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Abstract: Symmetry is a key part of the study of basic forces and particles, as well as the creation
of mathematical models that help scientists in various scientific disciplines understand complex
events. Scientists can figure out what a system is made of and how it works by looking at its
symmetry. They can then use this information to make predictions and create new materials and
technologies. Humanity has conquered many once-fatal diseases due to medical research and
technological advancements. Although this progress is encouraging, there are still a great many
areas that require continual human efforts. An effort is made in this article to choose the best
treatment strategy to completely manage the pandemic of COVID-19 under conjunctive complex
fuzzy knowledge. In this paper, the concept of conjunctive complex fuzzy relations is presented
and numerous set theoretical aspects of this phenomenon are established. The investigation of this
ideology is further expanded to describe different sorts of essential structural conjunctive complex
fuzzy relations. Matrix and graphical representations of the formation of these newly specified
relations are also provided. Moreover, this concept has been successfully employed to provide
a therapy strategy for a rapid recovery from COVID-19. Furthermore, a comparative analysis is
conducted to demonstrate the validity and applicability of the suggested approaches compared to
existing methods.

Keywords: conjunctive complex fuzzy set (CCFS); conjunctive complex fuzzy relation (CCFR);
conjunctive complex fuzzy reflexive relation (CCFRR); conjunctive complex fuzzy symmetric relation
(CCFSR); conjunctive complex fuzzy transitive relation (CCFTR)

1. Introduction

Decision-making is a crucial ability that can have a significant impact on a person’s
ability to manage a variety of situations. It entails analyzing available data, evaluating
alternatives and selecting the optimal course of action to accomplish a desired outcome.
Relations, as a fundamental concept in mathematics, represent the connections of a set of
elements in the domain. The structure in which the relationship between elements of two
sets is expressed is named as a binary relation. Customarily, the directed graphs and the
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matrices are the main two ways of representing a relation effectively. One can easily view
the existence of this concept in everyday life, for example, in a relationship between an
employee and his or her salary, between inflation and economic growth, between efficiency
of a treatment method and speedy recovery, and so on. The useful applications of this
phenomenon can be seen in decision-making problems, such as determining which city
pairs are connected by air flights in a network or finding a viable order for the various
stages of a complicated project. The techniques and methods used for reasoning, modeling
and computing are in fact exact, deterministic and precise in nature. In general, precision
implies that patterns are not vague but are crystal clear. In practice, uncertainty cannot
be avoided in real-world problems. In this case, fuzzy logic emerges as a powerful tool
to counter these situations. Fuzzy set theory is a mathematical framework that allows for
the representation and manipulation of uncertainty and vagueness in decision-making
processes, unlike traditional set theory, which classifies objects as either belonging or not
belonging to a set. A fuzzy set is defined by a function, known as a membership function,
that assigns each element of a universal set a value from [0,1]. These membership degrees
indicate gradation and ambiguity, making uncertainty and ambiguity easier to express.
The fuzzy set theory has a wide range of applications that have been developed in a
variety of different domains. One of the earliest and most well-known applications is
in control systems, where fuzzy logic and fuzzy sets have been successfully applied to
model and control complex systems. In systems with nonlinear behavior or complicated
mathematical models, fuzzy logic is beneficial. Pattern recognition, data mining, decision
analysis, optimization, image processing, and natural language processing use this theory.
It can manage imprecision and uncertainty, making it suited for subjective or ambiguous
information issues.

Many structures, methods and formulations have been introduced to model uncer-
tainty in fuzzy set theory and fuzzy logic. Each of these methods has its own advantages,
accompanied by some limitations that leave gaps. The ability to model natural language
expressions plays a pivotal role in the success story of fuzzy set theory for practical appli-
cations. An important part of this structure is devoted to the representation of linguistic
modifiers. Such a description is called a fuzzy relation. Fuzzy relations have applications
in diverse types of areas, for example, in databases, pattern recognition, neural networks,
fuzzy modeling, economy, medicine and multi-criteria decision-making. Furthermore, in
the problems of diagnosis of diseases, where physical mechanisms are not well-known due
to high complexity and nonlinearity, complex fuzzy relations are preferred to solve these
cases. These relations play a key role in dealing with some decision-making problems in
social and human sciences. Complex fuzzy relations are widely applied; in multi-attribute
decision-making problems. These relations are taken into account and applied in group
decision-making problems where solutions from individual preferences about some set
of options are derived; this is an effective approach in dealing with decision-making in
medical diagnosis.

In 1965, Zadeh introduced the fundamental concepts of fuzzy sets [1], establishing the
groundwork for their definition and implementation. Following Zadeh’s seminal work,
Rosenfeld [2] expanded upon these concepts by proposing the notion of fuzzy subgroups,
thereby generalizing the classical group theory. In [3], Das obtained a characterization of
all fuzzy subgroups of cyclic groups of finite order by studying “level subgroups” of a
fuzzy subgroup, building upon the concept of fuzzy sets and fuzzy groups introduced by
Zadeh and Rosenfeld, respectively. References [4–10] provide extensive research works on
fuzzy subgroups. These works offer detailed insights and analyses in this area of study.
Bhattacharya and Mukherjee [11] examined the conditions under which a fuzzy relation
can be classified as a fuzzy subgroup within a given group, establishing that a fuzzy
subset assumes the role of a fuzzy subgroup if its strongest fuzzy relation also satisfies
the criteria of a fuzzy subgroup. In [12], Bustince and Burillo analyze the structures of
intuitionistic fuzzy relations and investigate the connections between the structures of
a relation and its complementary one. They also provide a characterization of specific
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structures of intuitionistic relations based on two particular fuzzy relations. The idea of
interval-valued fuzzy relations was discussed by same authors in [13]. The study [14]
presented by Barbara Pekala investigates the properties of Atanassov’s intuitionistic fuzzy
relations and their relationship with Atanassov’s operators. Fan [15] conducted an inves-
tigation on the decomposition theorems of fuzzy relations, exploring their fundamental
properties and implications. This area of research has garnered considerable attention in
recent years due to its successful application in various domains. For instance, the use
of fuzzy relations has proven effective in disease prediction models [16], neural network
modeling [17], solving linear Diophantine equations [18] and modeling Dempster–Shafer
belief structures [19]. These applications highlight the versatility and practical relevance of
the theory. In 1989, Buckley [20] pioneered the study of complex fuzzy numbers, which
extend the traditional notion of fuzzy numbers to include complex components. Subse-
quently, he developed a comprehensive analysis of these numbers within the framework
of derivation and integration, as presented in [21,22]. Ramote et al. (2002) introduced the
concept of complex fuzzy sets (CFS) and conducted an extensive investigation on two
novel operations, namely, reflection and rotation [23]. This work laid the foundation for
further exploration and utilization of complex fuzzy relations in various domains. Building
upon Ramote et al.’s work, Das (2011) innovatively extended the concept of complex fuzzy
relations by introducing the notion of complex fuzzy relations [24]. Abd Ulazeez et al. [25]
further developed the concept of the intuitionistic fuzzy relation, which extended the
traditional fuzzy relation to capture the hesitancy and indeterminacy in decision-making
processes. Yousef and Nasruddin (2018) proposed the idea of complex multi-fuzzy rela-
tions specifically tailored for decision-making problems [26]. The concept of δ-equalities
of complex fuzzy relations was introduced by Guangquan in 2020 [27]. This concept pro-
vided a measure of similarity between complex fuzzy relations, facilitating comparative
analysis and similarity-based reasoning in complex systems. In subsequent studies, M.
Khan et al. (2021) explored the various types of complex fuzzy relations and their potential
applications in the future commission market [28]. Furthermore, the authors discussed
the complex T-spherical fuzzy relations and their applications in economic relationships
and international trades in [29]. They investigated cybersecurity and cybercrimes in the oil
and gas sectors using the innovative structures of complex intuitionistic fuzzy relations
in [30]. Additionally, they explored medical diagnosis and the life span of sufferers using
interval-valued complex fuzzy relations in [31]. They also examined cybersecurity against
loopholes in industrial control systems using interval-valued complex intuitionistic fuzzy
relations in [32]. They conducted an analysis of communication and network security using
the concepts of complex picture fuzzy relations in [33]. In the context of COVID-19 forecast-
ing, Xian (2023) developed an algorithm for fuzzy time series forecasting of COVID-19 [34].
Verma (2023) presented applications of fuzzy time series models in predicting the spread
of COVID-19 [35]. Castillo (2023) proposed a novel technique for forecasting COVID-19,
aiming to improve accuracy and reliability in predicting the spread of the disease [36].
Wang Y. et al. (2023) provided methods for detecting COVID-19 patients using interval-
valued T-spherical fuzzy relations and information measures [37]. Modernistic applications
of the fuzzy set can be seen in [38–40].

The fuzzy set and its generalizations are important tools for modeling decision-making
problems. Although FS is a successful tool for modeling one-dimensional information,
it is not suitable for modeling two-dimensional information. In this case, the idea of the
complex fuzzy set emerges as a useful strategy to counter two-dimensional information.
Conjunctive complex fuzzy sets provide a parameterization element to the classical fuzzy
set and complex fuzzy set theories to control data errors. This adaptable paradigm for
handling two-dimensional ambiguity and vagueness in decision-making is successful.
Due to uncertainty and imprecision in complicated fuzzy logic, decision-making tasks
may be difficult. Complex fuzzy relations use two-dimensional degrees of membership
to handle ambiguous information. This method can handle complicated decision-making
settings where binary fuzzy logic fails. In decision-making problems, complex fuzzy
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relations are used to model the relationships between input and output variables, allowing
decision-makers to analyze and evaluate different options based on multiple criteria.

The main thrust of this study is concentrated on the development of a suitable op-
timization framework in which the decomposition problem is formulated and solved
numerically. The present study stands out from the others because of its novel methodol-
ogy as it facilitates the decision-makers to make the best decision about a certain physical
phenomenon on the basis of the selection of the most suitable value of the parameter.
Moreover, this unique ability makes the proposed method more prominent than the other
previously developed strategies, as these strategies become a special case of our method
for a particular value of the parameter.

The uppermost aim of this article is to choose an efficient treatment method for a
speedy recovery of COVID-19 patients under a conjunctive complex fuzzy environment.
This article is the first to analyze the epidemic within the context of the concept of conjunc-
tive complex fuzzy knowledge, as no previous research has explored this area of study.
This research breaks new ground by investigating the application of CCFR to comprehend
and address the epidemic’s complexities.

The following are some of the most important goals that we want to accomplish in
this present study:

1. Initiate the concepts of the CCFR and describe the key varieties of this newly de-
fined concept. This will introduce a number of various essential structural types
and then demonstrate their construction through the use of matrix and graphical
representations. This will need substantial mathematical study and formal proofs of
this type’s relevance.

2. Use the new way to choose a COVID-19 therapy that works fast. The method will be
used to handle real-world challenges like treating COVID-19.

3. Compare the suggested approach to current techniques to show its effectiveness.
This will entail comparing the validity of the suggested approach to that of existing
methods, utilizing actual data sets and scenarios.

The rest of the work is as follows: in Section 2, we review the preliminary knowledge
and basic concepts of the complex fuzzy set (CFS). In Section 3, we introduce the notions
of the conjunctive complex fuzzy relation and the composition of conjunctive complex
fuzzy relations and give some key examples of these concepts for better understanding.
In Section 4, we investigate fundamental structural types of conjunctive complex fuzzy
relations and present their constructions by means of matrix and graphical representations.
In Section 5, we develop a mechanism to select an efficient treatment method for the speedy
recovery from COVID-19 in the framework of a conjunctive complex fuzzy environment.
Finally, a comparative analysis is presented to illustrate the validity and feasibility of this
new strategy with existing methods.

2. Preliminaries
2.1. Abbreviations

In Table 1, we present a comprehensive list of terms and their corresponding abbrevia-
tions utilized in the research outlined within this article.

Table 1. Abbreviation Table.

Symbol Stands for Symbol Stands for Symbol Stands for

FS Fuzzy set CFS Complex fuzzy set CCFS Conjunctive complex fuzzy set

FR Fuzzy relation CFR Complex fuzzy relation CCFR Conjunctive complex fuzzy relation

FRR Fuzzy reflexive
relation CFRR Complex fuzzy reflexive

relation CCFRR Conjunctive complex fuzzy reflexive
relation

FSR Fuzzy symmetric
relation CFSR Complex fuzzy symmetric

relation CCFSR Conjunctive complex fuzzy
symmetric relation
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Table 1. Cont.

Symbol Stands for Symbol Stands for Symbol Stands for

FTR Fuzzy transitive
relation CFTR Complex fuzzy transitive

relation CCFTR Conjunctive complex fuzzy transitive
relation

FER Fuzzy equivalence
relation CFER Complex fuzzy equivalence

relation CCFER Conjunctive complex fuzzy
equivalence relation

2.2. Some Fundamental Concepts

This section contains a brief review of the notion of the complex fuzzy set and related
ideas which are quite essential to understand the novelty of this article.

Definition 1. Ref. [21]: A complex fuzzy relation R is a CFS of the product space U ×V and is
characterized by the complex membership function µR(m, n), which assigns to each pair (m, n) a
complex-valued membership grade. In other words, R = {((m, n), µR(m, n))|(m, n) ∈ U ×V}.

Definition 2. Ref. [21]: A complex fuzzy relation R is said to be:

1. Complex fuzzy reflexive if R contains all pairs of the form (m, m) for any m of U.
2. Complex fuzzy symmetric if

µR(m, n) = µR(n, m), ∀(m, n) ∈ U2.

3. Complex fuzzy transitive if

µT(m, n) ≥ max
p∈U
{min{µT(m, p), µT(p, n)}}, ∀(m, n) ∈ U2, ∀p ∈ U.

Definition 3. Ref. [22]: Let A be a CFS of a universe U and ξ = αeiδ be an element of a unit circle
with 0 ≤ α ≤ 1 and 0 ≤ δ ≤ 2π. The CFS Aξ is called the conjunctive complex fuzzy set (CCFS)
with respect to CFS A and is written as: µAξ (m) = min{µA(m), ξ}, ∀m ∈ U.

3. Set Theoretical Properties of Conjunctive Complex Fuzzy Relations

This section introduces conjunctive complex fuzzy relations and their composition.
We also provide important types of this newly defined notion and analyze their relevance
by demonstrating numerous basic characteristics of these concepts.

Definition 4. A conjunctive complex fuzzy relation Rξ (CCFR) is a CCFS of the product space
U ×V and is characterized by the complex membership function µRξ (m, n), which assigns to each
pair (m, n) a complex-valued membership grade. In other words,

Rξ = {((m, n), µRξ (m, n))|(m, n) ∈ U ×V}.

Definition 5. A CCFR Rξ is a CCFS of the product space U2 and is characterized by the complex
membership function µRξ (m, n), which assigns to each pair (m, n) a complex-valued membership
grade. In other words,

Rξ = {((m, n), µRξ (m, n))|(m, n) ∈ U ×U}.

For convenience, the collection of all CCFR is denoted by Rξ(U), and any of its
elements are represented by Rξ ∈ Rξ(U).
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The following example illustrates a useful application of the concept of conjunctive
complex fuzzy relations by which one can obtain the true shade of a required color.

Example 1. Consider a universal set X consisting of three colors

X = {Green, Purple, Orange}.

We want to mix any two colors of the universe X in such a way that we obtain the
royal sapphire color. Study shows that the true shade of the royal sapphire color is obtained
by mixing a certain ratio of the green color into purple color. Let the symbols G, P and
O represent the elements of the universe X and R represent the true shade of the royal
sapphire color. The mathematical representation of this situation is described as follows:

µR(m, n) =


0.92ei1.9π i f (m, n) ∈ {(G, P)}

0.551ei1.12π i f (m, n) ∈ {(P, G)}
0 otherwise.

In order to obtain the true shade of the royal sapphire color, we reduce the certain ratio
of the green color in the above situation by applying the parameter ξ. Let Rξ denote the true
shade of the required color for the value of parameter ξ = 0.75ei1.35π . The mathematical
representation of the relation Rξ is interpreted as follows:

µRξ (m, n) =


0.75ei1.35π i f (m, n) ∈ {(G, P)}
0.551ei1.12π i f (m, n) ∈ {(P, G)}

0 otherwise
.

The above discussion shows that the true shade of the required color is obtained in
the framework of CCFR. The matrix and graphical representations of the above physical
phenomenon are depicted in Table 2 and Figure 1, respectively.

Table 2. Matrix representation of the true shade of royal sapphire color.

Rξ G P O

G 0 0.92ei1.9π 0
P 0.551ei1.12π 0 0
O 0 0 0
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Definition 6. The standard set operations on any two CCFRs Rξ and Sξ are given below:

(1) µRξ∪Sξ (m, n) = max{µRξ (m, n), µSξ (m, n)}, ∀m, n ∈ U.
(2) µRξ∩Sξ (m, n) = min{µRξ (m, n), µSξ (m, n)}, m, n ∈ U.

(3) µRξ′ (m, n) = 1− rRξ (m, n)ei(2π−ωRξ (m,n)), for all m, n ∈ U.
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Example 2. The matrix representations of two complex fuzzy relations R and S on the universe
U = {1, 2, 3} are represented in Tables 3 and 4.

Table 3. Matrix representation of complex fuzzy relation R.

.R 1 2 3

1 0.92ei1.83π 0.51ei0.99π 0.21ei0.75π

2 0.51ei0.99π 0.92ei1.83π 0.73ei1.23π

3 0.21ei0.75π 0.73ei1.23π 0.92ei1.83π

Table 4. Matrix representation of complex fuzzy relation S.

.S 1 2 3

1 0.81ei1.72π 0.37ei0.24π 0.92ei1.94π

2 0.37ei0.24π 0.81ei1.72π 0.42ei0.39π

3 0.92ei1.94π 0.42ei0.39π 0.81ei1.72π

The matrix representation of two CCFRs Rξ and Sξ relative to ξ = 0.62ei1.25π are given
in Tables 5 and 6, respectively.

Table 5. Matrix representation of conjunctive complex fuzzy relation Rξ .

Rξ 1 2 3

1 0.62ei1.25π 0.51ei0.99π 0.21ei0.75π

2 0.51ei0.99π 0.62ei1.25π 0.62ei1.25π

3 0.21ei0.75π 0.62ei1.25π 0.62ei1.25π

Table 6. Matrix representation of conjunctive complex fuzzy relation Sξ .

Sξ 1 2 3

1 0.62ei1.25π 0.37ei0.24π 0.62ei1.25π

2 0.37ei0.24π 0.62ei1.25π 0.42ei0.39π

3 0.62ei1.25π 0.42ei0.39π 0.62ei1.25π

In view of Definition 6, the union of Rξ and Sξ is obtained in Table 7.

Table 7. Matrix representation of Rξ ∪ Sξ .

Rξ∪Sξ 1 2 3

1 0.62ei1.25π 0.51ei0.99π 0.62ei1.25π

2 0.51ei0.99π 0.62ei1.25π 0.62ei1.25π

3 0.62ei1.25π 0.62ei1.25π 0.62ei1.25π

In view of Definition 6, the intersection of Rξ and Sξ is obtained in Table 8.

Table 8. Matrix representation of Rξ ∩ Sξ .

Rξ∩Sξ 1 2 3

1 0.62ei1.25π 0.37ei0.24π 0.21ei0.75π

2 0.37ei0.24π 0.62ei1.25π 0.42ei0.39π

3 0.21ei0.75π 0.42ei0.39π 0.62ei1.25π
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In view of Definition 6, the compliment of Rξ is obtained in Table 9.

Table 9. Matrix representation of Rξ ′ .

Rξ′ 1 2 3

1 0.38ei0.75π 0.49ei1.01π 0.79ei1.25π

2 0.49ei1.01π 0.38ei0.75π 0.38ei0.75π

3 0.79ei1.25π 0.38ei0.75π 0.38ei0.75π

Definition 7.

(1) The conjunctive complex fuzzy empty relation Rξ
∅ is characterized by the following complex

membership function: µ
Rξ
∅
(m, n) = 0, for all(m, n) ∈ U2.

(2) The conjunctive complex fuzzy identity relation Rξ
I on U is described by the following complex-

valued membership function: µ
Rξ

I
(m, n) = 1, for all (m, n) ∈ U2.

Remark 1. For each Rξ ∈ Rξ(U), Rξ ∩ Rξ ′ 6= Rξ
∅ and Rξ ∪ Rξ ′ 6= Rξ

I .

Example 3. The above algebraic facts can easily be observed from Example 2.

Definition 8. The conjunctive complex fuzzy inverse relation Rξ−1
of Rξ is defined as

Rξ−1
=
{
((n, m), µRξ (n, m))

∣∣(m, n) ∈ Rξ
}

. The subsequent identities are obvious observations
from the above definition:

1.
(

Rξ
I

)−1
= Rξ

I .

2.
(

Rξ ′

I

)−1
= Rξ ′

I .

Proposition 1. The following characteristics are satisfied in Rξ(U):

1. Rξ
0 ⊂ Rξ .

2.
(

Rξ c)−1
=
(

Rξ−1)c.

3.
(

Rξ−1)−1
= Rξ .

4. Rξ ⊂ Rξ ∪ Sξ and Sξ ⊂ Rξ ∪ Sξ .
5. Rξ ∩ Sξ ⊂ Rξ and Rξ ∩ Sξ ⊂ Sξ .

6. If Rξ ⊂ Sξ , then Rξ−1 ⊂ Sξ−1
.

7. If Rξ ⊂ Tξ and Sξ ⊂ Tξ , then Rξ ∪ Sξ ⊂ Tξ .
8. If Tξ ⊂ Rξ and Tξ ⊂ Sξ , then Tξ ⊂ Rξ ∩ Sξ .
9. If Rξ ⊂ Sξ , then Rξ ∪ Sξ = Sξ and Rξ ∩ Sξ = Rξ .

10.
(

Rξ ∪ Sξ
)−1

= Rξ−1 ∪ Sξ−1
and

(
Rξ ∩ Sξ

)−1
= Rξ−1 ∩ Sξ−1

.

Proof.

1. The Proof is obvious.
2. In view of Definition 8, for any (m, n) ∈ Rξ , we have

µRξ c−1 (m, n) = µRξ c(n, m)

= 1− µRξ (n, m)
= 1− µRξ−1(m, n)

It follows that µRξ c−1 (m, n) = µRξ−1c (m, n).

3. It is easy to prove.
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4. We establish the required inclusion in the following two cases:

Case I: If µRξ (m, n) > µSξ (m, n),
then µRξ (m, n) > max{µRξ (m, n), µSξ (m, n)}.
It follows that

Rξ = Rξ ∪ Sξ . (1)

Case II: If µRξ (m, n) < µSξ (m, n),
then we have µRξ (m, n) < max{µRξ (m, n), µSξ (m, n)}.
It follows that

Rξ ⊂ Rξ ∪ Sξ . (2)

Combining relations (1) and (2), we obtain

Rξ ⊆ Rξ ∪ Sξ .

5. The Proof is trivial.
6. The Proof demonstrates the point effectively.
7. By using the given conditions that Rξ ⊂ Tξ and Sξ ⊂ Tξ , we have

µRξ∪Sξ (m, n) = max{µRξ (m, n), µSξ (m, n)} < max{µTξ (m, n), µTξ (m, n)} = µTξ (m, n).

It follows that Rξ ∪ Sξ ⊂ Tξ .

8. The Proof is obvious.
9. By applying the given condition that Rξ ⊂ Sξ , we have

µRξ∪Sξ (m, n) = max{µRξ (m, n), µSξ (m, n) < max{µSξ (m, n), µSξ (m, n)}.

It follows that Rξ ∪ Sξ ⊂ Sξ .

10. µ
(Rξ∪Sξ )

−1(m, n) = µRξ∪Sξ (n, m)

= max{µRξ (n, m), µSξ (n, m)}
= max

{
µRξ−1 (m, n), µSξ−1 (m, n)

}
= µRξ−1∪Sξ−1 (m, n).

Hence,
(

Rξ ∪ Sξ
)−1

= Rξ−1 ∪ Sξ−1
. �

Definition 9. The composition of CCFRs Rξ and Sξ is characterized by the following complex-
valued membership function:

µRξ◦Sξ (m, n) = max
p∈U
{min{µRξ (m, p), µSξ (p, n)}} .

Example 4. In view of Example 2, the composition of conjunctive complex fuzzy relations Rξ and
Sξ is obtained in Table 10.

Table 10. Matrix representation of Rξ ◦ Sξ .

Rξ◦Sξ 1 2 3

1 0.62ei1.25π 0.62ei1.25π 0.62ei1.25π

2 0.51ei0.99π 0.62ei1.25π 0.62ei1.25π

3 0.62ei1.25π 0.62ei1.25π 0.62ei1.25π
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Proposition 2. The CCFRs Rξ , Sξ and Tξ ∈ Rξ(U) admit the following properties:

1. If Rξ ⊂ Sξ , then Tξ ◦ Rξ ⊂ Tξ ◦ Sξ .

2.
(

Rξ ◦ Sξ
)−1

= Sξ−1 ◦ Rξ−1.

Proof.

1. In the light of Definition 9 and using the fact that Rξ ⊂ Sξ , we have

µTξ◦Rξ (m, n) = max
p∈U
{min{µTξ (m, p), µRξ (p, n)}} ≤ max

p∈U
{min{µTξ (m, p), µSξ (p, n)}}, ∀(m, n) ∈ U2, p ∈ U.

It follows that Tξ ◦ Rξ ⊂ Tξ ◦ Sξ .

2. In the application of Definition 8, for any (m, n) ∈ U2, we have

µ
(Rξ◦Sξ )

−1(m, n) = µRξ◦Sξ (n, m) = max
p∈U
{min{µRξ (n, p), µSξ (p, m)}}

= max
p∈U

{min{µRξ−1(p, n), µSξ−1(m, p)}},
∀(m, n) ∈ U2, p ∈ U .

It follows that
(

Rξ ◦ Sξ
)−1

= Sξ−1 ◦ Rξ−1 �.

Remark 2. The CCFR obeys the associative property and the distributive properties in the framework
of Definition 9, whereas they do not preserve the commutative law. This algebraic fact is illustrated
in the subsequent example.

Example 5. Table 10 in Example 4 illustrates the outcomes of Sξ ◦ Rξ . Table 11 describes the
numeric values of the relation Rξ ◦ Sξ .

Table 11. Matrix representation of Sξ ◦ Rξ .

Sξ◦Rξ 1 2 3

1 0.62ei1.25π 0.51ei0.99π 0.62ei1.25π

2 0.62ei1.25π 0.62ei1.25π 0.62ei1.25π

3 0.62ei1.25π 0.6ei1.2π 0.62ei1.25π

Clearly, Sξ ◦ Rξ 6= Rξ ◦ Sξ .

4. Structural Types of Conjunctive Complex Fuzzy Relations

In this section, we introduce some fundamental structural types of conjunctive com-
plex fuzzy relations and present their constructions by means of matrix and graphical
representations. Moreover, we highlight the significance of the study of these types by
proving their many useful key attributes.

Definition 10. The CCFR Rξ of Rξ(U) is said to be a conjunctive complex fuzzy reflexive relation
(CCFRR) if Rξ contains all pairs of the form (m, m) for any m of U. The class of all CCFRR
relations is denoted byRξ(U).

Definition 11. The CCFR Rξ of Rξ(U) is said to be a conjunctive complex fuzzy irreflexive
relation if Rξ does not contains any pair of the form (m, m) for any m of U.

Definition 12. The CCFR Rξ of Rξ(U) is said to be a conjunctive complex fuzzy not reflexive
relation if Rξ does not contain all pairs of the form (m, m) for any m of U.

The following example interprets the above-stated algebraic facts.
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Example 6. Consider the CCFRs Rξ stated in Table 4 of Example 2.

1. The CCFRR relation Rξ is obtained as follows:

µRξ (1, 1) = µRξ (2, 2) = µRξ (3, 3) = 0.6ei1.2π .

2. The conjunctive complex fuzzy irreflexive relation Rξ is obtained as follows:

µRξ (1, 1) = µRξ (2, 2) = 0.6ei1.2π .

3. The conjunctive complex fuzzy not reflexive relation Rξ is obtained as follows:

µRξ (1, 1) = µRξ (2, 2) = µRξ (3, 3) = 0.

The matrix and graphical representations of the above CCFRs are described in Table 12
and Figure 2, respectively.

Table 12. Matrix representation of conjunctive complex fuzzy reflexive relation.

Rξ 1 2 3

1 0.62ei1.25π 0.51ei0.9π 0.21ei0.75π

2 0 0.62ei1.25π 0
3 0 0.62ei1.25π 0.62ei1.25π
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The matrix and graphical representations of the above CCFRs are described in Table 14
and Figure 4, respectively.

Table 14. Matrix representation of conjunctive complex fuzzy not reflexive relation.

Rξ 1 2 3

1 0 0.51ei0.99π 0.21ei0.75π

2 0 0 0
3 0.21ei0.75π 0 0
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Definition 13. The CCFR Sξ of Rξ(U) is said to be a conjunctive complex fuzzy symmet-
ric relation (CCFSR) if its complex-valued membership function satisfies the following property:
µSξ (m, n) = µSξ (n, m), ∀(m, n) ∈ U2.

The class of all CCFSRs is denoted by Sξ(U).

Definition 14. The CCFR Sξ of Rξ(U) is said to be a conjunctive complex fuzzy antisymmetric re-
lation if its complex-valued membership function satisfies the following property:
µSξ (m, n) 6= µSξ (n, m), for all (m, n) ∈ U2.

Example 7. Consider the CCFRs stated in Table 4 of Example 2.

1. The CCFSR Sξ is obtained as follows: µSξ (1, 2) = µSξ (2, 1) = 0.5eiπ ,
µSξ (2, 3) = µSξ (3, 2) = 0.6ei1.2π .

2. The conjunctive complex fuzzy antisymmetric relation Sξ is obtained as follows: µSξ (1, 3) =
0.6ei1.2π 6= µSξ (3, 1).

The matrix and graphical representations of the above CCFRs are described in Table 15
and Figure 5, respectively.

Table 15. Matrix representation of conjunctive complex fuzzy symmetric relation.

Sξ 1 2 3

1 0 0.51ei0.9π 0.21ei0.75π

2 0.51ei0.9π 0 0
3 0 0.62ei1.25π 0
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Definition 15. The CCFR Tξ of Rξ(U) is said to be a conjunctive complex fuzzy transitive
relation (CCFTR) if its complex-valued membership function satisfies the following property:
µTξ (m, n) ≥ max

{
min{µTξ (m, p), µTξ (p, n)}}, ∀(m, n) ∈ U2, ∀p ∈ U . The class of all

CCFTR is denoted by T ξ(U).

The following example interprets the above-stated algebraic fact.

Example 8. Consider the CCFR Rξ stated in Table 5 of Example 2.

The CCFTR Tξ is obtained as follows:

µTξ (2, 1) ≥ max{min{µTξ (2, 3), µTξ (3, 1)}}.

The matrix and graphical representations of the above CCFR are described in Table 17
and Figure 7:
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Table 17. Matrix representation of conjunctive complex fuzzy transitive relation.

Tξ 1 2 3

1 0 0 0
2 0.51ei0.9π 0 0.62ei1.25π

3 0.21ei0.75π 0 0
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Proposition 3. Every complex fuzzy relation admits the following properties:

1. Every CFRR is a CCFRR.
2. Every CFSR is a CCFSR relation.
3. Every CFTR is a CCFTR.

Proof.

1. One establishes in the framework of the application of Definition 2 and 10:

µRξ (m, m) = min{ξ, µR(m, m)}= µRξ (m, m), ∀(m, m) ∈ U2.

2. The application of Definition 4 and using the fact described in Definition 3 on any
CFR R gives

µSξ (m, n) = min{ξ, µS(m, n)} = min{ξ, µS(n, m)} .

It follows that µSξ (m, n) = µSξ (n, m).

3. The application of Definition 4 and using the fact described in Definition 3 on any
CFR R gives

µTξ (m, n) = min{ξ, µT(m, n)} = min{ξ, (ma{min{µT(m, p), µT(p, n)}})
= max{min{min{ξ, µT(m, p)}, min{ξ, µT(p, n)}}
= max{min{µTξ (m, p), µTξ (p, n)}}.

This shows that µTξ (m, n) = max{min{µTξ (m, p), µTξ (p, n)}}. �
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Proposition 4. For any Rξ
1, Rξ

2 ∈ Rξ(U), then Rξ
1 ◦ Rξ

2 ∈ Rξ(U).

Proof. In view of Definition 10 and using the given condition, for any element m ∈ U,
we have

µRξ
1◦R

ξ
2
(m, m) = max

n∈U
{min{µ

Rξ
1
(m, m), µRξ

2
(m, m)}}

which shows that

µRξ
1◦R

ξ
2
(m, m) ∈ Rξ(U).

In the subsequent result, we inaugurate a condition of existence of CCFSR. �

Proposition 5. Sξ ∈ Sξ(U) if and only if Sξ = Sξ−1
.

Proof. By applying Definition 13 on any (m, n) ∈ U2, we have µSξ (m, n) = µSξ (n, m). �

By using Definition 8 in the above equation, it yields

µSξ (m, n) = µSξ−1 (n, m).

It follows that Sξ = Sξ−1
, ∀(m, n) ∈ U2.

Conversely, suppose Sξ = Sξ−1
, then µSξ (m, n) = µSξ−1 (m, n). In view of Definition 8,

the above relation becomes µSξ (m, n) = µSξ (n, m).

Proposition 6. For any Sξ
1, Sξ

2 ∈ Sξ(U), then Sξ
1 ∩ Sξ

2 ∈ Sξ(U).

Proof. In view of Definition 13, we have µ
Sξ

1
(m, n) = µ

Sξ
1
(n, m) and

µ
Sξ

2
(m, n) = µ

Sξ
2
(n, m), ∀(m, n) ∈ U2.

Consider

µ
Sξ

1∩Sξ
2
(m, n) = min

{
µ

Sξ
1
(m, n), µ

Sξ
2
(m, n)

}
= min

{
µ

Sξ
1
(n, m), µ

Sξ
2
(n, m)

}
.

It follows that µ
Sξ

1∩Sξ
2
(m, n) = µ

Sξ
1∩Sξ

2
(n, m).

Consequently, Sξ
1 ∩ Sξ

1 ∈ Sξ(U) �.

Remark 3. The composition of two CCFSRs may not be a CCFSR. The following example describes
this fact.

Example 9. The CFSRs S1 and S2 on the universe U = {1, 2, 3} are represented in
Tables 18 and 19, respectively.

Table 18. Matrix representation of complex fuzzy symmetric relation S1.

.S1 1 2 3

1 0.65ei1.26π 0.71ei1.31π 0.55ei1.1π

2 0.71ei1.31π 0 0.94ei1.83π

3 0.55ei1.1π 0.94ei1.83π 0
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Table 19. Matrix representation of complex fuzzy symmetric relation S2.

.S2 1 2 3

1 0.72ei1.25π 0.34ei0.27π 0
2 0.34ei0.27π 0.72ei1.25π 0.89ei1.88π

3 0 0.89ei1.88π 0.72ei1.25π

The matrix representation of the CCFSRs Sξ
1 and Sξ

2 corresponding to the value
ξ = 0.83ei1.55π are obtained in Tables 20 and 21, respectively.

Table 20. Matrix representation of conjunctive complex fuzzy symmetric relation Sξ
1 .

Sξ
1 1 2 3

1 0.65ei1.26π 0.71ei1.31π 0.55ei1.1π

2 0.71ei1.31π 0 0.83ei1.55π

3 0.55ei1.1π 0.83ei1.55π 0

Table 21. Matrix representation of conjunctive complex fuzzy symmetric relation Sξ
2 .

Sξ
2 1 2 3

1 0.72ei1.3π 0.34ei0.27π 0
2 0.34ei0.27π 0.72ei1.25π 0.83ei1.55π

3 0 0.83ei1.55π 0.72ei1.25π

In view of Definition 9, the matrix representation of Sξ
1 ◦ Sξ

2 is given in Table 22.

Table 22. Matrix representation of Sξ
1 ◦ Sξ

2 .

Sξ
1◦S

ξ
2 1 2 3

1 0.65ei1.26π 0.71ei1.31π 0.71ei1.31π

2 0.71ei1.31π 0.34ei0.27π 0.72ei1.25π

3 0.55ei1.1π 0.72ei1.25π 0.83ei1.55π

Note that µ
Sξ

1◦S
ξ
2
(1, 3) = 0.4ei0.3π 6= 0.3ei0.2π = µ

Sξ
1◦S

ξ
2
(3, 1).

Hence Sξ
1 ◦ Sξ

2 /∈ Sξ(U).
In the following result, we investigate a condition under which the composition of two

conjunctive complex fuzzy symmetric relations is a conjunctive complex fuzzy relation.

Proposition 7. Sξ
1 ◦ Sξ

2 ∈ Sξ(U) if and only if Sξ
2 ◦ Sξ

1 = Sξ
1 ◦ Sξ

2, ∀ Sξ
1, Sξ

2 ∈ Sξ(U).

Proof. Suppose Sξ
1 ◦ Sξ

2 ∈ Sξ(U). In light of Proposition 4, we have

µ
Sξ

2◦S
ξ
1
(m, n) = µ

(Sξ
2◦S

ξ
1)
−1(m, n) = µ

Sξ−1
1 ◦Sξ−1

2
(m, n).

It follows that µ
Sξ

2◦S
ξ
1
(m, n) = µ

Sξ
1◦S

ξ
2
(m, n).

Consequently, Sξ
2 ◦ Sξ

1 = Sξ
1 ◦ Sξ

2.

Conversely, suppose Sξ
2 ◦ Sξ

1 = Sξ
1 ◦ Sξ

2. This implies that
(

Sξ
2 ◦ Sξ

1

)−1
= (Sξ

1 ◦ Sξ
2)
−1

.
�

In view of Proposition 4, we have µ
(Sξ

1◦S
ξ
2)
−1(m, n) = µ

Sξ
1◦S

ξ
2
(m, n).
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It follows that Sξ
1 ◦ Sξ

2 ∈ Sξ(U).
In the subsequent result, we evaluate the condition of the existence of a conjunctive

complex fuzzy transitive relation.

Proposition 8. Tξ ∈ T ξ(U) if and only if Tξ ◦ Tξ ⊆ Tξ .

Proof. In view of Definition 15 and using the assumption that we have Tξ ∈ T ξ(U), then

µTξ◦Tξ (m, n) = max
p∈U
{min{µTξ (m, p), µTξ (p, n)} ≤ µTξ (m, n).

This implies that Tξ ◦ Tξ ⊆ Tξ .
Conversely, in view of Definition 9 and using the assumption, we have

Tξ ◦ Tξ ⊆ Tξ

µTξ◦Tξ (m, n) ≤ µTξ (m, n).

In the light of Definition 15, the above relation yields the following arguments:
Tξ ∈ T ξ(U). �

Proposition 9. The inverse of a CCFTR is a CCFTR.

Proof. For the application of Definition 8 for any CCFTR Tξ , we have

µTξ−1 (m, n) = µTξ (n, m).

By using Proposition 8 in the above equation, we obtain

µTξ−1 (m, n) ≥ µTξ◦Tξ (n, m)

= max
p∈U
{min{µTξ (n, p), µTξ (p, m)}}

= max
p∈U

{
min

{
µTξ−1 (p, n), µTξ−1 (m, p)

}}
.

= µTξ−1◦Tξ−1 (m, n)

Thus, µTξ−1 (m, n) ≥ µTξ−1◦Tξ−1 (m, n).

Hence, Tξ−1 ◦ Tξ−1 ⊆ Tξ−1
.

Consequently, Tξ−1 ∈ T ξ(U). �

Proposition 10. The intersection of two CCCFTRs is CCFTR f Tξ
1 , Tξ

2 ∈ T ξ , then Tξ
1 ∩ Tξ

2 ∈ T ξ .

Proof. In the application of Definition 9, for any two CCFTRs Tξ
1 and Tξ

2 , we have

µ
(Tξ

1 ∩Tξ
2 )◦(T

ξ
1 ∩Tξ

2 )
(m, n) = max

p∈U

{
min

{
µ
(Tξ

1 ∩Tξ
2 )
(m, p), µ

(Tξ
1 ∩Tξ

2 )
(p, n)

}}
= max

p∈U
{min{min{µ

Tξ
1
(m, p), µ

Tξ
2
(m, p)}, min{µ

Tξ
1
(p, n), µ

Tξ
2
(p, n)}}}

= max
p∈U
{min{min{µ

Tξ
1
(m, p), µ

Tξ
1
(p, n)}, min{µ

Tξ
2
(m, p), µ

Tξ
2
(p, n)}}}

= min{max
p∈U
{min{µ

Tξ
1
(m, p), µ

Tξ
1
(p, n)},min{µ

Tξ
2
(m, p), µ

Tξ
2
(p, n)}}}.

Thus,

µ
(Tξ

1 ∩Tξ
2 )◦(T

ξ
1 ∩Tξ

2 )
(m, n) = min

{
µ

Tξ
1 ◦T

ξ
1
(m, n), µ

Tξ
2 ◦T

ξ
2
(m, n)

}
.
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By using Proposition 8 in the above equation, we obtain

µ
(Tξ

1 ∩Tξ
2 )◦(T

ξ
1 ∩Tξ

2 )
(m, n) ≤ min

{
µ

Tξ
1
(m, n), µ

Tξ
2
(m, n)

}
= µ

Tξ
1∩Tξ

2
(m, n).

Consequently,
(

Tξ
1 ∩ Tξ

2

)
◦
(

Tξ
1 ∩ Rξ

2

)
⊆ Tξ

1 ∩ Tξ
2 .

This proves the required result. �

Remark 4. For any two Tξ
1 and Tξ

2 ∈ T
ξ

R (U), Tξ
1 ∪ Tξ

2 /∈ T ξ(U).

Example 10. The CFTRs T1 and T2 defined on universe U = {1, 2, 3} are represented in
Tables 23 and 24, respectively.

Table 23. Matrix representation of complex fuzzy transitive relation T1.

.T1 1 2 3

1 0.78ei1.69π 0 0
2 0.53eiπ 0.78ei1.69π 0.78ei1.69π

3 0.21ei0.77π 0 0.78ei1.69π

Table 24. Matrix representation of complex fuzzy transitive relation T2.

.T2 1 2 3

1 0.7ei1.6π 0.3ei0.2π 0.7ei1.6π

2 0 0.7ei1.6π 0
3 0 0.4ei0.3π 0.7ei1.6π

The matrix representations of CCFTRs Tξ
1 and Tξ

2 relative to ξ = 0.63ei1.22π are
obtained in Tables 25 and 26, respectively.

Table 25. Matrix representation of conjunctive complex fuzzy transitive relation Tξ
1 .

Tξ
1 1 2 3

1 0.63ei1.22π 0 0
2 0.53eiπ 0.63ei1.22π 0.63ei1.22π

3 0.21ei0.77π 0 0.63ei1.22π

Table 26. Matrix representation of conjunctive complex fuzzy transitive relation Tξ
2 .

Tξ
2 1 2 3

1 0.63ei1.22π 0.3ei0.2π 0.63ei1.22π

2 0 0.63ei1.22π 0
3 0 0.4ei0.3π 0.63ei1.22π

In view of Definition 6, the matrix representation of Tξ
1 ∪ Tξ

2 is shown in Table 27.

Table 27. Matrix representation of Tξ
1 ∪ Tξ

2 .

Tξ
1∪Tξ

2 1 2 3

1 0.63ei1.22π 0.3ei0.2π 0.63ei1.22π

2 0.53eiπ 0.63ei1.22π 0.63ei1.22π

3 0.21ei0.77π 0.4ei0.3π 0.63ei1.22π
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Note that in the light of Proposition 8, we have the following consequence:

µ
(Tξ

1∪Tξ
2 )◦(T

ξ
1∪Tξ

2 )
(1, 2) = 0.4ei0.3π � 0.3ei0.2π = µ

(Tξ
1∪Tξ

2 )
(1, 2).

Definition 16. A CCFR Rξ ∈ Rξ(U) is said to be a conjunctive complex fuzzy equivalence relation
(CCFER) if Rξ is a conjunctive complex fuzzy reflexive, symmetric and transitive relation.

Example 11. Table 4 of Example 2 describes that Rξ is a conjunctive complex fuzzy equivalence relation.

Proposition 11. If Rξ is a CCFER relation, then Rξ ◦ Rξ = Rξ .

Proof. By applying Proposition 8 and using the given condition, we have

Rξ ◦ Rξ ⊆ Rξ . (3)

Moreover, consider

µRξ◦Rξ (m, n) = max
p∈U
{min{µRξ (m, p), µRξ (p, n)}}

µRξ◦Rξ (m, n) ≥ min{µRξ (m, m), µRξ (m, n)} = µRξ (m, n).

This implies that
µRξ◦Rξ (m, n) ≥ µRξ (m, n).

Consequently,
Rξ ◦ Rξ ⊇ Rξ . (4)

By comparing (3) and (4), we obtain the required equality. �

In the subsequent result, we investigate a condition under which the composition
of two conjunctive complex fuzzy equivalence relations is a conjunctive complex fuzzy
equivalence relation.

Proposition 12. For any two conjunctive complex fuzzy equivalence relations Rξ , Sξ ∈ Rξ(U).
Sξ ◦ Rξ is a conjunctive complex fuzzy equivalence relation if and only if Sξ ◦ Rξ = Rξ ◦ Sξ .

Proof. Suppose Sξ ◦ Rξ = Rξ ◦ Sξ . The conjunctive complex fuzzy reflexive and symmetric
properties follow in the framework of Rξ and Sξ . Moreover, in view of Remark 2, we have

µ(Sξ◦Rξ )◦(Sξ◦Rξ )(m, n) = µSξ◦(Rξ◦Sξ )◦Rξ (m, n) = µSξ◦((Sξ◦Rξ )◦Rξ )(m, n).

It follows that µ(Sξ◦Rξ )◦(Sξ◦Rξ )(m, n) = µ(Sξ◦Sξ )◦(Rξ◦Rξ )(m, n).
By applying the conjunctive complex fuzzy transitive property of Sξ and Rξ in the

above equation, it yields:

µ(Sξ◦Rξ )◦(Sξ◦Rξ )(m, n) ≤ µSξ◦Rξ (m, n).

In the light of Proposition 8, we have the required result.
In view of Remark 3 and Proposition 8, we can easily prove the converse statement. �

Definition 17. For any element m ∈ U and a CCFER Rξ ∈ Rξ(U), then the conjunctive complex fuzzy
equivalence class of Rξ by m is denoted by Rξ

m and is defined as Rξ
m =

{
µRξ (n) : µRξ (m, n) ∈ Rξ

}
.

Remark 5. The significance of the above concept is interpreted as it partitions the universe into
the disjoint union of conjunctive complex fuzzy equivalence classes. This approach facilitates our
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study of the behavior of a physical situation under a conjunctive complex fuzzy environment in
much better way.

The subsequent example highlights the above-stated concept.

Example 12. The CFER on the universeU = {1, 2, 3} is represented in Table 28.

Table 28. Matrix representation of complex fuzzy equivalence relation R.

.R 1 2 3

1 0.41ei0.66π 0.73ei1.44π 0
2 0.73ei1.44π 0.41ei0.66π 0
3 0 0 0.41ei0.66π

The matrix representation of the CCFER Rξ corresponding to ξ = 0.5eiπ is obtained
in Table 29.

Table 29. Matrix representation of conjunctive complex fuzzy equivalence relation Rξ .

Rξ 1 2 3

1 0.41ei0.66π 0.5eiπ 0
2 0.5eiπ 0.41ei0.66π 0
3 0 0 0.41ei0.66π

The conjunctive complex fuzzy equivalence class of Rξ by 1 is given by

Rξ
1 = {1, 2}.

The conjunctive complex fuzzy equivalence class of Rξ by 3 is given by

Rξ
3 = {3}.

5. Selection of an Efficient Treatment Method for a Speedy Recovery from COVID-19
under Conjunctive Complex Fuzzy Knowledge

This section focuses on analyzing the highlighted issues related to COVID-19. The
analysis is based on the cause of the disease, its symptoms and the diagnosis and treatment
of the patient. The concept of CCFR is applied to suggest an efficient treatment method for
a speedy recovery from COVID-19 based on mathematical strategies.

Since the inception of the COVID-19 pandemic in 2019, several serious efforts were
made to find the treatment methods to cure the affected patients from this disease. The
medical analysis of the patients indicated the fatal symptoms of this disease, specifically,
intermittent fever, remittent fever, productive cough, sore throat and pain in head. Due to
these symptoms, the death rate of patients significantly increases within six months of its
outset. This situation created uproar throughout the world. However, the most strenuous
and continuous human efforts resulted in the formulation of several treatment methods to
counter this disaster.

Intravenous remdesivir, molnupiravir, Interferons and ivermectin are thought to be
useful and affective treatment methods. In the following discussion, we design a mathe-
matical strategy to choose which one of the mentioned treatment methods is more efficient
for a speedy recovery from this disease under a CCFS environment. The following example
works based on hypothetical data, but if real data are used, it can lead to useful results and
help streamline hospital workflow by minimizing human error and misdiagnosis issues.

Step 1: The main focus of this section is to highlight the significance of the CCFS
in order to choose the most efficient treatment methods from intravenous remdesivir,
molnupiravir, interferons and ivermectin to recover from COVID-19. Table 30 describes
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a set of four ranges, namely, serious, moderate, low and no COVID, depending on the
condition of the disease.

Table 30. Ranges to evaluate the efficiency of a treatment method.

Condition of Disease Serious Moderate Low No COVID

Range [0.6, 1] [0.3, 0.6) [0.1, 0.3) [0, 0.1)

Step 2: The medical conditions of the patients {σ1, σ2, σ3, σ4} are initially translated
into mathematical syntax with the aid of medical personnel. Table 31 depicts a diagnostic
map that describes the distinct COVID-19 symptoms in each patient. In Table 31, the
symbols α1,α2,α3,α4 and α5 describe intermittent fever, remittent fever, productive cough,
sore throat and pain in head, respectively. These details are organized in the framework of
the CFS, where each real part of the CFS represents the amplitude term and each imaginary
part represents the phase term.

Table 31. Distinct COVID-19 symptoms of each patient.

Patients/
Symptoms σ1 σ2 σ3 σ4

(α1, α3, α5) 0.4ei1.1π 0.8ei1.95π 0.9ei1.8π 0.53ei1.5π

(α1, α3, α6) 0.3eiπ 0.1ei0.2π 0.432ei1.71π 0.6ei1.3π

(α1, α4, α5) 0.8ei1.9π 0.1ei0.4π 0.6ei1.1π 0.72ei1.7π

(α1, α4, α6) 0.7ei1.1π 0.76ei1.92π 0.8ei1.7π 0.64ei1.5π

(α2, α3, α5) 0.9ei1.91π 0.2ei0.6π 0.84ei1.45π 0.32ei0.4π

(α2, α3, α6) 0.27ei0.7π 0.01e0.1π 0.32ei1.1π 0.76ei1.2π

(α2, α4, α5) 0.6ei0.3π 0.33ei0.5π 0.5ei1.49π 0.91ei1.91π

(α2, α4, α6) 0.4ei1.1π 0.92ei2π 0.92ei1.9π 0.4ei1.1π

In Figure 8, each amplitude term is represented by a blue column, whereas each phase
term is represented by a red column.
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Figure 8. Diagnostic map of distinct COVID-19 symptoms.

Step 3: The intravenous remdesivir is applied to σ1, molnupiravir to σ2, interferons to
σ3 and Ivermectin to σ4. Table 32 illustrates the recovery rate of each patient with respect
to the parameter ξ = 0.4eiπ , where the parameter ξ represents the rate of efficiency of the
treatment method. These details are obtained in the form of a CCFS.
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Table 32. Recovery rate of each patient.

Patients/
Symptoms σ1 σ2 σ3 σ4

(α1, α3, α5) 0.4eiπ 0.4eiπ 0.4eiπ 0.4eiπ

(α1, α3, α6) 0.3eiπ 0.4eiπ 0.4eiπ 0.4eiπ

(α1, α4, α5) 0.4eiπ 0.1ei0.4π 0.4eiπ 0.4eiπ

(α1, α4, α6) 0.4eiπ 0.4eiπ 0.4eiπ 0.4eiπ

(α2, α3, α5) 0.4eiπ 0.2ei0.6π 0.4eiπ 0.32ei0.4π

(α2, α3, α6) 0.27ei0.7π 0.01e0.1π 0.32eiπ 0.4eiπ

(α2, α4, α5) 0.4ei0.3π 0.33ei0.5π 0.4eiπ 0.4eiπ

(α2, α4, α6) 0.4eiπ 0.1ei0.2π 0.4eiπ 0.4eiπ

The recovery rate of each patient with respect to the parameter ξ is shown in Figure 9.

Symmetry 2023, 15, x FOR PEER REVIEW 22 of 26 
 

 

Figure 8. Diagnostic map of distinct COVID-19 symptoms. 

Step 3: The intravenous remdesivir is applied to 𝜎 , molnupiravir to 𝜎 , interferons 
to 𝜎  and Ivermectin to 𝜎 . Table 32 illustrates the recovery rate of each patient with re-
spect to the parameter  𝜉 = 0.4𝑒  , where the parameter 𝜉  represents the rate of effi-
ciency of the treatment method. These details are obtained in the form of a CCFS.  

Table 32. Recovery rate of each patient. 

Patients/ 
Symptoms 

𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 (𝛼 ,𝛼 ,𝛼 ) 0.4𝑒  0.4𝑒  0.4𝑒  0.4𝑒  (𝛼 ,𝛼 ,𝛼 ) 0.3𝑒  0.4𝑒  0.4𝑒  0.4𝑒  (𝛼 ,𝛼 ,𝛼 ) 0.4𝑒  0.1𝑒 .  0.4𝑒  0.4𝑒  (𝛼 ,𝛼 ,𝛼 ) 0.4𝑒  0.4𝑒  0.4𝑒  0.4𝑒  (𝛼 ,𝛼 ,𝛼 ) 0.4𝑒  0.2𝑒 .  0. 4𝑒  0.32𝑒 .  (𝛼 ,𝛼 ,𝛼 ) 0.27𝑒 .  0.01𝑒 .  0.32𝑒  0.4𝑒  (𝛼 ,𝛼 ,𝛼 ) 0.4𝑒 .  0.33𝑒 .  0.4𝑒  0.4𝑒  (𝛼 ,𝛼 ,𝛼 ) 0.4𝑒  0.1𝑒 .  0.4𝑒  0.4𝑒  

The recovery rate of each patient with respect to the parameter 𝜉 is shown in Figure 
9. 

 
Figure 9. Recovery rate of each patient with respect to the parameter 𝜉. 

Step 4: Moreover, we convert each entry of Table 32 into a real value by applying the 
following weighted formula:  

Ξ = 𝜔 𝑟 (𝑚) 𝜔 12𝜋 𝜔 (𝑚), 
where 𝑟 (𝑚)  and  𝜔 (𝑚) are amplitude and phase terms in the CCFS, respectively. 𝑤 = 0.4 and 𝑤 = 0.6 are the weights for the amplitude terms and the phase terms, re-
spectively. 

We determine the average of all the aspects from Table 33 that correspond to each 
individual symptom. Table 34 describes the rate of efficiency of each treatment method. 

Table 33. Average output corresponding to symptoms of each patient. 

Patients/Symptom
s 

𝝈𝟏 𝝈𝟐 𝝈𝟑 𝝈𝟒 (𝛼 ,𝛼 ,𝛼 ) 0.46 0.46 0.46 0.46 (𝛼 ,𝛼 ,𝛼 ) 0.42 0.46 0.46 0.46 (𝛼 ,𝛼 ,𝛼 ) 0.46 0.16 0.46 0.46 (𝛼 ,𝛼 ,𝛼 ) 0.46 0.46 0.46 0.46 (𝛼 ,𝛼 ,𝛼 ) 0.46 0.26 0.46 0.248 

0.37
0.242

0.39 0.39

0.875
0.6

1 0.95

0

0.5

1

1.5

2

Patient 1 Patient 2 Patient 3 Patient 4

Figure 9. Recovery rate of each patient with respect to the parameter ξ.

Step 4: Moreover, we convert each entry of Table 32 into a real value by applying the
following weighted formula:

Ξ = ω1rAξ (m) + ω2

(
1

2π

)
ωAξ (m),

where rAξ (m) and ωAξ (m) are amplitude and phase terms in the CCFS, respectively. w1 = 0.4
and w2 = 0.6 are the weights for the amplitude terms and the phase terms, respectively.

We determine the average of all the aspects from Table 33 that correspond to each
individual symptom. Table 34 describes the rate of efficiency of each treatment method.

Table 33. Average output corresponding to symptoms of each patient.

Patients/Symptoms σ1 σ2 σ3 σ4

(α1, α3, α5) 0.46 0.46 0.46 0.46
(α1, α3, α6) 0.42 0.46 0.46 0.46
(α1, α4, α5) 0.46 0.16 0.46 0.46
(α1, α4, α6) 0.46 0.46 0.46 0.46
(α2, α3, α5) 0.46 0.26 0.46 0.248
(α2, α3, α6) 0.318 0.038 0.428 0.61
(α2, α4, α5) 0.25 0.282 0.46 0.61
(α2, α4, α6) 0.46 0.1 0.46 0.49

Table 34. Rate of efficiency of each treatment method.

Treatment
Methods

Intravenous
Remdesivir Molnupiravir Interferons Ivermectin

Rate of efficiency 0.411 0.2775 0.456 0.4747
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Figure 10 depicts the efficiency rate of each treatment method.

Symmetry 2023, 15, x FOR PEER REVIEW 23 of 26 
 

 

(𝛼 ,𝛼 ,𝛼 ) 0.318 0.038 0.428 0.61 (𝛼 ,𝛼 ,𝛼 ) 0.25 0.282 0.46 0.61 (𝛼 ,𝛼 ,𝛼 ) 0.46 0.1 0.46 0.49 

Table 34. Rate of efficiency of each treatment method. 

Treatment 
Methods 

Intravenous 
Remdesivir Molnupiravir Interferons Ivermectin 

Rate of efficiency 0.411 0.2775 0.456 0.4747 

Figure 10 depicts the efficiency rate of each treatment method. 

 
Figure 10. Rate of efficiency of treatment methods. 

Step 5: By comparing Tables 30 and 34, we conclude that molnupiravir is the most 
efficient treatment method for a speedy recovery from COVID-19. 

Comparative Analysis 
In the next part of the discussion, a comparative analysis is conducted to demonstrate 

the efficacy and viability of the proposed method. The following Table 35 shows a com-
parison between our methods and those that already exist, namely, fuzzy logic, complex 
fuzzy logic and conjunctive complex fuzzy logic. 

Table 35. A comparative analysis of the existing approaches and the proposed conjunctive complex 
fuzzy logic. 

Techniques Tools of Measurements Computational Results 
Advantages of Proposed 
Approach 

Fuzzy logic approach Based on real value. 

Intravenous remdesivir = 0.546 
Molnupiravir = 0.4025 
Interferons = 0.664 
Ivermectin = 0.61 

An ordinary solution, based only 
on membership value. 

Complex fuzzy logic 
approach 

Based on amplitude 
terms and phase terms. 

Intravenous remdesivir = 0.506 
Molnupiravir = 0.448 
Interferons = 0.7249  
Ivermectin = 0.642 

Better solution than fuzzy 
approach, but slightly difficult to 
enhance the optimization of the 
recovery rate.  

Conjunctive complex 
fuzzy logic approach 

Based on parametric 
value. 

Intravenous remdesivir = 0.41 
Molnupiravir = 0.2775 
Interferons = 0.456 

Best solution over complex fuzzy 
logic because it enhances the 

0

0.5

1
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Step 5: By comparing Tables 30 and 34, we conclude that molnupiravir is the most
efficient treatment method for a speedy recovery from COVID-19.

Comparative Analysis

In the next part of the discussion, a comparative analysis is conducted to demonstrate
the efficacy and viability of the proposed method. The following Table 35 shows a compari-
son between our methods and those that already exist, namely, fuzzy logic, complex fuzzy
logic and conjunctive complex fuzzy logic.

Table 35. A comparative analysis of the existing approaches and the proposed conjunctive complex
fuzzy logic.

Techniques Tools of Measurements Computational Results Advantages of Proposed
Approach

Fuzzy logic approach Based on real value.

Intravenous remdesivir = 0.546
Molnupiravir = 0.4025
Interferons = 0.664
Ivermectin = 0.61

An ordinary solution, based
only on membership value.

Complex fuzzy logic
approach

Based on amplitude terms
and phase terms.

Intravenous remdesivir = 0.506
Molnupiravir = 0.448
Interferons = 0.7249
Ivermectin = 0.642

Better solution than fuzzy
approach, but slightly difficult
to enhance the optimization of
the recovery rate.

Conjunctive complex
fuzzy logic approach

Based on parametric
value.

Intravenous remdesivir = 0.41
Molnupiravir = 0.2775
Interferons = 0.456
Ivermectin = 0.4747

Best solution over complex
fuzzy logic because it enhances
the recovery rate by choosing
the value of parameter ξ.

The significant contributions of the comparative study between the recently proposed
mechanism and the existing strategies are given below:

1. Like fuzzy logic, the previous strategies give an ordinary solution based only on
membership value instead of this complex fuzzy logic based solution, which is prefer-
able to a fuzzy approach. However, it is difficult to improve the optimization of the
recovery rate due to the limitations of its structure, whereas conjunctive complex
fuzzy logic gives the best solution, which enhances the recovery rate by selecting the
parametric value.
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2. The recently proposed approach possesses a distinct advantage over other methods,
primarily due to its exceptional ability to effectively handle the interdependencies
and interactions among arguments. This is an aspect that other methods struggle to
address adequately.

3. The newly developed method is more general in nature and offers a flexible solution
that can be applied to a wide variety of situations, unlike other approaches that may
be limited to specific contexts or circumstances. Moreover, this recently developed
technique provides a comprehensive framework that can be adapted and utilized in a
variety of domains.

4. It is quite evident from the above discussion that multiple attribute decision-making
problems are much easier to solve with the suggested method. The available evidence
strongly supports the conclusion that the proposed approach is the best and most
efficient way to deal with such complex situations, as it allows the decision-maker
to select from a range of suitable values of the parameter ξ in order to make an
appropriate decision about a specific physical situation.

6. Conclusions

Some of the main objectives that have been achieved in this research work are ex-
pressed as the various novel concepts of conjunctive complex fuzzy relations that have
been introduced; many important characteristics of these newly defined notions have been
established. The conjunctive complex fuzzy environment was effectively used to design an
efficient mechanism for a speedy recovery from COVID-19, and a comparative analysis
was presented to demonstrate the efficacy of the proposed technique in comparison to
existing methods. Moreover, the composition of any two CCFRs has been defined, and
the key attributes of this phenomenon have been investigated. Additionally, essential
structural types of conjunctive complex fuzzy relations have been identified, emphasizing
the significance of these concepts through their diverse applications. Furthermore, a mathe-
matical framework for selecting an efficient treatment strategy for COVID-19, utilizing the
concept of conjunctive complex fuzzy relations, has been proposed. Finally, a comparative
analysis has been conducted to demonstrate the validity and applicability of the suggested
approaches compared to existing methods. It is important to note that the recently devel-
oped method has been proven to be more effective than previous strategies, such as fuzzy
logic, which generates ordinary responses based solely on membership values. Instead
of this, a complex fuzzy logic based solution is preferable to a fuzzy approach. However,
it is difficult to improve the optimization of the recovery rate due to the limitations of its
structure, whereas the application of conjunctive complex fuzzy logic provides an optimal
strategy that substantially enhances the recovery rate by taking the parametric value into
account. Looking ahead, there are plans to extend the application of conjunctive complex
fuzzy relations to other fields, such as neural networks and cryptography. By applying this
concept across various domains, the aim is to enhance our understanding of its potential
utility and contribute to advancements in these respective fields. The main limitation of
this study is its computational complexity. Modeling complex systems with complex fuzzy
sets can demand substantial computational and memory resources. In addition, it can be
difficult to devise membership functions for complex fuzzy sets, and the results may be
highly sensitive to parameter selection. A further limitation is the difficulty in interpreting
the results of conjunctive complex fuzzy logic models, which may require expert knowl-
edge and can be less intuitive than conventional mathematical models. Our future efforts
will primarily focus on addressing the limitations mentioned above by creating a compre-
hensive instrument for decision analysis that integrates the linear conjunctive operator.
In addition, one of the future aims will be to increase the applicability and utility of this
instrument in real-world situations. Moreover, the approach proposed in this article will be
adapted to address multi-attribute decision-making problems in a variety of domains, such
as image processing, cybersecurity and neural networks.
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