obtain

Yo (k— )[k]q”kzz
(n+1)g 1 (a — 1) + Xy n{klgarz?

<B. 9)

It is known that Re{z} < |z|, for all z, therefore,

o (k= 1)[kga
Re{ 1+ 1Dq 11— a) — 5y nKga? } <P (19
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By letting z — 17 through real values, one can obtain

[K]g(k =1+ yB)ax < By +1)g (1 —a). (11)

agk

k=1

On the other hand, suppose (7)is satisfied. It is enough to show that
H= ]ﬁ(pqncf(z))’ - Zq*l‘ - ,B’;yzz(Dchf(z)) —g (1 q)aq%] <0.  (12)

For 0 < |z] =7 < 1, we have

[e9)

H = | g[qu<k—1>akz2]—ﬁ\<n+l>q1<1—a>— L nlkn|
< koil[k]q(k—l)lﬂklfz—/3(77+1)61_1(1—04)+ :'iln[kwkw

[klg(k =1+ 5B alr? = p(y + 1)~ (1 - a).

IN
hgk

k

Il
—

Since the above inequality holds true for all 0 < r < 1 and by letting »r — 1~ and
applying (7), we conclude that H < 0 and the proof is complete. O

2.1. Characteristics of Subclasses of ©

We introduce two subfamilies of > and derive some important characteristics of them.
For y € Rsuch that 0 < y < 1, let £! be a subclass of ¥ satisfying the condition

vfy) =1, (13)
and X2 be a subclass of ¥ satisfying the condition
—Vf ) =1, (14)
and ' 4
(e, B,1,y) = Zg(a, B,17) N EY i=1,2, (15)

Theorem 2. Suppose f(z) € %, then f(z) € X} (a, B, 1,y) if and only if

[k]g(k—1+npB)q
< UERe= +y2>”k =t (16

2

k=1

Proof. Since f(z) € Z;(zx, B, 1,y), we have

1 e}
vfy) =y ( +3 “k]/k> =1 (17)
¥y =
by the definition of !, we have
1=1-Y a/™. (18)
k=1

By substituting (18) in (7), we obtain

e

Lk~ 1+ 9B < Bl + )1 0) (1~ L o),

k=1
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which yields to

ﬁ Ko (k — 1+ B)qag + ki Blp+1)(1 - ) < Bl +1)(1 - a),

and

-1
¥< EviE *y)“"gl'

which completes the proof of the theorem. [

Theorem 3. Suppose f(z) € X, then f(z) € Z%(DC, B,n,y) if and only if

2 [k]g(k—1
L <[ﬁ}(q'7( - y2>”k =t )

k=1

Proof. Since —y2f (y) = 1, we have

1=1+ ) a/f. (20)
k=1
By substituting (18) in (7), we obtain the required result. [
Corollary 1. Let f(z) be a function of the form (1) and f(z) € Z}](ac, B, 1,y), then

Bl +1)(1—w)
[klg(k—1+nB)g+ B +1)(1 —a)y*

Corollary 2. Let f(z) be a function of the form (1) and f(z) € Zé(zx, B, 1,y), then

ar <

plp+1)(1 —w)

%= Ty 1+ 1B)g — By + 1)(1 — a)y?

Next, we obtain distortion bounds of the classes Z;(zx, B, n,y) fori=1,2.
Theorem 4. Suppose f(z) € Z}I(oc, B, 1,y), thenfor0 < |z| =r <1

nBg — By +1)(1 —a)r?
&= BT BT ) A= )

The result is sharp for

Ly(z) = PP+ 1)(1 = @)z
' z(nBg + By +1)(1 —a)y?)’

Proof. Since f(z) € Zi(«,B,1,y), so by (16), we have

- Bl +1)(1—«)
k;ak = uBa+ B+ D - )2

(21)

By using (18), we obtain

1=1-— k41 Biq ' ”
I;aky ~nBg+ B +1)(1—a)y? (22)
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Therefore,
1 &,
f@ = s+ Lo
k=1
> L r i a
= ’ k
k=1
npq -1

(1Ba) + Bl + 1) (1 — )y

o, Bl +1)(1—w)
nBa+ B +1)(1 — a)y?
nBq — By +1)(1 —a)r? ,
r(na+Bln+1)(1 - a)p?)

which completes the proof. [

Theorem 5. Suppose f(z) € Z%(oc, B, 1,y), then for0 < |z| =r <1

nBq+ Bl +1)(1 — a)r?
(mBg— B +1)(1 —a)y?)’

f)] < -

The result is sharp for

La(z) = nBq+ By +1)(1 —a)z? |
z(nBg — Bl +1)(1 — a)y?)

Proof. Since f(z) € Z;(zx, B,1,y), so by (19), we have

S Bl +1)(1—a)
k:zl o= npq— Bl +1)(1 —a)y*’ (23)

From (20), we have

114N gkl Biq _ 04
+k:21aky Svﬁq—ﬁ(ﬂﬂ)(l—w)yz @)

Thus,
f@l = 2+ Y e
k=1

1 (o)
7—|—1’2ﬂk
L |

1Bq 1
(nBg) — Bln +1)(1 — )y’

+,< B +1)(1—a) )

IN

npq — Bl +1)(1 — a)y?
__nPa+ B+ (1)
r(npa— Bl +1)(1 - a)?)

Hence, the proof is complete.
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2.2. Convexity and Connectedness

In this section, firstly, we investigate the convexity of ZZ(D&, B,n,y) fori=1,2.
Theorem 6. The classes Zs(zx, B, 1, y) fori = 1,2 are convex sets.

Proof. Let f;(z) be in the class Z}i(zx, B,1,y) and have the form
1 & k
=—+ Y a2 t=0,1,2,..m. (25)
k=0
It is enough to prove that F(z), which is of the form
m
= Zdtft(z)} (di > 0), (26)
t=0

is also in the class Z; (a,B,1,y), where Y /", dy = 1.
By substituting (25) in (26), we obtain

1=
2
N
N | =

T
(e}

F(z) =

oo
+ Z ak,tzk>
k=0
m
Z dtak,t)zk
t=0

w
Il
—

N
o~
~

Il
N |+~ N[k
+ +
[1e 1078
g S

k

=~
Il
—_

where Wy = Y/ dray ;.
Since fi(z) € Z%(zx, B,1,y) fort =0,1,...,m, then (16) holds true:

i ( n+_1)1(1rji)) ty )”k <1l 27)
Moreover,
2 ([klg(k—1+1nB)q B o []( —1—1—17,8)
k—zl<,3(q}’]+1>(l—o() +y2>Wk = k_21< '7+1)( )(Zdtakt>

p
1+1B)q
( <v+1< o)

IN

M§ uMs

_,

I\
A
| \

The proof is complete. [

Following the same technique, we can prove the same characteristic for the class

(@ B 1, y)- |
Next, we discuss the connectedness of Z%(DC, B, n,y) fori=1,2.

Definition 2. Let V be a non empty subset of [0, 1], then

So(a, B, V) = | Zga, B,1,11) (28)
eV
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Note that if V has only one element, then Z% («, B,11, V) is known to be a convex family
by Theorem 6.
In order to prove the main result, the following lemma is required.

Lemma 1. If f(z) € 2} (a, B,17,y1) N Zg(a, B, 7, y2), where yy and yy are positive numbers with
v1 # Yo, then f(z) = L.

Proof. If f(z) € Z}i(zx, B.1,y1)N Z;(zx, B, 1,y2) and f(z) = 1 + ¥ | 42", then

1=1-— Zaky%zl— Zaky%.
k=1 k=1
In another word: -
Y a(yi—v3) =0.
k=1

Buta; > 0,7 > 0and y, > 0, which yields a; = 0 foreachk > 0andso f(z) = 1. O

Theorem 7. If V is contained in [0,1], then Z;(a, B, 1, V) is a convex family if and only if V is
connected.

Proof. Suppose V is connected and y1,y2 € V with y; < y,. It suffices to prove that for
h(z) and I(z) given by

1 o0

h(z) = 2 + Z akzk € Z}I(zx, B, 1,y1), (29)
k=1
1 o0

I(z) = 2 + Z bkzk € Z}i(o(, B.1,Y2), (30)
k=1

and 0 < ¢ <1, there exists a y; < x < yp such that

m(z) = Ch(z)+ (1 —Q)l(z) € Z},(tx, B, 1, x). (31)

From (18), we have
1=1- E ays and 1=1- Z ays T (32)

Thus, we obtain

M(z) = zm(z) =2z(Ch(z) + (1-0)I(z))

= 7+ i (T + (1-0) + Y (1 - )by
k=1

_ é Z gakyk-‘rl + i Cak2k+1

L A—D - Y bk i [
=1

[e.9)

_ 1+§Z (Zk+l k+l l/'l + 1_ Z k+l k+l bk' (33)

Since it is trivial that M(y;) < 1and M(y,) > 1, then there exists x € [y1, y2] such that
M(x) = 1. Thus,
xm(x) = 1. (34)
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Therefore, m(z) € £!. From another perspective by (33), (34) and (16), we have

i < ’7 —i—l;(‘lI» 11'8)) +yk+1> (&Zk + (1 - C)bk)

- (k—1+nB)q
‘L ( (1)1 - a) +x1f+l>”k

k=1

o5 (M1
+ g’é(ﬁww 5 )b"
< ra-Q=1

Thus, m(z) € Z;(rx, B,1,x). Since y1,y» and x are arbitrary, the family m(z) €
25 (a, B,1,]) is convex.

Conversely, if V is not connected, then there exists 1,1, and x such that y; < x < y»
and y1,y2 € Vbutx ¢ V. If h(z) € Zl(oc [3 7,y1) and I(z) € Zl(oc B.1,y2), then by
Lemma 1, h(z) and I(z) are not both equal to 1, then for fixed x and 0 < { < 1by (33), we
obtain

M(x,0) =147+ Z (T =y Mg+ (1-0) i (2 — 5 gy (35)

k=1

But M(x,0) < 1 and M(x,1) > 1, thus there exists {*; 0 < {* < 1, such that
M(x,0*) =1orxm(x) =1, where m(z) = (*h(z) + (1 — {*)I(z).

Therefore, m(z) € Z;(oc, B, 1, x). By Lemma 1, we have m(z) ¢ Z;(rx, B,n, V).

Since x € V and m(z) # 1, this implies that the family Z;(D[, B, 1, V) is not convex.
This contradiction completes the proof of the theorem. O

Following the same technique, we can prove the same characteristic for the class

Zf](uc, B.1n, V).

3. Conclusions

In this research paper, the g-derivative operator was applied on the meromorphic poly-

logarithm function to obtain the new operator D, f(z) = — q% +Y02, makzk_l (klg-

The class X;(«, B,77) was then introduced containing D;Q). f(z) along with the coeffi-
cient estimate of the functions belonging to it. Moreover, two subclasses of X;(«, B, 1)
ie, Xg(a, B,1,y) and X3 («, B, 17, y) were defined and the necessary and sufficient conditions
for a function to be in these two classes were proved. the distortion bounds for the two

~ g —B(y+1) (1—a)r* nBa+B(n+1)(1—a)r?
classes were derived to be |f(z)| > TnBaT BOre) =)y and [f(z)] < BB T )

respectively. Eventually, we have proved in detail that these two subclasses are convex and
connected sets.
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