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Abstract: Generalized logistic distribution, as the generalized form of the symmetric logistic distribu-
tion, plays an important role in reliability analysis. This article focuses on the statistical inference
for the stress–strength parameter R = P(Y < X) of the generalized logistic distribution with the
same and different scale parameters. Firstly, we use the frequentist method to construct asymptotic
confidence intervals, and adopt the generalized inference method for constructing the generalized
point estimators as well as the generalized confidence intervals. Then the generalized fiducial method
is applied to construct the fiducial point estimators and the fiducial confidence intervals. Simulation
results demonstrate that the generalized fiducial method outperforms other methods in terms of the
mean square error, average length, and empirical coverage. Finally, three real datasets are used to
illustrate the proposed methods.

Keywords: generalized fiducial inference; stress–strength; generalized logistic distribution; point
estimation; interval estimation

1. Introduction

The stress–strength, which was initially proposed by Birnbaum [1] and developed
by Birnbaum and McCarty [2], plays an important role in reliability analysis. For two
independent random variables, X and Y, the stress–strength parameter is defined as
R = P(Y < X). If stress Y is greater than strength X, it may result in component failure
or system malfunction. The stress–strength parameter is originally used in the industrial
field to calculate the reliability of the products [3,4]. It is also increasingly used to estimate
the probability that one variable exceeds another [5,6], which is of great significance in
practical application and has been widely used in various fields, such as electrical cable
failure analysis, leukemia treatment, and jute fiber testing. See more details for [5,7–10].

In the literature, there are many life distributions that can be used to estimate R,
such as Weibull [5], Pareto [6,11], generalized Pareto [12], exponential [8,13], generalized
exponential [14], Lomax [15], unit-half-normal [16], unit-Gompertz [17], and generalized
logistic (GL) [18–21] distributions. The logistic distribution is a symmetric heavy-tailed
distribution. However, it is not suitable for handling asymmetric or thin-tailed data.
Therefore, it is necessary to further extend the logistic distribution according to practical
problems, which can handle the data including symmetric, heavy-tailed, asymmetric, and
thin-tailed. The GL distribution, as defined by Balakrishnan and Leung [22], is one of the
generalized forms of the standard logistic distribution. By introducing a shape parameter
to the distribution, the GL distribution expands the range of values for the skewness
coefficient and tail index, which allows a wider range of data fitting capabilities. It has
attracted extensive attention and is widely used in various fields, including demography,
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biology, finance, and neural network, as detailed in [23]. Therefore, we select the GL
distribution with the following probability density function (PDF)

f (x; σ, α) =
αe−

x
σ

σ(1 + e−
x
σ )α+1

, −∞ < x < ∞, (1)

and the corresponding cumulative distribution function (CDF) is

F(x; σ, α) =
1

(1 + e−
x
σ )α

, −∞ < x < ∞, (2)

where σ > 0 and α > 0 are the scale and shape parameters, respectively. The GL distribution
exhibits a negative skew when α > 1 and a positive skew when 0 < α < 1, and it becomes
the standard logistic distribution (it is symmetric) when α = 1. Meanwhile, the PDF of the
GL distribution is unimodal and log-concave, making it suitable for modeling data with
both left and right skewness [18]. The expectation and variance of X can be calculated from
the moment-generating function of the GL distribution [24]; that is,

E(X) = σ(ψ(α)− ψ(1)) and Var(X) = σ2(ψ′(1) + ψ′(α)), (3)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function and ψ′(z) = dψ(z)/dz is the trigamma
function, with the gamma function Γ(z) =

∫ ∞
0 xz−1e−xdx for z > 0. From Formula (3),

the coefficient of skewness for X, corresponding to the third standardized moment, is
expressed as

Skew(X) =
ψ′′(α)− ψ′′(1)

(ψ′(α) + ψ′(1))3/2 , (4)

which implies that the expression does not depend on the parameter σ.
Statisticians have conducted numerous kinds of research on R based on the GL dis-

tribution, most focus on frequentist and Bayesian inference. For the single component,
Asgharzadeh et al. [18], Babayi et al. [19], and Okasha [20] considered the estimation almost
at the same time. Asgharzadeh et al. [18] considered the estimation of R for GL distribution
under three different cases, and obtained the estimators and confidence intervals based on
maximum likelihood (ML), bootstrap, and Bayesian methods. Babayi et al. [19] used ML
and Bayes methods to obtain the point estimations and confidence intervals of R for GL
distribution with the same and different scale parameters. When the scale parameters were
the same, Okasha [20] obtained the point and interval estimations of R using ML and Bayes
methods. For the multicomponent stress–strength reliability, Rasekhi et al. [21] discussed
the point and interval estimations under Bayesian and ML methods.

Based on the above research, it was found that the empirical coverage of ML estimation
sometimes fails to reach the nominal level, while the choice of the prior distribution is
improper or subjective in Bayesian inference. Furthermore, Tao [25] stated that the Jeffreys
prior and reference prior are improper in the GL distribution, which leads to the improper
posterior distribution of the parameter. When the exact pivotal quantity is not available,
the generalized inference (GI) proposed by Weerahandi [26] provides us with another way
of thinking, and Wang et al. [27] have successfully estimated the R of the generalized
exponential distribution based on the GI method. Moreover, Hannig et al. [28] stated that
the posterior of generalized fiducial distribution (GFD) is always proper and the confidence
intervals of generalized fiducial inference (GFI) intend to maintain stated coverage (or be
conservative) while having an average length comparable to or shorter than other methods.
Yan and Liu [29], Yan et al. [30], and Cai et al. [31] used the above fiducial approach
to consider the estimation of the parameters of the generalized exponential distribution,
Lomax distribution, and Weibull distribution, respectively, where GFI often provides better
estimation results than the traditional methods. See [32,33] for more applications of the
GFI method. For the above reasons, the research objective of this article is to find a more
appropriate method among the existing methods to estimate the stress–strength of the
GL distribution with the same and different scale parameters. Our original contribution
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is mainly to introduce the GI and GFI methods to the estimation of R and compare their
performance with the frequentist method. Furthermore, we show the advantages of the
GFI method in terms of mean square error, average length, and empirical coverage.

The structure of the rest paper is as follows. For the hypothesis of the same and
different scale parameters, Sections 2 and 3 develop the point and interval estimations of
R based on the ML, GI, and GFI methods. Section 4 simulates and compares the above
methods. Section 5 demonstrates the proposed estimations by providing three real data
examples. The implications of our findings are discussed in Section 6. The conclusions
based on the research results are drawn in Section 7.

2. Estimation of R with the Same Scale and Different Shape Parameters

Suppose X ∼ GL(σ, α1) and Y ∼ GL(σ, α2) are independent random variables with
the same scale parameter σ, then R = P(Y < X) can be calculated as follows

R = P(Y < X) =
∫ ∞

−∞

∫ x

−∞
fY(y) fX(x)dydx

=
∫ ∞

−∞

1
(1 + e−

x
σ )α2

· α1e−
x
σ

σ(1 + e−
x
σ )α1+1

dx

=
α1

α1 + α2
. (5)

2.1. Maximum Likelihood Estimation of R

Given the observed data, x = (x1, . . . , xn)T and y = (y1, . . . , ym)T , the log-likelihood
function of GL distribution is

L(σ, α1, α2|x, y) = n log α1 + m log α2 − (n + m) log σ−
∑n

i=1 xi + ∑m
j=1 yj

σ

− (α1 + 1)
n

∑
i=1

log(1 + e−
xi
σ )− (α2 + 1)

m

∑
j=1

log(1 + e−
yj
σ ). (6)

The corresponding ML estimators of σ, α1, and α2 can be derived from

∂L
∂σ

= −n + m
σ

+
∑n

i=1 xi + ∑m
j=1 yj

σ2

− (α1 + 1)
n

∑
i=1

xie−
xi
σ

σ2(1 + e−
xi
σ )
− (α2 + 1)

m

∑
j=1

yje−
yj
σ

σ2(1 + e−
yj
σ )

= 0, (7)

∂L
∂α1

=
n
α1
−

n

∑
i=1

log(1 + e−
xi
σ ) = 0, (8)

∂L
∂α2

=
m
α2
−

m

∑
j=1

log(1 + e−
yj
σ ) = 0. (9)

From Formulas (8) and (9), the ML estimators of α1 and α2 as the functions of σ, say α̂1(σ)
and α̂2(σ), respectively, can be obtained as

α̂1(σ) =
n

∑n
i=1 log(1 + e−

xi
σ )

and α̂2(σ) =
m

∑m
j=1 log(1 + e−

yj
σ )

. (10)

From Formula (7), the ML estimator of σ can be determined by the following nonlinear
equation

h(σ) = σ, (11)

where
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h(σ) =
1

n + m

[
n

∑
i=1

xi +
m

∑
j=1

yj −
(

n

∑n
i=1 log(1 + e−

xi
σ )

+ 1

)
n

∑
i=1

xie−
xi
σ

1 + e−
xi
σ

−

 m

∑m
j=1 log(1 + e−

yj
σ )

+ 1

 m

∑
j=1

yje−
yj
σ

1 + e−
yj
σ

.

Since σ̂ is a fixed point solution of Equation (11), it can be obtained by the iterative algorithm
h(σ(k)) = σ(k+1), where σ(k) is the kth iteration of σ̂. The iteration procedure will stop when
|σ(k)− σ(k+1)| is small enough. Substituting σ̂ into (10), we can have α̂1 and α̂2. Accordingly,
the ML estimator of R is

R̂ML =
α̂1

α̂1 + α̂2
, (12)

where α̂1 and α̂2 are the ML estimators of α1 and α2, respectively.
The confidence interval of R can be derived by the following asymptotic distribution;

that is,
(σ̂, α̂1, α̂2)

T L−→ N
(
(σ, α1, α2)

T , I−1
0

)
, (13)

where I0 is the observed Fisher information matrix, i.e.,

I−1
0 =


− ∂2L

∂σ2 − ∂2L
∂σ∂α1

− ∂2L
∂σ∂α2

− ∂2L
∂α1∂σ − ∂2L

∂α2
1
− ∂2L

∂α1∂α2

− ∂2L
∂α2∂σ − ∂2L

∂α2∂α1
− ∂2L

∂α2
2


−1

∣∣∣
(σ,α1,α2)

T=(σ̂,α̂1,α̂2)
T

,

 Var(σ̂) Cov(σ̂, α̂1) Cov(σ̂, α̂2)
Cov(α̂1, σ̂) Var(α̂1) Cov(α̂1, α̂2)
Cov(α̂2, σ̂) Cov(α̂2, α̂1) Var(α̂2)

.

By using the Delta method, the asymptotic variance of R̂ML is given by

Var(R̂ML) =

(
∂R
∂σ

,
∂R
∂α1

,
∂R
∂α2

)
I−1
0

(
∂R
∂σ

,
∂R
∂α1

,
∂R
∂α2

)T
. (14)

Consequently, the 100(1− γ)% asymptotic confidence interval of R is

R̂ML − z1−γ/2

√
Var(R̂ML) ≤ R ≤ R̂ML + z1−γ/2

√
Var(R̂ML), (15)

where z1−γ/2 is the 1− γ/2 quantile of standard normal distribution.

2.2. Generalized Inference of R

Since Wang et al. [27] successfully estimated the generalized exponential distribution
by the GI method, we introduce the GI method to estimate R under GL distribution, which
is formally similar to the generalized exponential distribution.

Lemma 1 (Wang et al. [27] and Yu et al. [34]). Let Z1, . . . , Zn be a random sample from the
exponential distribution with mean θ and Z(1) < Z(2) < ··· < Z(n) be the corresponding order
statistics. Let

Si =
i

∑
j=1

Z(j) + (n− i)Z(i), i = 1, . . . , n,

T = 2
n−1

∑
i=1

log(Sn/Si).

Then (1) T and Sn are independent; (2) T ∼ χ2(2n− 2) and 2Sn/θ ∼ χ2(2n).
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Lemma 2. Let

f (σ) =
log(1 + e−

b
σ )

log(1 + e−
a
σ )

,

where b > a > 0 are constants. Thus, f (σ) is strictly decreasing on (0,+∞).

Proof of Lemma 2. From the function

f (σ) =
log(1 + e−

b
σ )

log(1 + e−
a
σ )

, b > a > 0,

we can calculate that

f ′(σ) =
b(e

a
σ + 1) log(1 + e−

a
σ )− a(e

b
σ + 1) log(1 + e−

b
σ )

σ2(e
a
σ + 1)(e

b
σ + 1)(log(1 + e−

a
σ ))2

.

It is obvious that the denominator of f ′(σ) is greater than 0, so we mainly focus on the
numerator. Let

g(σ) = b(e
a
σ + 1) log(1 + e−

a
σ )− a(e

b
σ + 1) log(1 + e−

b
σ ),

then

g′(σ) =
ab
σ2

[
log(1 + e−

b
σ )

e−
b
σ

− log(1 + e−
a
σ )

e−
a
σ

]
.

Because log(1+x)
x is strictly decreasing on (0,+∞) and the e−

x
σ is strictly increasing in x > 0

for σ > 0, we have that log(1+e−
x
σ )

e−
x
σ

is strictly decreasing in x > 0 for σ > 0. Thus g′(σ) < 0
on (0,+∞) and g(σ) is strictly decreasing on (0,+∞). Therefore, for σ > 0, we can obtain

g(σ) < lim
σ→0+

g(σ) = 0.

Finally, we have that f ′(σ) < 0 on (0,+∞); thus, f (σ) is strictly decreasing on (0,+∞).

Let X1, . . . , Xn be a random sample from GL(σ, α1) and X = (X(1), . . . , X(n))
T be

the corresponding order statistics. If a random variable X follows the standard uniform
distribution, then − log X follows the standard exponential distribution Exp(1). Obviously,

we can find that (1+ e−
X(1)

σ )−α1 ,. . . , (1+ e−
X(n)

σ )−α1 are the order statistics from the standard

uniform distribution. Thus, Z(i) = log(1 + e−
X(n−i+1)

σ ), i = 1, . . . , n are the order statistics
from the exponential distribution with mean 1/α1. Similarly, we can easily obtain the order

statistics Z(j) = log(1 + e−
Y(m−j+1)

σ ), j = 1, . . . , m from the exponential distribution with
mean 1/α2, where the random sample Y1, . . . , Ym follows GL(σ, α2). Let

T(σ) = 2

(
n−1

∑
i=1

log(Sn/Si) +
m−1

∑
j=1

log(Sm/Sj)

)
, (16)

where Si = ∑i
u=1 Z(u) + (n− i)Z(i) and Sj = ∑

j
v=1 Z(v) + (m− j)Z(j). Then from Lemma 1,

we have T(σ) ∼ χ2(2n + 2m− 4). Together, Lemma 2 with

Sn

Si
= 1 +

Sn − Si
Si

= 1 +

Z(i+1)
Z(i)

+ . . . +
Z(n)
Z(i)
− (n− i)

Z(1)
Z(i)

+ . . . +
Z(i−1)

Z(i)
+ (n− i + 1)

, (17)

Sm

Sj
= 1 +

Sm − Sj

Sj
= 1 +

Z(j+1)
Z(j)

+ . . . +
Z(m)

Z(j)
− (m− j)

Z(1)
Z(j)

+ . . . +
Z(j−1)

Z(j)
+ (m− j + 1)

, (18)
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T(σ) is strictly increasing on (0,+∞). Notice that

lim
σ→0+

T(σ) = 0 and lim
σ→+∞

T(σ) = +∞. (19)

Therefore, equation T(σ) = T has the unique solution g(T, X, Y) when n and m are given.
The solution of equation T(σ) = T can be obtained by the bisection method.

According to Lemma 1, we find that U1 = 2α1Sn ∼ χ2(2n), then α1 = U1/(2Sn).
α2 = U2/(2Sm) can be calculated in the same way, so the generalized pivotal quantity is

RGI =
U2/sm

U1/sn + U2/sm
, (20)

where sn = ∑n
i=1 log

(
1 + e−x(i)/g(T,x,y)

)
, sm = ∑m

j=1 log
(

1 + e−y(j)/g(T,x,y)
)

,

x = (x(1), . . . , x(n))T and y = (y(1), . . . , y(m))
T are the observed values of X = (X(1), . . . , X(n))

T

and Y = (Y(1), . . . , Y(m))
T , respectively. The generalized point estimation and generalized

confidence interval of R can be obtained by using the following algorithm.

1. Generate a realization t of T from χ2(2n + 2m− 4). Then for given samples x and y,
one can obtain a realization of g(T, x, y) from the equation T(σ) = t.

2. Derive a realization of U1 and U2 from χ2(2n) and χ2(2m), respectively. Compute

R̂(1)
GI on the basis of (20).

3. Perform Step 1 and Step 2 for N times, iteratively. The value of N is equal to 1000.

4. The generalized point estimator of R is R̂GI =
1
N ∑N

l=1 R̂(l)
GI . If R̂GI,γ/2 and R̂GI,1−γ/2

denote the γ/2 and 1− γ/2 percentile of R̂GI , the generalized confidence interval of
R is [R̂GI,γ/2, R̂GI,1−γ/2].

2.3. Generalized Fiducial Inference of R

Let the data-generating equation be

x = G(U, θ), (21)

where x denotes the data, θ is the parameter vector, and U is a random vector with 0–1
uniform distribution U(0, 1) in each dimension. Under some differentiability conditions,
Hannig et al. [28] provided a user-friendly formula to compute the GFD of θ, i.e.,

fF(θ) =
f (x|θ)J(x, θ)∫
f (x|θ)J(x, θ)dθ

, (22)

where f (x|θ) denotes the joint density function of x and the function J(x, θ) is a Jacobian
determinant. We usually take J(x, θ) as the infinite norm as follows

J(x, θ) = Det

(
d

dθ
G(u, θ)

∣∣∣∣
u=G−1(x,θ)

)
. (23)

In practice, Hannig et al. [28] recommended using Det(A) = ∑
i=(i1,...,ip)

|det(A)i| and the

above sum goes over
(

n
p

)
of p-tuples of indexes i = (1 ≤ i1 < . . . < ip ≤ n). For any n× p

matrix A, the sub-matrix (A)i is the p× p matrix consisting of the rows i = (i1, . . . , ip)
of A.

Regarding our concern, we have that

Ui = F(xi; θ), i = 1, . . . , n, (24)
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where θ = (σ, α1)
T , F(xi; σ, α1) , (1 + e−

xi
σ )−α1 is the CDF of GL distribution and Ui

follows U(0, 1). According to (24), we can obtain the data generating equation x = G(U, θ)
and the i-th xi = Gi(ui, θ) is

xi = −σ log(U
− 1

α1
i − 1). (25)

Then, we have

∂Gi
∂σ

∣∣∣∣
ui=(1+e−

xi
σ )−α1

=
xi
σ

and
∂Gi
∂α1

∣∣∣∣
ui=(1+e−

xi
σ )−α1

=
σ

α1
(1 + e

xi
σ ) log(1 + e−

xi
σ ). (26)

Substituting (26) into (23), it follows that

J(x, σ, α1) =
1
α1

∑
i 6=j

∣∣∣∣xi(1 + e
xj
σ ) log(1 + e−

xj
σ )− xj(1 + e

xi
σ ) log(1 + e−

xi
σ )

∣∣∣∣. (27)

The function J(y, σ, α2) can be obtained through a similar process. Finally, we can derive
the following GFD for (σ, α1, α2); that is,

fF(σ, α1, α2|x, y) =
f (x, y|σ, α1, α2)J(x, y, σ, α1, α2)∫ ∞

0

∫ ∞
0

∫ ∞
0 f (x, y|σ, α1, α2)J(x, y, σ, α1, α2)dσdα1dα2

, (28)

where

f (x, y|σ, α1, α2) = f (x|σ, α1) f (y|σ, α2) =
n

∏
i=1

fi(xi; σ, α1)
m

∏
j=1

f j(yj; σ, α2)

=
n

∏
i=1

α1e−
xi
σ

σ(1 + e−
xi
σ )α1+1

·
m

∏
j=1

α2e−
yj
σ

σ(1 + e−
yj
σ )α2+1

,

J(x, y, σ, α1, α2) = w1 J(x, σ, α1) + w2 J(y, σ, α2)

=
(n

2)

(n
2) + (m

2 )
J(x, σ, α1) +

(m
2 )

(n
2) + (m

2 )
J(y, σ, α2).

Specifically,

fF(σ, α1, α2|x, y) ∝
αn

1 e−∑n
i=1

xi
σ

σn ∏n
i=1(1 + e−

xi
σ )α1+1

·
αm

2 e−∑m
j=1

yj
σ

σm ∏m
j=1(1 + e−

yj
σ )α2+1

×
[

(n
2)

(n
2) + (m

2 )
· 1

α1
∑
i 6=j
|q(xi, xj, σ)|

+
(m

2 )

(n
2) + (m

2 )
· 1

α2
∑
i 6=j
|q(yi, yj, σ)|

]
, (29)

where

q(xi, xj, σ) = xi(1 + e
xj
σ ) log(1 + e−

xj
σ )− xj(1 + e

xi
σ ) log(1 + e−

xi
σ ),

q(yi, yj, σ) = yi(1 + e
yj
σ ) log(1 + e−

yj
σ )− yj(1 + e

yi
σ ) log(1 + e−

yi
σ ).

On the one hand, the conditional fiducial density function of σ given α1 and α2 can be
obtained from (29) and it is given by
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fF(σ|α1, α2, x, y) ∝
e−∑n

i=1
xi
σ

σn ∏n
i=1(1 + e−

xi
σ )α1+1

· e−∑m
j=1

yj
σ

σm ∏m
j=1(1 + e−

yj
σ )α2+1

×
[

(n
2)

(n
2) + (m

2 )
·∑

i 6=j
|q(xi, xj, σ)|+

(m
2 )

(n
2) + (m

2 )
·∑

i 6=j
|q(yi, yj, σ)|

]
. (30)

On the other hand, we can obtain

fF(σ, α1|x) =
f (x|σ, α1)J(x, σ, α1)∫ ∞

0

∫ ∞
0 f (x|σ, α1)J(x, σ, α1)dσdα1

∝
αn

1 e−∑n
i=1

xi
σ

σn ∏n
i=1(1 + e−

xi
σ )α1+1

· 1
α1

∑
i 6=j
|q(xi, xj, σ)|. (31)

Therefore, the conditional fiducial density functions of α1 given σ can be obtained as

fF(α1|σ, x) ∝ αn−1
1 e−α1 ∑n

i=1 log(1+e−
xi
σ ), (32)

similarly, the conditional fiducial density functions of α2 given σ are

fF(α2|σ, y) ∝ αm−1
2 e−α2 ∑m

j=1 log(1+e−
yj
σ ), (33)

which implies that the conditional density of α1 and α2 are Ga
(

n, ∑n
i=1 log(1 + e−

xi
σ )
)

and

Ga
(

m, ∑m
j=1 log(1 + e−

yj
σ )

)
, respectively, where Ga stands for the Gamma distribution.

Using the Gibbs sampler to estimate the GFD requires being able to sample from the
full conditional distribution for each quantity involved, so this is the case for α1 and α2,
but not for σ. Consequently, we introduce the standard Metropolis–Hastings steps into the
Gibbs sampler to update σ in (30) while updating α1 and α2 from their exact conditional
distribution. To reduce the autocorrelation of the Monte Carlo Markov Chains, we introduce
a thin parameter T, which is an integer specifying the number of steps between each saved
sample. The detailed steps of the algorithm are as follows.

1. Obtain three starting values of σ(0), α
(0)
1 and α

(0)
2 .

2. Let σ(l), α
(l)
1 , and α

(l)
2 denote the values of the lth iteration. Sample a candidate σ(l+1)

from fF(σ|α1, α2, x, y) by using the Metropolis–Hastings method [35]. Sample the candi-

date α
(l+1)
1 and α

(l+1)
2 from Ga

(
n, ∑n

i=1 log(1 + e−
xi
σ )
)

and Ga
(

m, ∑m
j=1 log(1 + e−

yj
σ )

)
,

respectively. R̂(l)
GFI can be obtained by plugging the values of σ(l), α

(l)
1 and α

(l)
2 into

Formula (5).
3. Conduct Step 2 for M + TN times, iteratively, where M is the burn-in period. The

values of M and N are both equal to 1000, and the value of T is equal to 10.
4. The generalized fiducial point estimator of R is R̂GFI =

1
N ∑M+N

l=M+1 R̂(l)
GFI . Select the

Nγ/2th and N(1−γ/2)th of the permutation as R̂GFI,γ/2 and R̂GFI,1−γ/2, respectively.
Then, the 100(1− γ)% fiducial confidence interval of R is [R̂GFI,γ/2, R̂GFI,1−γ/2].
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3. Estimation of R with Different Scale and Shape Parameters

Suppose X ∼ GL(σ1, α1) and Y ∼ GL(σ2, α2) are independently distributed under
different scale parameters, σ1 and σ2, then R = P(Y < X), it can be easily seen that

R = P(Y < X) =
∫ ∞

−∞

∫ x

−∞
fY(y) fX(x)dydx

=
∫ 1

0

[
1 + (t−

1
α1 − 1)

σ1
σ2

]−α2

dt. (34)

3.1. Maximum Likelihood Estimation of R

Let x = (x1, . . . , xn)T be a random sample from GL(σ1, α1) and let y = (y1, . . . , ym)T

be another independent random sample from GL(σ2, α2). The log-likelihood function is

L(σ1, σ2, α1, α2|x, y) = n log α1 + m log α2 − n log σ1 −m log σ2 −
1
σ1

n

∑
i=1

xi −
1
σ2

m

∑
j=1

yj

− (α1 + 1)
n

∑
i=1

log(1 + e−
xi
σ1 )− (α2 + 1)

m

∑
j=1

log(1 + e−
yj
σ2 ). (35)

Similarly, the ML estimators of α1 as a function of σ1 and α2 as a function of σ2 are

α̂1(σ1) =
n

∑n
i=1 log(1 + e−

xi
σ1 )

and α̂2(σ2) =
m

∑m
j=1 log(1 + e−

yj
σ2 )

. (36)

The ML estimators of σ1 and σ2 can be solved from h1(σ1) = σ1 and h2(σ2) = σ2. Therefore,
the ML estimator of R is

R̂ML =
∫ 1

0

[
1 + (t−

1
α̂1 − 1)

σ̂1
σ̂2

]−α̂2

dt, (37)

and the asymptotic 100(1− γ)% confidence intervals of R can also be obtained.

3.2. Generalized Inference of R

Let

T1(σ1) = 2
n−1

∑
i=1

log(Sn/Si) and T2(σ2) = 2
m−1

∑
j=1

log(Sm/Sj). (38)

Then we have T1(σ1) ∼ χ2(2n− 2) and T2(σ2) ∼ χ2(2m− 2) from Lemma 1. In addition,
we can prove that T1(σ1) and T2(σ2) are strictly increasing on (0,+∞), and

lim
σi→0+

Ti(σi) = 0 and lim
σi→+∞

Ti(σi) = +∞, i = 1, 2. (39)

Furthermore, when T1(σ1) ∼ χ2(2n− 2) and T2(σ2) ∼ χ2(2m− 2) are given, both T1(σ1) =
T1 and T2(σ2) = T2 have unique solutions denoted by σ1 = g1(T1, X) and σ2 = g2(T2, Y).

Since U1 = 2α1Sn ∼ χ2(2n) and U2 = 2α2Sm ∼ χ2(2m), we find that α1 = U1/(2Sn)
and α2 = U2/(2Sm). The generalized pivotal quantity of R is

RGI =
∫ 1

0

[
1 + (t−

2sn
U1 − 1)

g1(T1,X)
g2(T2,Y)

]− U2
2sm

dt, (40)

where sn = ∑n
i=1 log

(
1 + e−x(i)/g1(T1,x)

)
and sm = ∑m

j=1 log
(

1 + e−y(j)/g2(T2,y)
)

. The steps
to calculate the generalized point and interval estimations of R are similar to those in
Section 2.2.
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3.3. Generalized Fiducial Inference of R

For the observed value x = (x1, . . . , xn)T , we have

Ui = F(xi; η), i = 1, . . . , n, (41)

where η = (σ1, α1)
T and F(xi; σ1, α1) , (1 + e−

xi
σ1 )−α1 is the CDF of GL distribution. Based

on (41), we can obtain the i-th xi = Gi(ui, θ) is xi = −σ1 log(U
− 1

α1
i − 1). Then, we have

∂Gi
∂σ1

∣∣∣∣
ui=(1+e

− xi
σ1 )−α1

=
xi
σ1

and
∂Gi
∂α1

∣∣∣∣
ui=(1+e

− xi
σ1 )−α1

=
σ1

α1
(1 + e

xi
σ1 ) log(1 + e−

xi
σ1 ). (42)

It can be calculated that

J(x, σ1, α1) =
1
α1

∑
i 6=j

∣∣∣∣xi(1 + e
xj
σ1 ) log(1 + e−

xj
σ1 )− xj(1 + e

xi
σ1 ) log(1 + e−

xi
σ1 )

∣∣∣∣. (43)

Finally, we obtain the following GFD for (σ1, α1), i.e.,

fF(σ1, α1|x) =
f (x|σ1, α1)J(x, σ1, α1)∫ ∞

0

∫ ∞
0 f (x|σ1, α1)J(x, σ1, α1)dσ1dα1

, (44)

where f (x|σ1, α1) = ∏n
i=1 fi(xi; σ1, α1). Specifically,

fF(σ1, α1|x) ∝
αn

1 e−∑n
i=1

xi
σ1

σn
1 ∏n

i=1(1 + e−
xi
σ1 )α1+1

· 1
α1

∑
i 6=j
|q(xi, xj, σ1)|, (45)

where

q(xi, xj, σ1) = xi(1 + e
xj
σ1 ) log(1 + e−

xj
σ1 )− xj(1 + e

xi
σ1 ) log(1 + e−

xi
σ1 ).

From Formula (45), the conditional fiducial density function of σ1 given α1 is given by

fF(σ1|α1, x) ∝ σ−n
1 e−∑n

i=1
xi
σ1
−(α1+1)∑n

i=1 log(1+e
− xi

σ1 )
n

∑
i=1
|q(xi, xj, σ1)|. (46)

Then, the conditional fiducial density function of α1 given σ1 is

fF(α1|σ1, x) ∝ αn−1
1 e−α1 ∑n

i=1 log(1+e
− xi

σ1 ), (47)

which implies that the conditional density of α1 is Ga
(

n, ∑n
i=1 log(1 + e−

xi
σ1 )

)
. Based on

the same method, the conditional fiducial density function of σ2 and α2 can be obtained
as follows

fF(σ2|α2, y) ∝ σ−m
2 e−∑m

j=1
yj
σ2
−(α2+1)∑m

j=1 log(1+e
−

yj
σ2 )

m

∑
j=1
|q(yi, yj, σ2)|, (48)

fF(α2|σ2, y) ∝ αm−1
2 e−α2 ∑m

j=1 log(1+e
−

yj
σ2 ), (49)

which means the conditional density of α2 is Ga
(

m, ∑m
j=1 log(1 + e−

yj
σ2 )

)
.

We still introduce standard Metropolis–Hastings steps into the Gibbs sampler to
update σ1 and σ2 while updating α1 and α2 from their exact conditional distributions. The
detailed steps of the algorithm are similar to Section 2.3.



Symmetry 2023, 15, 1365 11 of 20

4. Simulations

Let R̂ML represent the ML estimators, R̂GI denote the point estimators via the GI
method, and R̂GFI denotes the point estimators by the GFI method. ACI refers to the
asymptotic confidence interval, GCI denotes the generalized confidence interval, and FCI
is the fiducial confidence interval. To compare the above point estimators, 1000 simulations
are conducted by using the mean square error (MSE) and relative mean square error (RMSE).
The RMSE is calculated as the MSE obtained from ML and GI methods divided by the MSE
of the GFI method. For example, the RMSE of R̂ML is given by the MSE of R̂ML divided
by the MSE of R̂GFI , where the GFI method is always the benchmark method. Meanwhile,
we calculate the performance of the above confidence intervals with average length and
empirical coverage. The relative length is the ratio of the average length gained by the ML
and GI methods to the average length obtained by the GFI method. Different combinations
of (n, m, σ, α1, α2) and (n, m, σ1, σ2, α1, α2) are provided at a nominal level 1− γ = 0.95. We
have the following conclusions.

4.1. Analysis of Point Estimates

• The case with the same scale parameter.

Table 1 provides the MSEs of R for different parameter combinations, and Figure 1
shows the boxplots of RMSEs of R. The detailed information is shown as follows.

Table 1. The MSE of the point estimations for R with the same scale parameter.

(σ, α1, α2) n m MSE for R

R̂ML R̂GI R̂GFI

(1.0, 1.5, 2.0) 15 15 0.008158 0.007170 0.007172
15 25 0.006360 0.005731 0.005707
15 50 0.005174 0.004761 0.004743
25 15 0.006392 0.005827 0.005788
25 25 0.005120 0.004749 0.004730
25 50 0.003560 0.003364 0.003337
50 15 0.005224 0.004895 0.004892
50 25 0.003372 0.003231 0.003230
50 50 0.002353 0.002269 0.002250

(1.0, 2.0, 1.5) 15 15 0.009041 0.007948 0.007925
15 25 0.007053 0.006388 0.006369
15 50 0.005025 0.004639 0.004625
25 15 0.006205 0.005595 0.005577
25 25 0.005155 0.004742 0.004749
25 50 0.003872 0.003617 0.003631
50 15 0.005104 0.004693 0.004661
50 25 0.003676 0.003468 0.003457
50 50 0.002316 0.002232 0.002221

R
^

ML R
^

GFI R
^

GI R
^

GFI

0
.9

5
1

.0
0

1
.0

5
1

.1
0

1
.1

5
1

.2
0

R
M

S
E

Figure 1. Summary of RMSE of the point estimations for R with the same scale parameter.
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From Table 1 and Figure 1, the RMSEs of R̂ML are larger than 1 while the RMSEs of
R̂GI are close to 1. Specifically, the MSEs of R̂GFI are often smaller than those of R̂ML, and
the gap is significant in small and moderate samples, such as n, m ≤ 25. Meanwhile, the
difference between the MSEs of R̂GFI and R̂GI is trivial.

• The case with different scale parameters.

The MSEs of R and the boxplots of RMSEs of R under different parameter combinations
are shown in Table 2 and Figure 2.

Table 2. The MSEs of the point estimations for R with different scale parameters.

(σ1, α1, σ2, α2) n m MSE for R

R̂ML R̂GI R̂GFI

(1.0, 1.5, 2.0, 2.0) 15 15 0.009901 0.018722 0.008245
15 25 0.006940 0.014136 0.006285
15 50 0.004604 0.009251 0.004256
25 15 0.009201 0.018626 0.007926
25 25 0.005662 0.013187 0.005149
25 50 0.003431 0.007822 0.003238
50 15 0.007747 0.016616 0.006800
50 25 0.004920 0.011690 0.004507
50 50 0.002845 0.007615 0.002739

(2.0, 2.0, 1.0, 1.5) 15 15 0.010145 0.007937 0.008674
15 25 0.008758 0.007502 0.007744
15 50 0.008042 0.007036 0.007151
25 15 0.007037 0.005460 0.006330
25 25 0.005563 0.004669 0.005115
25 50 0.005155 0.004710 0.004744
50 15 0.004525 0.003373 0.004208
50 25 0.003411 0.002811 0.003236
50 50 0.003105 0.002765 0.002963

In Figure 2, it is shown that the RMSEs of R̂ML and R̂GI are often larger than 1. From
Table 2, the MSEs of R̂GFI are smaller than those of R̂ML, and the MSEs of R̂GI exhibit lower
stability. At the same time, the MSEs of the three methods decrease with the increase in the
sample size.

R
^

ML R
^

GFI R
^

GI R
^

GFI

R
M

S
E

0
.5

0
1

.0
0

1
.5

0
2

.0
0

2
.5

0
3

.0
0

Figure 2. Summary of RMSEs of the point estimations for R with different scale parameters.
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4.2. Analysis of Interval Estimates

• The case with the same scale parameter.

Table 3 provides the average length and empirical coverage of R, and Figure 3 shows
the boxplots of relative length and empirical coverage. The details are as follows.

Table 3. The average length and empirical coverage of 95% two-sided confidence intervals for R with
the same scale parameter.

(σ, α1, α2) n m Average Length Empirical Coverage

ACI GCI FCI ACI GCI FCI

(1.0, 1.5, 2.0) 15 15 0.350 0.338 0.338 0.911 0.957 0.958
15 25 0.317 0.305 0.305 0.930 0.957 0.960
15 50 0.283 0.275 0.275 0.950 0.960 0.962
25 15 0.312 0.305 0.305 0.899 0.954 0.955
25 25 0.277 0.265 0.266 0.911 0.954 0.953
25 50 0.240 0.231 0.231 0.949 0.957 0.959
50 15 0.287 0.277 0.277 0.885 0.952 0.951
50 25 0.247 0.232 0.233 0.919 0.955 0.953
50 50 0.197 0.190 0.190 0.949 0.957 0.961

(1.0, 2.0, 1.5) 15 15 0.348 0.336 0.337 0.912 0.949 0.953
15 25 0.310 0.305 0.305 0.942 0.961 0.958
15 50 0.278 0.277 0.277 0.935 0.958 0.958
25 15 0.313 0.304 0.304 0.944 0.964 0.962
25 25 0.273 0.265 0.265 0.939 0.953 0.955
25 50 0.233 0.231 0.232 0.936 0.956 0.957
50 15 0.284 0.275 0.276 0.947 0.954 0.955
50 25 0.236 0.231 0.231 0.947 0.956 0.958
50 50 0.192 0.190 0.190 0.948 0.958 0.955

Table 3 and Figure 3 show that the relative lengths of ACIs are greater than 1 and
the ACIs are too liberal. The difference between GCIs and FCIs is small and both of them
are conservative. When the sample size is small, GCIs and FCIs are better than ACIs.
Meanwhile, the average lengths of the three methods tend to decrease with the increase in
sample size.

• The case with different scale parameters.

The average length and empirical coverage of R, the boxplots of relative length, and
empirical coverage are shown in Table 4 and Figure 4.
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Figure 3. Summary of the relative length and empirical coverage for R with the same scale parameter.
(a) Display of the relative length; (b) display of the empirical coverage.
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Table 4. The average length and empirical coverage of 95% two-sided confidence intervals for R with
different scale parameters.

(σ1, α1, σ2, α2) n m Average Length Empirical Coverage

ACI GCI FCI ACI GCI FCI

(1.0, 1.5, 2.0, 2.0) 15 15 0.365 0.352 0.359 0.899 0.818 0.957
15 25 0.313 0.304 0.309 0.928 0.804 0.959
15 50 0.258 0.254 0.259 0.923 0.821 0.953
25 15 0.346 0.332 0.341 0.900 0.778 0.947
25 25 0.289 0.278 0.284 0.929 0.765 0.962
25 50 0.230 0.222 0.228 0.941 0.793 0.961
50 15 0.329 0.317 0.328 0.913 0.765 0.955
50 25 0.268 0.261 0.265 0.932 0.761 0.957
50 50 0.206 0.200 0.204 0.940 0.729 0.954

(2.0, 2.0, 1.0, 1.5) 15 15 0.368 0.360 0.361 0.901 0.969 0.957
15 25 0.349 0.343 0.343 0.918 0.959 0.949
15 50 0.330 0.328 0.328 0.908 0.957 0.952
25 15 0.312 0.306 0.308 0.937 0.966 0.956
25 25 0.289 0.284 0.285 0.937 0.965 0.956
25 50 0.269 0.267 0.267 0.924 0.944 0.940
50 15 0.259 0.257 0.260 0.937 0.975 0.953
50 25 0.231 0.227 0.229 0.939 0.971 0.949
50 50 0.206 0.203 0.204 0.922 0.946 0.937

Figure 4 demonstrates that the relative lengths of ACIs are greater than 1 while those
of GCIs are smaller than 1. FCIs are close to the nominal level while ACIs and GCIs are
obviously liberal. To be specific, Table 4 shows that the average lengths of ACIs are long
while the empirical coverages of ACIs are often less than 0.95. The average lengths of
GCIs are short, but the empirical coverages of GCIs exhibit instability. The average lengths
of FCIs and GCIs are comparable when the sample size is large, and FCIs can reach the
nominal level.
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Figure 4. Summary of relative length and empirical coverage for R with different scale parameters.
(a) Display of the relative length; (b) display of the empirical coverage.

5. Real Data Example
5.1. The Breaking Strengths of Jute Fibers

The first dataset was originally introduced by Xia et al. [36]. It consists of the breaking
strengths of jute fibers at 4 different gauge lengths: 5 mm, 10 mm, 15 mm, and 20 mm. The
breaking strengths of jute fibers at 10 mm and 20 mm are presented in Table 5.
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Table 5. The breaking strengths of jute fibers at different gauge lengths.

Gauge Lengths Data Sample Size

10 mm

693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48,
108.94, 50.16, 671.49, 183.16, 257.44, 727.23, 291.27, 101.15,
376.42, 163.40, 141.38, 700.74, 262.90, 353.24, 422.11, 43.93,
590.48, 212.13, 303.90, 506.60,530.55,177.25

30

20 mm

71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16,
662.66, 45.58, 578.62, 756.70, 594.29, 166.49, 99.72, 707.36, 765.14,
187.13, 145.96, 350.70, 547.44, 116.99, 375.81, 581.60, 119.86,
48.01, 200.16, 36.75, 244.53, 83.55

30

The breaking strengths of jute fibers at two different gauge lengths are fitted with GL
distribution, respectively. The estimated scale parameters, shape parameters, Kolmogorov–
Smirnov (K-S) distances, and the corresponding p-values are shown in Table 6.

Table 6. The scale parameter, shape parameter, K-S, and p-values of the breaking strengths of jute fibers.

Gauge Lengths Scale Parameter Shape Parameter K–S p-Value

10 mm 170.826 5.190 0.118 0.756
20 mm 178.278 4.210 0.161 0.376

Referring to Table 6, the p-values obtained from the K-S test indicate that the GL distri-
bution shows good agreement with the jute fiber data. Since the difference is significant
between the scale parameters estimated at the two gauge lengths, it is reasonable to assume
the scale parameters are different. The point and interval estimations of R are shown in
Table 7, which implies that the ACI is the shortest while the GCI is the longest. Because the
empirical coverage of ACI tends to be liberal in the simulation, we prefer to recommend
the GFI method.

Table 7. The result of R for the breaking strengths of jute fibers.

10 mm and 20 mm

Point Interval Length

ACI 0.535 [0.390, 0.680] 0.290
GCI 0.526 [0.338, 0.702] 0.364
FCI 0.531 [0.374, 0.691] 0.317

5.2. The Sulfur Dioxide Concentration Data

To illustrate the methods developed in Sections 2 and 3, the second real dataset pro-
vided by Roberts [37] is considered. It consists of data on the monthly and annual maxima
of one-hour mean concentrations of sulfur dioxide (pphm) for Long Beach, California from
1956 to 1974. In this paper, the average hourly concentrations of sulfur dioxide in January,
March, and August are shown in Table 8.

Table 8. The sulfur dioxide concentration data under different months.

Months Data Sample Size

January 47, 22, 15, 20, 22, 25, 20, 12, 16, 16, 27, 30, 51, 37, 23, 22, 30, 10, 8 19
March 44, 20, 20, 20, 23, 20, 15, 27, 3, 9, 25, 32, 18, 55, 10, 20, 18, 8, 9 19
August 21, 16, 20, 15, 9, 10, 10, 4, 25, 18, 18, 26, 25, 17, 40, 55, 19, 16, 9 19

The sulfur dioxide concentration data of three months are fitted with GL distributions
separately. We present the estimated scale parameters, shape parameters, K-S distances,
and corresponding p-values in Table 9.
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Table 9. The scale parameter, shape parameter, K-S, and p-values of sulfur dioxide concentration data.

Months Scale Parameter Shape Parameter K–S p-Value

January 8.070 11.009 0.096 0.995
March 8.417 6.991 0.147 0.807
August 7.376 8.154 0.109 0.978

From Table 9, the p-values of the K-S test are pretty good (p-values of 0.995, 0.804, and
0.978, respectively), which means that the GL distribution fits well with the sulfur dioxide
concentration data. In addition, the p-values of the K-S test for the GL distribution are
larger than those of the Weibull and generalized exponential distributions, which means
the GL distribution provides a better fit than other distributions. Hence, the GL distribution
is adopted in this real dataset and we consider the following two cases.

• The case with the same scale parameter.

In this case, the average hourly concentrations of sulfur dioxide in January and March
are chosen. Since the two estimated scale parameters are not very different, it is natural to
assume that the two scale parameters are equal. The ML estimations for the parameters
σ, α1, and α2 are given by σ̂ = 8.247, α̂1 = 10.593, and α̂2 = 7.179, respectively. Using the
three methods in Section 2, the point and interval estimations for R are shown in Table 10.

Table 10. The results of R of sulfur dioxide concentration data.

January and March January and August

Point Interval Length Point Interval Length

ACI 0.596 [0.444, 0.748] 0.304 0.626 [0.453, 0.799] 0.346
GCI 0.586 [0.412, 0.731] 0.319 0.621 [0.327, 0.840] 0.513
FCI 0.590 [0.431, 0.726] 0.295 0.615 [0.401, 0.808] 0.407

From Table 10, it can be concluded that the difference between the point estimates of
R is small while the FCI is shorter than the ACI and GCI.

• The case with different scale parameters.

In this case, the average hourly concentration of sulfur dioxide in January and August
are selected. Table 9 shows that the differences between the two estimated scale and shape
parameters are significant, so it is reasonable to assume the parameters are different. The
ML estimations for the parameters σ1, α1, σ2, and α2 are given by σ̂1 = 8.070, α̂1 = 11.009,
σ̂2 = 7.376, and α̂2 = 8.154, respectively. The point and interval estimations for R are shown
in Table 10 by using the three methods in Section 3. It is found that the difference between
the point estimates of R is small, and the ACI is the shortest while the GCI is the longest.

In general, the FCI performs better in the first case while the ACI performs better in the
second case. However, the FCI is recommended, considering that the empirical coverage of
ACI in the simulation is often lower than the nominal level.

5.3. The Insulating Fluid Data

The Ln times to breakdown of insulating fluid in an accelerated test reported by
Nelson [38] is chosen as the third real data example. The Ln times to breakdown for
insulating fluid were reported at different voltages of 26, 28, 30, 32, 34, 36, and 38 kV. The
Ln times to breakdown 32, 34, and 36 kV are demonstrated in Table 11.
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Table 11. The insulating fluid data at different voltages.

Voltages Data Sample Size

32 kV −1.3094, −0.9163, −0.3711, −0.2358, 1.0116, 1.3635, 2.2905, 2.6354,
2.7682, 3.3250, 3.9748, 4.4170, 4.4918, 4.6109, 5.3711 15

34 kV
−1.6608, −0.2485, −0.0409, 0.2700, 1.0224, 1.1505, 1.4231, 1.5411,
1.5789, 1.8718, 1.9947, 2.0806, 2.1126, 2.4898, 3.4578, 3.4818, 3.5237,
3.6030, 4.2889

19

36 kV −1.0499, −0.5277, −0.0409, −0.0101, 0.5247, 0.6780, 0.7275, 0.9477,
0.9969, 1.0647, 1.3001, 1.3837, 1.6770, 2.6224, 3.2386 15

The data of Ln times to breakdown at three different voltages are fitted with GL
distributions separately. Table 12 demonstrates the estimated scale parameters, shape
parameters, K-S distances, and the corresponding p-values.

Table 12. The scale parameter, shape parameter, K-S, and p-values of insulating fluid data.

Voltages Scale Parameter Shape Parameter K–S p-Value

32 kV 1.690 2.680 0.141 0.888
34 kV 1.211 3.067 0.124 0.900
36 kV 0.755 2.354 0.119 0.967

Based on Table 12, the GL distribution fits quite well with the data of Ln times to
breakdown 32, 34, and 36 kV. Therefore, it is reasonable for us to apply the GL distribution
to this real dataset, and we still consider the following two cases.

• The case with the same scale parameter.

The data of Ln times to breakdown at 32 and 34 kV are selected in this case. If we
suppose the two scale parameters are equal, the ML estimations for the parameters σ, α1
and α2 are given by σ̂ = 1.424, α̂1 = 2.769, and α̂2 = 2.882, respectively. The point and
interval estimations for R are shown in Table 13, illustrating that the ACI is the shortest
while the GCI is the longest.

Table 13. The result of R of insulating fluid data.

32 kV and 34 kV 34 kV and 36 kV

Point Interval Length Point Interval Length

ACI 0.490 [0.329, 0.651] 0.322 0.674 [0.499, 0.848] 0.349
GCI 0.489 [0.323, 0.661] 0.338 0.666 [0.447, 0.829] 0.382
FCI 0.487 [0.319, 0.650] 0.331 0.652 [0.466, 0.817] 0.351

• The case with different scale parameters.

In the second case, the data of Ln times to breakdown at 34 and 36 kV are considered.
When we assume all the parameters are different, the ML estimations for the parameters
σ1, α1, σ2, and α2 can be given by σ̂1 = 1.2106, α̂1 = 3.0672, σ̂2 = 0.7552, and α̂2 = 2.3542,
respectively. Table 13 states the point and interval estimations for R, and it shows that the
ACI is the shortest and the GCI is the longest.

According to the above two cases, it seems that the effect of ACI is better. Since the
simulation results show that the empirical coverage of ACI is often lower than the nominal
level, we still prefer to select FCI with higher reliability.

6. Discussion

The estimation of R in the GL distribution is an important research problem. Most of
the existing literature studies focus on the ML estimation and Bayesian inference. However,
the ML estimation cannot obtain the exact pivotal quantity and its empirical coverage
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sometimes fails to reach the nominal level. In Bayesian inference, the choice of the prior
distribution is improper or subjective. Therefore, we introduce two novel methods to
estimate R in the GL distribution.

On the one hand, there are two theoretical implications worth noting. First, the GFI
method is applied to estimate R. The prior of the GFI is based on actual data, which
makes the posterior distribution more objective. In addition, the weighted prior is applied
when the scale parameters are the same. Our findings suggest that this approach of
constructing the prior is suitable for estimating R in the two-parameter GL distribution
and can be extended to other distributions as well. Second, the GI method offers another
way when the conventional pivotal quantity is not available. By developing two lemmas,
the generalized point estimation and generalized confident interval of R can be given.

On the other hand, this article has three practical implications. First, the simulation
results indicate that the generalized fiducial method is better for the point estimation of R
with the comparisons of the MSE. Moreover, it can be concluded that the GFI method often
outperforms the ML and GI methods for the interval estimation of R, which presents more
advantages in average length and empirical coverage. Second, the results of the three real
data example state that the estimation of R can be applied in many different fields. Third,
the two-parameter GL distribution without a location parameter is particularly useful in
estimating R, where the dataset contains values less than zero. This characteristic expands
its applicability to a wider range of datasets and deserves more attention in the scale-shape
life distribution.

There are some limitations in our study. Due to encountering censored data in nu-
merous survival analyses, such as the research of Rao [39], Babayi and Khorram [40], and
Wang et al. [41], the statistical inference of parameters, reliability, and stress–strength
based on censored samples under the GL distribution would be an interesting direction for
future works.

7. Conclusions

This article considers the statistical inference of R for the generalized logistic distribu-
tion with either the same or different scale parameters. Based on the simulation of the point
estimation, the MSE of the GI and GFI methods is often smaller for the same scale parameter.
However, the GFI has the smallest MSE when the scale parameters are different. According
to the simulation of the interval estimation, both the GI and GFI methods exhibit shorter
average lengths and more conservative empirical coverage for the same scale parameter.
When the scale parameters are different, the GFI method performs better in the length and
coverage. Therefore, we believe that the GFI method is more suitable for estimating R in
the GL distribution and many other issues related to it.
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