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Abstract: In a series of recent papers we developed a formulation of general relativity in which
spacetime and the dynamics of matter evolve with a Poincaré invariant parameter τ. In this paper,
we apply the formalism to derive the metric induced by a ‘static’ event evolving uniformly along its
t-axis at the spatial origin x = 0. The metric is shown to vary with t and τ, as well as spatial distance r,
taking its maximum value for a test particle at the retarded time τ = t− r/c. In the resulting picture,
an event localized in space and time produces a metric field similarly localized, where both evolve
in τ. We first derive this metric as a solution to the wave equation in linearized field theory, and
discuss its limitations by studying the geodesic motion it produces for an evolving event. By then
examining this solution in the 4+1 formalism, which poses an initial value problem for the metric
under τ-evolution, we clarify these limitations and indicate how they may be overcome in a solution
to the full nonlinear field equations.

Keywords: general relativity; the problem of time; Stueckelberg–Horwitz–Piron theory; parameterized
relativistic mechanics

1. Introduction

The 4+1 formalism [1–5] in general relativity (GR) poses an initial value for the space-
time metric in which evolution of fields and matter is parameterized by a Poincaré in-
variant chronological time τ. Parameterization in proper time was introduced in 1937
by Fock [6] in their manifestly covariant electrodynamics. However, in 1941, Stueckel-
berg [7,8] showed that neither coordinate time t nor the proper time ds =

√
−dxµdxµ can

be used as a chronological evolution parameter in an electrodynamics that accounts for pair
creation/annihilation processes. Instead, to describe antiparticles as particles whose trajec-
tory reverses direction in coordinate time t, he introduced a strictly monotonic evolution
parameter τ, independent of phase space and external to the spacetime manifold.

Piron and Horwitz [9] generalized Stueckelberg’s formalism, constructing a relativistic
canonical many-body theory [10–14] with Lorentz scalar Hamiltonian. By including τ in
the U(1) gauge freedom (but not the spacetime manifold), the Stueckelberg–Horwitz–Piron
(SHP) formalism in flat spacetime [15–18] provides an electrodynamic theory of events
interacting through five gauge potentials. The evolution of a localized spacetime event
induces a field acting on a localized remote event, through an interaction synchronized by
the chronological time τ, and recovering Maxwell electrodynamics in τ-equilibrium.

The structure of these interactions suggests a higher symmetry such as O(3,2) or O(4,1)
for free fields, but the observed Lorentz invariance of spacetime requires that any 5D
symmetry break to 4D tensor and scalar representations of O(3,1) in the presence of matter.
A similar conflict of symmetries is familiar from classical acoustics, where the pressure
wave equation appears invariant under Lorentz-like transformations, but no relativistic
effects are expected for observers approaching the speed of sound. These considerations
are a guiding principle in extension of the formalism to general relativity.

Horwitz has extended the SHP framework to curved spacetime [19,20], developing
a classical and quantum theory of interacting event evolution in a background metric
gµν(x). As a many-body theory with τ-evolution, the scalar event density ρ(x, τ) and
energy-momentum tensor Tµν(x, τ) naturally become explicitly τ-dependent. In keeping
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with Wheeler’s characterization [21] of Einstein gravitation as “spacetime tells matter how
to move; matter tells spacetime how to curve”, the τ-dependent matter distribution must
be reflected in a τ-dependent local metric γµν(x, τ). Particle dynamics in such a metric
spacetime may differ from standard GR—some details are indicated in Section 2.2. As
in flat space electrodynamics, the free fields of GR—the geometrical structures—enjoy
5D spacetime and gauge symmetries, but the spacetime symmetry must break to O(3,1)
in the presence of matter. Because the metric evolution is parameterized by the external
parameter τ and the matter evolution is determined by an O(3,1) scalar Hamiltonian, there
is no conflict with the diffeomorphism invariance of general relativity. Some details of the
4+1 method are reviewed in Sections 2.3 and 2.4.

Several simple examples of the 4+1 formalism were given in previous papers, but
these did not involve a source event evolving along a localized trajectory. In this paper,
we study the field induced by a localized event, with the goal of describing a τ-localized
metric and the gravitational field it produces on a remote localized event. We proceed in
analogy to SHP electrodynamics where a particle is modeled as an ensemble of events [18]
located at x = 0 in space, but narrowly distributed along the t-axis. The 5D wave equation
leads to the Coulomb potential [18] in the form

a0(x, τ) = − ϕ(t− r/c− τ)

r
+ o
(

1
r2

)
, (1)

where ϕ(s) is the distribution on the t-axis, with maximum at ϕ(0) and normalized as∫
dτ ϕ(τ) = 1. At long distances, the higher order term may be neglected. A test event

at spatial distance r will thus experience a potential localized around τ = tR = t− r/c,
the retarded time at which the source event produced the field, where c is the speed of light.
The general Liénard–Wiechert potentials induced by an event on an arbitrary trajectory
appear in their usual form [18], but multiplied by ϕ(t− r/c− τ).

For the gravitational field, we similarly consider the metric induced by a ‘static’ event
evolving uniformly along the t-axis in its rest frame, fixed at the spatial origin x = 0,
leading to an event current and mass-energy-momentum tensor Tµν(x, τ). In Section 3, we
use this tensor as the source of a wave equation in linearized GR, and derive a metric that
varies with t and τ, as well as spatial distance r. Neglecting the higher order contribution as
in electrodynamics, a test particle with coordinates x =

(
x0(τ), x(τ)

)
experiences a metric

that takes its maximum at τ = t− |x|/c. However, unlike the flat space motion of an event
under the electrodynamic Lorentz force, the geodesic equations for an event moving in this
metric differ from our expectations, suggesting that localization along the t-axis may cause
the gravitational force to change sign. We show that this issue follows from the structure
of the Green’s function for the wave equation in linearized GR and will obtain for any
t-dependent event density.

In Section 4, we examine this solution in the 4+1 formalism, which poses an exact
initial value problem for the metric under τ-evolution. In this context, neglecting the
higher-order term is seen to contradict the assumption of an evolving metric, clarifying the
limitations of the linearized method. We pose the problem of an evolving metric produced
by an evolving source narrowly distributed in spacetime in terms of the full nonlinear field
equations and discuss the additional complexities associated with this system. Finally,
Section 5 is devoted to conclusions and discussion. In a subsequent paper, numerical
solutions to the initial value problem will be discussed.

2. Review of General Relativity with Invariant Evolution
2.1. Gauge and Spacetime Symmetries

In a flat Minkowski spacetime with ηµν = diag(−1, 1, 1, 1), the free particle action

S =
∫

dτ
1
2

Mẋµ ẋµ, (2)
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is made maximally U(1) gauge invariant [15] by introducing five gauge fields as

SSHP =
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋµaµ

(
x, τ
)
+

e
c

c5a5
(
x, τ
)
, (3)

=
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋβaβ

(
x, τ
)
, (4)

where we introduce x5 = c5τ in analogy to x0 = ct and partition Greek indices such that

α, β, γ, δ = 0, 1, 2, 3, 5 λ, µ, ν, ρ . . . = 0, 1, 2, 3. (5)

This action enjoys the 5D gauge invariance aα(x, τ) −→ aα(x, τ) + ∂αΛ(x, τ), but be-
cause ẋµ ẋµ, ẋµaµ, and a5 are O(3,1) scalars, its spacetime symmetry is restricted to 4D. As
a guide to posing field equations for a τ-dependent metric in curved spacetime, we may
consider Equation (4) as a standard 5D action in which we break the symmetry of the matter
term by imposing the constraint ẋ5 ≡ c5 and making the replacement ẋα ẋα −→ ẋµ ẋµ in the
kinetic term, restricting the phase space to (xµ, ẋµ). The electrodynamics associated with
the symmetry-broken action differ in significant ways from standard Maxwell theory in 5D.
In particular, the Lorentz force [18]

Mẍµ =
e
c

ẋβ fµβ
d

dτ

(
−1

2
Mẋµ ẋµ

)
= c5

e
c

ẋµ f5µ fαβ = ∂αaβ − ∂βaα, (6)

permits mass exchange between particles and fields, while leaving the total mass, energy,
and momentum of particles and fields conserved. Compatibility with standard electrody-
namic phenomenology places restrictions on c5/c� 1 but the strict limit c5 −→ 0 produces
a τ-equilibrium [18] that recovers standard Maxwell theory.

Field dynamics are determined by a kinetic term of the type

Sfield =
∫

dτ d4x f αβ(x, τ) fαβ(x, τ), (7)

where fµν is a second rank tensor, while f5µ is a vector field strength, because the 5-index
signifies an O(3,1) scalar quantity. Raising the 5-index in (7) suggests a 5D flat space metric

ηαβ = diag(−1, 1, 1, 1, σ), (8)

where σ = ±1. But expanding

f αβ(x, τ) fαβ(x, τ) = f µν(x, τ) fµν(x, τ) + 2σ f µ
5(x, τ) fµ5(x, τ), (9)

we may regard σ as the choice of sign for the vector-vector interaction, with no inherent
significance for the geometry of spacetime.

Following these considerations, we approach the construction of a τ-dependent GR
by embedding 4D spacetimeM in a 5D pseudo-spacetimeM5 =M× R with coordinates
Xα = (xµ, c5τ) and a metric gαβ(x, τ) determined by the standard 5D Einstein field equa-
tions onM5. By performing the embedding in a vielbein frame [22], we may specify the
metric as (8) and break the 5D spacetime symmetry to O(3,1) at the source, by correcting
the flat space metric for the quintrad for the matter terms under the replacement

ηab = diag(−1, 1, 1, 1, σ) −→ η̂ab = diag(−1, 1, 1, 1, 0), (10)

as in electrodynamics. The symmetry-broken field equations are transformed into the
coordinate frame as

Rαβ =
8πG

c4

(
Tαβ −

1
2

ĝαβT̂
)

, (11)
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using the known vielbein field. The LHS of Equation (11) enjoys 5D gauge and spacetime
symmetries, while the RHS is O(3,1) covariant. Generalizing the 3+1 formalism in ge-
ometrodynamics [23–26] to 4+1, we take advantage of the natural foliation ofM5 into 4D
equal-τ spacetimes homeomorphic toM. Standard techniques in the theory of embedded
surfaces enable us to extract an initial value problem in the 4D spacetime sector, describing
the τ-evolution of metric γµν(x, τ) and the extrinsic curvature Kµν(x, τ) that accounts for
aspects of the 5D connection Γγ

αβ not contained in the 4D metric.

2.2. Event Dynamics in Curved Spacetime

Applying the Euler–Lagrange equations to the Lagrangian

L =
1
2

mgαβ ẋα ẋβ, (12)

we obtain the 5D geodesic equations for an event xγ(τ)

Dẋγ

Dτ
= ẍγ + Γγ

αβ ẋα ẋβ, (13)

with Christoffel symbols

Γα
βγ =

1
2

gαδ

(
∂gδβ

∂xγ
+

∂gδγ

∂xβ
−

∂gβγ

∂xδ

)
. (14)

We break the 5D symmetry to O(3,1) by asserting

x5 = c5τ −→ ẋ5 = c5 −→ ẍ5 = 0, (15)

as an a priori constraint. The dynamical system is now described by the equations

Dẋµ

Dτ
= ẍµ + Γµ

αβ ẋα ẋβ = ẍµ + Γµ
νσ ẋν ẋσ + 2c5Γµ

5ν ẋν + c2
5Γµ

55 = 0, (16)

Dẋ5

Dτ
= ẍ5 ≡ 0, (17)

which under an appropriate metric field is consistent with the symmetries of matter,
and recovers standard GR when g5α = 0 and ∂τ gµν = 0. Defining the canonical momentum

pµ =
∂L
∂ẋµ = m

(
gµν ẋν + c5gµ5

)
, (18)

the Hamiltonian is

K =
1

2M
p2 +

1
2

c5g55g5µ pµ −
1
2

c5g5µgµλ pλ +
1
2

Mc2
5g5µgµλgλ5 +

1
2

Mc2
5g55, (19)

which takes the recognizable form

K =
1

2m
pµ pµ +

1
2

mc2
5 g55, (20)

if g5µ = 0, with g55(x, τ) playing the role of a τ-dependent potential on 4D spacetime. The
canonical equations of motion are

ẋµ =
dxµ

dτ
=

∂K
∂pµ

ṗµ =
dpµ

dτ
= − ∂K

∂xµ , (21)
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and since p5 ≡ 0, the Poisson bracket is

{F, G} = ∂F
∂xα

∂G
∂pα
− ∂F

∂pα

∂G
∂xα

=
∂F
∂xµ

∂G
∂pµ
− ∂F

∂pµ

∂G
∂xµ , (22)

so for any scalar function F(x, p, τ) on phase space

dF
dτ

= {F, K}+ ∂F
∂τ

, (23)

generalizing the nonrelativistic result. Therefore, the Hamiltonian is conserved unless K
depends explicitly on τ through gαβ(x, τ). We note that even when K is a constant of the
motion, the 4D mass pµ pµ/2m may vary under g55.

As we showed in [2], mass variation can appear in the Newtonian approximation
through τ-dependence of the metric. Expanding the geodesic equations as

0 = ẍµ + Γµ
00 ẋ0 ẋ0 + 2Γµ

i0 ẋi ẋ0 + Γµ
ij ẋ

i ẋj + 2c5Γµ
50 ẋ0 + 2c5Γµ

5i ẋ
i + c2

5Γµ
55, (24)

we take ∂0gαβ = 0 and neglect terms containing ẋi/c � 1 for i = 1, 2, 3, so that inserting
the nonzero Christoffel symbols

Γµ
00 = −1

2
ηµν∂νg00 Γµ

ij =
1
2

ηµk
(

∂gki

∂xj +
∂gkj

∂xi −
∂gij

∂xν

)
,

Γµ
50 =

1
2

ηµν ∂gν0

∂x5 Γµ
55 = −1

2
ηµν ∂g55

∂xν
,

(25)

the equations of motion reduce to

d2t
dτ2 =

dt
dτ

∂τ g00 ẍ =
1
2

c2
(

dt
dτ

)2
∇g00 +

1
2

c2
5∇g55. (26)

Compared to Newtonian gravity, which must obtain exactly when ∂τ gµν and ∇g55
vanish, these become

d2t
dτ2 =

dt
dτ

∂τ

(
2GM

rc2

)
d2x
dτ2 = −

(
dt
dτ

)2 GM
r2 r̂ +

1
2

c2
5∇g55, (27)

where M is a mass parameter associated with the source and G is the gravitational constant.
Writing a perturbed source mass parameter M = M0 + δM(τ) for the source and again
neglecting ṙ/c we may solve the t equation as

dt
dτ

= exp
(

2G
rc2 δM

)
, (28)

so that in spherical coordinates, the radial equation takes the form

r̈− L2

m2r3 + exp
(

4G
rc2 δM

)
GM0

r2 = 0, (29)

where we take ∇g55 = 0 and introduce the conserved angular momentum

L = mr2φ̇. (30)

As required, Equations (28) and (29) recover Newtonian gravitation in the absence of
the τ-dependent source mass δM. The Hamiltonian in this coordinate system is

K =
1
2

mgαβ ẋα ẋβ = −1
2

mc2
(

1− 2GM0

rc2

)
exp

(
4G
rc2 δM

)
+

1
2

mṙ2 +
1
2

L2

mr2 , (31)
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with time derivative

d
dτ

K = exp
(

4G
rc2 δM

)(
−Gm

r
+

4G2mM0

r2c2

)
d

dτ
δM, (32)

and as expected, the Hamiltonian for the motion of this test particle is not conserved in the
presence of a variable mass gravitational source. This may be interpreted as a transfer of
mass across spacetime mediated by the metric.

For non-thermodynamic dust (a distribution of geodesically evolving events without
mutual interaction), we define ρ(x, τ) as the number of events per spacetime volume,
and write a 5-component event current with mass parameter M

jα(x, τ) = Mρ(x, τ)ẋα(τ), (33)

with continuity equation

∇α jα =
∂jα

∂xα
+ jγΓα

γα =
∂ρ

∂τ
+∇µ jµ = 0, (34)

where the second equality holds because j5 = Mc5ρ(x, τ) is an O(3,1) scalar and not the
5-component of a vector with 5D symmetry. Generalizing the 4D energy-momentum tensor
to 5D, the mass-energy-momentum tensor

Tαβ = Mρẋα ẋβ −→

 Tµν = Mρẋµ ẋν,

T5β = ẋ5 ẋβ Mρ = c5 jβ,
(35)

is conserved as
∇αTαβ = 0, (36)

by virtue of the continuity and geodesic equations. The mass-energy-momentum tensor is
thus a suitable O(3,1) covariant source for a 5D field equation.

2.3. Evolution of the Local Metric

As indicated in Section 2.1, the derivation of field equations for gµν(x, τ) possessing
the desired 5D gauge symmetries and 4D spacetime symmetries relies heavily on the theory
of embedded surfaces [23–25], the 3+1 ADM formalism [26], and the generalization of
these techniques to 4+1 [2–5]. Here we provide a brief overview and refer the reader to the
references for details.

We approach the construction of GR with a τ-dependent metric by embedding 4D
spacetimeM in a 5D pseudo-spacetimeM5 =M× R with coordinates Xα = (xµ, c5τ).
Because the Bianchi identity

∇αGαβ = ∇α

(
Rαβ − 1

2
gαβR

)
= 0 ∇αXβ = ∂αXβ + XγΓβ

γα, (37)

is independent of dimension [27] and the mass-energy-momentum tensor (35) is conserved,
we may combine the Einstein tensor Gαβ and Tαβ to write the field equations

Rαβ −
1
2

gαβR = kGTαβ, (38)

for the metric gαβ(x, τ) onM5.
To break the spacetime symmetry of the field equations to O(3,1), we first transform

from a coordinate frame tangent to the manifoldM5

gα = ∂α gα = dXα gα · gβ = gαβ gα · gβ = gαβ, (39)
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to the constant quintrad frame

ea · eb = ηab ea · eb = ηab ∂aeb = ∂aeb = 0, (40)

where by convention Latin letters indicate a reference to the quintrad. To facilitate foliation
ofM5 into spacetime hypersurfaces Στ of equal-τ, we extend the partition of coordinate
indices to the quintrad indices, leading to the combined index convention

α, β, γ, δ = 0, 1, 2, 3, 5 λ, µ, ν, ρ . . . = 0, 1, 2, 3,

a, b, c, d,= 0, 1, 2, 3, 5 k, l, m, n, . . . = 0, 1, 2, 3,
(41)

where the five indices with respect to the quintrad frame are denoted 5̄. The transformation
between frames is provided by the vielbein field

gµ = E k
µ ek + E 5̄

µ e5 ek = eµ
kgµ + e5

kg5,

g5 = E k
5 ek + E 5̄

5 e5 e5 = eµ

5̄gµ + e5
5̄g5,

(42)

where the spacetime hypersurface (quatrad) is spanned by the ek while e5 points in the
direction of τ-evolution orthogonal to Στ . Introducing the ADM parameterization

g5 = Nµgµ + Nn, (43)

where Nµ generalizes the shift 3-vector, N is the lapse function with respect to τ, and n = e5
is the unit normal, the vielbein field becomes

E a
α = δ

µ
α δa

k E k
µ + δ5

α

(
E k

µ Nµδa
k + Nδa

5

)
,

eα
a = δk

aδα
µeµ

k − δ5
a δα

µ
1
N

Nµ + δ5
a δα

5
1
N

,
(44)

leading to the coordinated metric

gαβ =

 γµν Nµ

Nµ σN2 + γµνNµNν

, (45)

which generalizes the ADM decomposition. Since N and Nµ are arbitrary functions acting
as Lagrange multipliers whose choice is comparable to gauge freedom [26], the dynamical
content in the vielbein field is contained entirely in the spacetime vierbein field E k

µ .
In the quintrad frame, the Einstein equations take the form

Rab −
1
2

ηabR = kGTab, (46)

and the spacetime symmetry may be broken to O(3,1) by making the replacement (10) as

ηab −→ η̂ab = δk
aδl

b ηkl , (47)

in the matter terms, leading us to

Rab = kG

(
Tab −

1
2

η̂abT̂
)

, (48)



Symmetry 2023, 15, 1381 8 of 19

where T̂ = η̂ abTab = ηklTkl . Using (44), this expression transforms back to the coordinate
frame to provide the O(3,1) symmetric field equations

Rαβ = kG

(
Tαβ −

1
2

PαβT̂
)

, (49)

with the transformed metric

ĝαβ = E a
α E b

β η̂ab = gαβ − σnαnβ = Pαβ, (50)

that acts as a projection operator fromM5 onto the 4D spacetime hypersurface Στ and thus
breaks any higher symmetry to O(3,1).

Given the foliation of the pseudo-spacetime into equal-τ spacetimes, the initial value
problem is found using Pαβ to project the geometrical structures fromM5 onto Στ :

1. The covariant derivative Dα on Στ is found using Pαβ to project the covariant deriva-
tive ∇α onM5,

2. The extrinsic curvature Kαβ is defined by projecting the covariant derivative of the
unit normal nα,

3. The projected curvature R̄δ
γαβ on Στ is defined through the non-commutation of

projected covariant derivatives Dα and Dβ,
4. The Gauss relation is found by decomposing the 5D curvature Rδ

γαβ in terms of R̄δ
γαβ

and Kαβ,
5. The mass-energy-momentum tensor is decomposed through the projections

κ = nαnβTαβ pβ = −nα′Pββ′T
α′β′ Sαβ = Pαα′Pββ′T

α′β′ S = PαβSαβ,

6. Projecting the 5D curvature Rδ
γαβ on the unit normal nα leads to the Codazzi relation

providing a relationship between Kαβ and pα,
7. Lie derivatives of Pαβ and Kαβ along the direction of τ evolution, given by the unit

normal nα in the coordinate frame, are combined with these ingredients, along with
the O(3,1) symmetric field Equation (49) to obtain τ-evolution equations for γµν and
Kµν and a pair of constraints on the initial conditions.

The evolution equations are

1
c5

∂τγµν = LN γµν − 2NKµν, (51)

1
c5

∂τKµν =−DµDνN + LNKµν,

+N
{
−σR̄µν + KKµν − 2Kλ

µ Kνλ + σkG

(
Sµν −

1
2

PµνS
)}

, (52)

where LN is the Lie derivative along Nµ. Their solutions must satisfy the Hamiltonian
constraint

R̄− σ
(

K2 − KµνKµν

)
= −kG(S + σκ), (53)

and the momentum constraint

DµKµ
ν − DνK = kG pν. (54)

Expressions (52) and (53) differ slightly from those found in the standard 5D Einstein
Equations (38), expressing the breaking of spacetime symmetry to O(3,1). The differences
are

gµν(S + σκ)→ PµνS, (55)
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in (52) and
−σkGκ −→ −kG(S + σκ), (56)

in (53).
In some cases, such as a diagonal metric in Cartesian coordinates, it is possible to

formulate the evolution equations directly in the quatrad frame [5] in the simplified form

1
c5

∂τE k
µ = −E l

µ Kk
l , (57)

1
c5

∂τKkl = −σR̄kl + KKkl + σkG

(
Skl −

1
2

ηklS
)

, (58)

with constraints
R̄− σ

(
K2 − KklKkl

)
= −kG(S + σκ), (59)

DkKk
m − DmK = kG pm, (60)

providing an initial value problem for E k
µ and Kkl , with the metric obtained from the

vierbein field.

2.4. Weak Field Approximation

As in standard GR, the weak field approximation [4,18] poses the local metric as a
small perturbation hαβ of the flat metric

ηαβ = diag(−1, 1, 1, 1, σ), (61)

so that
gαβ = ηαβ + hαβ −→ ∂γgαβ = ∂γhαβ

(
hαβ

)2 ' 0. (62)

In this approximation, the 5D Ricci tensor takes the form

Rαβ '
1
2

(
∂β∂γhγ

α + ∂α∂γhγ
β − ∂γ∂γhαβ − ∂α∂βh

)
= −1

2
∂γ∂γhαβ, (63)

where h = ηαβhαβ and we imposed the Lorenz gauge condition

∂β

(
hαβ −

1
2

ηαβh
)
= 0, (64)

permitted by invariance of the metric under a 5D translation xα −→ xα + Λα(x, τ). Conve-
niently exploiting the Ricci tensor in this form, the SHP field Equation (49) becomes the
wave equation

−∂γ∂γhαβ = −
(

∂µ∂µ + σ
1
c2

5
∂2

τ

)
hαβ = 2kG

(
Tαβ −

1
2

PαβS
)

, (65)

which admits the principal part Green’s function [18]

G(x, τ) =
1

2π
δ(x2)δ(τ) +

c5

2π2
∂

∂x2 θ(−σgαβxαxβ)
1√

−σgαβxαxβ
, (66)

in which the leading term, denoted GMaxwell, has lightlike support at equal-τ and is domi-
nant at long distances. The second term, denoted Gcorrelation, drops off as 1/distance2 and
has spacelike support for σ = −1 or timelike support for σ = +1.
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For a general trajectory, we may consider an event distribution moving in tandem in
the neighborhood of a point with 5D coordinates

Xα(τ) = (Xµ(τ), c5τ), (67)

and for the shared velocity we introduce the notation

ξα(τ) =
1
c

uα(τ) =
1
c

dXα

dτ
. (68)

The spacetime event density is

ρ(x, τ) = ρ(x− X(τ)), (69)

leading to the mass-energy-momentum tensor

Tαβ = Mρ(x, τ)ẊαẊβ = Mρ(x, τ)uαuβ = Mc2ρ(x, τ)ξα(τ)ξβ(τ), (70)

which is seen to be conserved by simply noting that ∂τρ(x, τ) = −ξµ∂µρ(x, τ). The generic
solution for the metric perturbation is thus

hαβ(x, τ) = 2kG

∫
d4x′dτ′G

(
x− x′, τ − τ′

)(
ξαξβ − 1

2
Pαβ ξ̂ 2

)
ρ(x′, τ′), (71)

where ξα = ξα(τ′) and ξ̂ 2 = η̂µνξµξν.

3. The Metric as Solution to a 5D Wave Equation

We are interested in the metric induced by ‘static’ events narrowly distributed along
their t-axis at the spatial origin x = 0 and evolving uniformly. As a preliminary case, we
consider a source distributed evenly along the t-axis in its rest frame, as is typically posed
in standard relativity. The center of the event trajectory is then

X(τ) = (cτ, 0, c5τ) −→ ξ(τ) =
(

1, 0,
c5

c

)
, (72)

and the event density

ρ(x, τ) = ρ(x− X(τ)) = ρ(ct− cτ)δ(3)(x) = δ(3)(x), (73)

is independent of t and τ. Because ξ(τ) is constant, the generic solution to the wave
equation becomes

hαβ(x, τ) = 2kG Mc2 ZαβG[ρ(x, τ)], (74)

where we denote

Zαβ = ξαξβ −
1
2

η̂αβξµξµ, (75)

G[ρ(x, τ)] =
∫

d4x′ dτ′G
(
x− x′, τ − τ′

)
ρ
(
x′, τ′

)
, (76)

as kinematic and dynamic factors. Integration of the event density (73) with the Green’s
function (66) leads to

GMaxwell[ρ(x, τ)] =
∫

d4x′dτ′
1

2π
δ((x− x′)2)δ(τ − τ′)δ(3)(x′) =

1
4π|x| , (77)

Gcorrelation[ρ(x, τ)] =
c5

2π2

∫
d4x′dτ′

∂

∂x2
θ(−σ(x− x′)α(x− x′)α)√
−σ(x− x′)α(x− x′)α

δ(3)(x′) = 0, (78)
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and so taking

kG =
8πG

c4 , (79)

the spacetime part of the metric becomes

gµν = diag
(
−1 +

2GM
c2r

,
(

1 +
2GM

c2r

)
δij

)
' diag

(
−U, U−1δij

)
, (80)

where

U =

(
1− 2GM

c2r

)
. (81)

Naturally, this metric is spatially isotropic, and is t-independent because the event
density is spread evenly along the t-axis. Transforming to spherical coordinates (80)
becomes

gµν = diag
(
−U, U−1, U−1r2, U−1r2 sin2 θ

)
, (82)

which for weak fields is recognized as the Schwarzschild metric

gµν = diag
(
−U, U−1, R2, R2 sin2 θ

)
, (83)

when expressed in the isotropic coordinates [28] defined through

R = r
(

1 +
k
2r

)2
. (84)

The Schwarzschild metric is well-known to be Ricci-flat, Rµν = 0, a consequence of its
R-dependence and t-independence.

To study the field induced by an event localized in both space and time, we again
consider an event distribution centered on the t-axis around the trajectory (72), but write
an event density

ρ(x, τ) = ϕ(t− τ)δ(3)(x) ϕmax = ϕ(0), (85)

with support in a neighborhood around t = τ. Writing i, j = 1, 2, 3, the kinematic factors are

Z00 =
1
2

Z05 = Z50 = −σ
c5

c

Zij =
1
2

δij Z55 =
c2

5
c2

(86)

and the dynamic factors are

GMaxwell =
∫

d4x′dτ′
1

2π
δ((x− x′)2)δ(τ − τ′)ϕ

(
t′ − τ′

)
δ(3)(x′), (87)

Gcorrelation =
c5

2π2

∫
d4x′dτ′

∂

∂x2
θ(−σ(x− x′)α(x− x′)α)√
−σ(x− x′)α(x− x′)α

ϕ
(
t′ − τ′

)
δ(3)(x′) . (88)

The leading term is easily evaluated as

GMaxwell =
ϕ(t− |x|/c− τ)

4π|x| , (89)

producing a gravitational field that is maximized at τ = t − |x|/c. Since the source is
centered at tsource = τ, a test event evolving along its t-axis, at a constant spatial distance r
from the source, will feel the strongest gravitational force if it is located at t = tsource + |x|/c,
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placing the test event on the lightcone of the source and accounting for the propagation
time of the gravitational field. This part of the solution is comparable to the Coulomb force
given in (1) in electrodynamics.

The evaluation for Gcorrelation will depend upon the choice of σ and the details of the
distribution ϕ(s), in nearly all cases leading to numerical integration. Taking the derivative
in Gcorrelation we have

GCorrelation(x, τ) =
c5

2π2

(
1
2

θ(−σx2 − c2
5τ2)(

−σx2 − c2
5τ2
)3/2 −

δ
(
−σx2 − c2

5τ2)(
−σx2 − c2

5τ2
)1/2

)
, (90)

and writing

−σx2 − c2
5τ2 = c2

[
−σ

(
x2

c2 − t2
)
−

c2
5

c2 τ2

]
, (91)

we might consider neglecting c2
5/c2 � 1. However, doing so makes this part of Green’s

function, independent of τ, so that the τ integration in (88) becomes∫
dτ′ ϕ

(
t′ − τ′

)
= 1, (92)

and the remaining integral is

Gcorrelation =
c5

2π2
∂

∂x2

∫
d4x′

θ(−σ(x− x′)α(x− x′)α)√
−σ(x− x′)α(x− x′)α

δ(3)(x′) = 0, (93)

leaving no contribution from GCorrelation. In this sense, neglecting the contribution from
this term is equivalent to the τ-equilibrium condition, a point we will examine again in
Section 4.

To obtain a sense of Gcorrelation we choose the infinitely narrow distribution ϕ(t− τ) =
δ(t− τ) so that

Gcorrelation =
c5

2π2

∫
ds

(
1
2

θ(g(s))

(g(s))3/2 −
δ(g(s))

(g(s))1/2

)
, (94)

where

g(s) = c2

(
σ(t− s)2 − σ

x2

c2 −
c2

5
c2 (τ − s)2

)
, (95)

in which the singularities of the two integrands cancel each other out when handled
carefully. For σ = −1, describing spacelike support, g(s) > 0 between the roots of g(s) = 0
and cancellation of singularities causes the integral to vanish. Taking σ = 1, describing
timelike support, g(s) > 0 above the upper root and so the integral takes its value as
s −→ ∞ giving

GCorrelation =
c5

2π2
1

x2 − c2
5τ(2t− τ)

. (96)

Since this terms drops off as 1/x2 the contribution from GMaxwell will be dominant at
long distance.
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In summary, the perturbed metric is

g00 =−U = −1 + kG Mc2G
[

ϕ(t− τ)δ(3)(x)
]
, (97)

gij = Vδij =
(

1 + kG Mc2G
[

ϕ(t− τ)δ(3)(x)
])

δij i, j = 1, 2, 3 (98)

g05 = g50 = −2σ
c5

c
kGG

[
ϕ(t− τ)δ(3)(x)

]
, (99)

g55 = 2
c2

5
c2 kGG

[
ϕ(t− τ)δ(3)(x)

]
. (100)

Using (24) we may write the equations of motion for a nonrelativistic test event as

0 = ẍµ + c2

(
Γµ

00 ṫ2 + 2Γµ
i0

ẋi

c
ṫ + Γµ

ij
ẋi

c
ẋj

c
+ 2

c5

c
Γµ

50 ṫ + 2
c5

c
Γµ

5i
ẋi

c
+

c2
5

c2 Γµ
55

)
, (101)

and from

Γµ
βγ =

1
2

(
ηµα

∂hαβ

∂xγ
+ ηµα ∂hαγ

∂xβ
− ηµα

∂hβγ

∂xα

)
, (102)

evaluate the nonzero Christoffel symbols

Γµ
00 = − 1

2c
δµ0 ∂h00

∂t
− 1

2
δµk ∂h00

∂xk Γµ
i0 =

1
2c

δµj ∂hji

∂t
− 1

2
δµ0 ∂h00

∂xi , (103)

Γµ
ij =

1
2

δµk
(

∂hki

∂xj +
∂hkj

∂xi −
∂hij

∂xk

)
+

1
2c

δµ0 ∂hij

∂t
, (104)

Γµ
50 = − 1

2c5
δµ0 ∂h00

∂τ
Γµ

5i =
1

2c5
δµk ∂hki

∂τ
, (105)

where we used h0i = 0, i = 1, 2, 3 and dropped h5α ∝ c5/c� 1. Similarly neglecting terms
containing ẋi/c� 1 the equations of motion split into

0 = ẗ− 1
2

∂h00

∂t
ṫ2 −

(
∂h00

∂τ
+ ẋ · ∇h00

)
ṫ 0 = ẍ− 1

2
c2 ṫ2 ∇h00, (106)

which differ from (26) in the t-dependence of h00. In spherical coordinates, using

h00 = h00(t, r, τ) −→ ẋ · ∇h00 = ṙ∂rh00, (107)

the equations of motion become

ẗ =
1
2
(∂th00)ṫ2 + (∂τh00 + ṙ∂rh00)ṫ r̈ =

1
2

c2(∂rh00)ṫ2 +
L2

m2r3 , (108)

where we again introduce the conserved angular momentum L = mr2φ̇.
To obtain a sense of this result, we localize the source in t by taking the Gaussian

distribution
ϕ(s) =

1√
2πλ0

e−s2/λ2
0 , (109)

where λ0 is a time scale representing the width of the event distribution along the t-axis,
and consider only the leading term GMaxwell. From (97) the metric takes the form

h00 =
kG Mc2

4πr
1√

2πλ0
exp

[
− (t− r/c− τ)2

λ2
0

]
=

kG Mc2

4π

1√
2πλ0

1
r

ϕ̂, (110)
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where for convenience we notate

ϕ̂ = exp

[
− (t− r/c− τ)2

λ2
0

]
. (111)

The partial derivatives are

∂t h00 = − kG Mc2

4π

1√
2πλ0

2(t− r/c− τ)

λ2
0

1
r

ϕ̂, (112)

∂τ h00 =
kG Mc2

4π

1√
2πλ0

2(t− r/c− τ)

λ2
0

1
r

ϕ̂, (113)

∂r h00 =
kG Mc2

4π

1√
2πλ0

[
−1

r
+

2(t− r/c− τ)

λ2
0

]
1
r

ϕ̂, (114)

leading to the equations of motion

ẗ =
kG Mc2

4π

1√
2πλ0

[
2(t− r/c− τ)

λ2
0

(
−1

2
ṫ2 + ṫ +

ṙ
c

)
1
r
− ṙ

r2

]
ϕ̂, (115)

r̈ =
1
2

(
kG Mc2

4π

c√
2πλ0

[
−1

r
+

2(t− r/c− τ)

λ2
0

]
1
r

ϕ̂

)
ṫ2 +

L2

m2r3 . (116)

Locating the test event on the lightcone of the source event

t− r
c
− τ = 0 −→ ϕ̂ = 1, (117)

the equations of motion reduce to

ẗ = − kG Mc2

4πr2
1√

2πλ0

ṙ
c

, (118)

r̈ = −1
2

kG Mc2

4π

c√
2πλ0

1
r2 ṫ2 +

L2

m2r3 . (119)

Since we must have ṙ/c −→ 0 in (118) we may write ṫ = 1 which recovers Newtonian
gravitation in (119) by putting

1
2

kG Mc2

4π

c√
2πλ0

= GM −→ kG =
√

2π
8πG

c2
λ0

c
, (120)

in which the inverse length λ0/c compensates for the dimensions 1/length4 of the space-
time event density, in relation to the usual 1/length3 dimensions of particle density. For an
arbitrary position of the test event on the t-axis with ṙ/c� 1, the metric perturbation and
equations of motion are

h00 =
2GM

c2r
ϕ̂ −→ g00 = −

(
1− 2GM

c2r
ϕ̂

)
, (121)

ẗ =
2GM

c2

[
2(t− r/c− τ)

λ2
0

(
−1

2
ṫ2 + ṫ

)
1
r
− ṙ

r2

]
ϕ̂, (122)

r̈ = −GM
r2

[
1− r

λ0c
2(t− r/c− τ)

λ0

]
ṫ2 ϕ̂ +

L2

m2r3 . (123)
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For the nonrelativistic event, the t equation can be approximated

ẗ ' 2GM
c2r

[
t− r/c− τ

λ2
0

− ṙ
r

]
ϕ̂, (124)

which is a product of small factors, so that acceleration in time will remain negligible. But
the radial equation depends on the ratio r/λ0c of the radial distance, taken to be large,
and the width of the t distribution. Equation (123) approximates Newtonian gravitation for
t− r/c− τ = 0, but as the test event accelerates in the radial direction under the resulting
force, the distance will decrease as r −→ r− δr and so the acceleration becomes

r̈ ' −GM
r2

[
1− 2

r
λ0c

δr
λ0c

]
ϕ̂ +

L2

m2r3 . (125)

This shows that the width λ0 of the source event distribution along the t-axis must be
much larger than r/c, or else the gravitational force will weaken and possibly change sign
from attraction to repulsion. In the limit λ0 −→ ∞, we have ϕ̂ = 1 and the metric (97) and
(98) recover the t-independent metric (80), losing the t-localization.

The resulting model, which is less than adequate, follows from a series of approxima-
tions, in particular using the linearized 5D theory and neglecting Gcorrelation. Although we
used a particular distribution ϕ(t, r, τ) to arrive at the equations of motion, any solution to
the 5D wave equation found from the Green’s function will have the form

h00 ∝
1
r

ϕ̂(t, r, τ), (126)

as its leading term. As a result, the gravitational force appearing in the radial Equation (108)
will take the form

∂rh00 ∝ − 1
r2

[
ϕ̂(t, r, τ)− r∂r ϕ̂(t, r, τ)

]
, (127)

which may change the sign for any narrow distribution with ∂r ϕ̂ sufficient large at some
value of its argument. For example, using the distribution

ϕ̂(x, τ) =
1
2

e−|t−|x|/c−τ|/λ0 −→ r∂r ϕ̂ =
r

λ0
sgn(t− |x|/c− τ), (128)

the gravitational force may change sign sharply for a small shift in the τ-synchronization of
the test particle around τ = t− |x|/c. It thus appears that linearized GR will not provide
an adequate model for the localized metric produced by a localized event. In Section 4, we
analyze this question further in the context of the 4+1 method, and show that the initial
value problem in full nonlinear GR involves a more complex structure than revealed in the
5D wave equation approach.

4. The Metric as Solution to 4+1 Evolution Equations

In this section, we apply the 4+1 method to study the solution to the linearized field
equations found in Section 3. As mentioned in Section 2.3, the initial value problem may be
posed in the quatrad frame using the simplified Equations (57)–(60) because the spacetime
part of the metric is diagonal. It is easily seen that for

γµν = diag(−U, V, V, V), (129)

the vierbein field takes the form

E k
µ =

√
Uδ 0

µ δ k
0 +
√

Vδ s
µ δ k

s eµ
k =

1√
U

δ
µ
0δ0

k +
1√
V

δ
µ
sδs

k, (130)
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where s, t = 1, 2, 3. For the event distribution along the t-axis, the mass-energy-momentum
tensor

Tαβ = Mc2 ϕ(t− τ)δ(3)(x)
(

δα
0 +

c5

c
δα

5

)(
δ

β
0 +

c5

c
δ

β
5

)
, (131)

decomposes to

κ = T55 =
c2

5
c2 mc2 ϕ(t− τ)δ(3)(x), (132)

pk =−σηkk′E
k′

µ T5µ,=
c5

c
σ
√

U mc2 ϕ(t− τ)δ(3)(x), (133)

Skl = ηkk′ηll′E
k′

µ E l′
µ′ Tµµ′ = ηk0ηl0U mc2 ϕ(t− τ)δ(3)(x), (134)

S = ηklSkl = −Umc2 ϕ(t− τ)δ(3)(x), (135)

so that the source for (58)

Skl −
1
2

ηklS =

(
ηk0ηl0 +

1
2

ηkl

)
Umc2 ϕ(t− τ)δ(3)(x) =

1
2

δklS00, (136)

is diagonal and identical in each component.
In the weak field approximation, assuming a metric of the type obtained by perturbation

U = 1−Φ V = 1 + Φ, (137)

entails √
U =

√
1−Φ ' 1− 1

2
Φ

√
V =

√
1 + Φ ' 1 +

1
2

Φ . (138)

Now the vierbein field can be written

E k
µ =

(
1− 1

2
Φ
)

δ 0
µ δ k

0 +

(
1 +

1
2

Φ
)

δ s
µ δ k

s = δ k
µ +

1
2

(
−δ 0

µ δ k
0 + δ s

µ δ k
s

)
Φ, (139)

with derivatives
∂αE k

µ =
1
2

(
−δ 0

µ δ k
0 + δ s

µ δ k
s

)
∂αΦ . (140)

Since the extrinsic curvature Kkl must also arise as a perturbation, we discard terms of
the type Φ Kkl ' 0 and the first evolution Equation (57) reduces to

1
2c5

(
−δ 0

µ δ k
0 + δ s

µ δ k
s

)
∂τΦ = −δ l

µ Kk
l , (141)

so that lowering the k index provides

1
2c5

δkl ∂τΦ = −Kkl . (142)

Similarly discarding the term K Kkl ' 0, the second evolution Equation (58) reduces to

1
c5

∂τKkl = −σR̄kl +
1
2

σkGδklS00, (143)

where we used (136) as the source. These expressions provide a pair of coupled first-order
equations for Φ(x, τ) and Kkl(x, τ), given initial conditions Φ(x, 0) and Kkl(x, 0). It was
shown in [4] that for weak fields, the constraints (59) and (60) are equivalent to the wave
equation for h5α and so, given the product structure of (74), these will be satisfied for any
solution to the 5D wave equation for h00.

Using the convenient linearized form

R̄kl = −
1
2

δkl ∂µ∂µh00 = −1
2

δkl ∂µ∂µΦ, (144)
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to evaluate the Ricci tensor, we see that each term in the evolution equations is diagonal,
reducing the system to an initial value problem for Φ(x, τ). By solving (142) for

Kkl = −
1

2c5
δkl ∂τΦ, (145)

and inserting this into (143) we obtain

∂µ∂µΦ + σ
1
c2

5
∂2

τΦ + kGS00 = 0, (146)

which simply recovers the 5D wave Equation (65) we analyzed in Section 3. Since no
complete closed-form solution is readily available, we studied the leading term

Φ(x, τ) = GMaxwell =
ϕ(t− |x|/c− τ)

4π|x| , (147)

as a partial solution, and found that the resulting geodesic equations for a test event placed
an unreasonable condition on the event density ϕ. We also showed that neglecting the
subdominant terms Gcorrelation is equivalent to taking the limit c5/c −→ 0. To see this
another way, we rewrite the evolution Equation (143) as

∂τKkl =
1
2

σ δkl c5

[
∂µ∂µΦ + mc2 ϕ(t− τ)δ(3)(x)

]
. (148)

leading to the equilibrium condition ∂τKkl = 0 either in the limit c5 −→ 0, or by setting
Φ = GMaxwell for which the expression in parentheses gives zero by the 4D wave equation.
As seen from (127), these problems will be present in any solution to the linearized field
equations for the source (136).

While the leading term GMaxwell of the Green’s function provides adequate solutions
in SHP electromagnetism, this appears not to be the case in GR. It appears that the model of
localized events interacting through a localized metric must be posed in the full nonlinear
field theory, which admits structures not captured by the linearized equations. That is, we
write the exact evolution equations and constraints (57)–(60) to find a diagonal metric (129)
derived from the vierbein field (130). But in the absence of linearization, the convenient
expression (144) for Rµν is no longer applicable, adding significant complexity to the
problem.

As mentioned in Section 3, the Ricci flatness Rµν = 0 of the Schwarzschild solution
depends on the metric being a function of the three spatial coordinates (through R = |x|)
but t-independent. However, the Ricci tensor for a general diagonal metric with functional
dependence on all spacetime coordinates xµ will necessarily have nonzero off-diagonal
components [29]. Thus, we may specify the initial vierbein field E k

µ (x, 0) and extrinsic cur-
vature Kkl(x, 0) to be diagonal, as is the source (136), but Kkl(x, τ) will acquire off-diagonal
terms from R̄kl under the evolution described by Equation (58). Therefore, the vierbein
field E k

µ (x, τ) will acquire off-diagonal terms from the extrinsic curvature via Equation (57).
As a result, the metric γµν = ηklE k

µ E l
ν may acquire off-diagonal terms, in which case,

(57) and (58) will no longer be valid, forcing us to use the coordinate frame expressions (51)
and (52) as the evolution equations for the metric.

In summary, we require a metric that reproduces Newtonian gravitation for a nonrela-
tivistic test event at large distance, falls off to ηµν as 1/r, is localized around τ = t− |x|/c,
but is not of the separable form (147). In addition, the initial conditions for γµν and Kµν

must be chosen carefully to satisfy the constraints (53) and (54). This list of requirements is
complex and perhaps cannot be satisfied. A subsequent paper will discuss these issues at
greater length.
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5. Conclusions and Discussion

After reviewing the basic structure of the Stueckelberg–Horwitz–Piron formalism in
relativity and its extension to GR, we constructed a model in which a localized spacetime
event evolving with the invariant parameter τ induces a metric that similarly evolves with
τ. Extending developments in SHP electrodynamics, we fixed the event at the spatial origin
of its rest frame, in a narrow distribution moving uniformly along its t-axis, and using
the Green’s function G(x, τ), solved the 5D wave equation describing weak gravitation in
linearized GR. The resulting solution, dominated by the leading term in G(x, τ), was shown
to be analogous to the electromagnetic Coulomb force, falling off to the flat metric as 1/r and
localized around the retarded time τ = t− r/c for a test event with coordinates x = (ct, x).
In this picture, a localized event produces a localized field that acts on a remote localized
event, with the interaction synchronized by τ. However, unlike the electrodynamic Lorentz
force, the effect of the metric through the geodesic equations of motion leads to a possible
reversal of the gravitational force, because the functional dependence of the metric is a
separable product of 1/r and the localized distribution ϕ̂(t − r/c − τ). This issue was
shown to be a necessary feature of any solution for weak gravitation, produced by the
leading term in G(x, τ) for any source distribution.

We conclude that while the leading term GMaxwell of the Green’s function provides
adequate solutions in SHP electromagnetism, additional work will be required to extend
the model of a source localized in spacetime to GR. The required metric must reproduce
Newtonian gravitation for a nonrelativistic test event at large distance, fall off to ηµν as
r → ∞, be localized around τ = tretarded, but not be separable. Such a metric will likely
include off-diagonal components and must be approached in the 4+1 formalism, which
poses an initial value problem for the metric. This list of requirements is complex and
whether they can be satisfied remains an open question. Candidates for such a metric will
be discussed in a subsequent paper.
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