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Abstract: A hybrid blockchain structure (hybrid directed acyclic graph, or H-DAG) is proposed in
this article to solve the existing problem of blockchain architectures using symmetric key encryption
technology by combining the characteristics of single-chain blockchains and DAG distributed ledgers.
By improving the block and transaction structures and optimizing the consensus mechanism, the
H-DAG confirmed transaction orders while maintaining the high-throughput characteristics of a
DAG, thus solving the transaction order dependence problem. We introduced a lightweight PoW
mechanism to the H-DAG to improve the anti-fork ability of the blockchain. An incentive mechanism
was adopted in our model to compel honest nodes to be more enthusiastic about participating in,
maintaining, and enhancing the security of a given network. The blockchain states achieved strong
levels of consistency, and their transaction confirmation times were predictable. We evaluated the
performance of the H-DAG by comparing and analyzing multiple experiments, and we modeled a
forking attack strategy, verifying the resistance of the H-DAG to this attack strategy. The experimental
results demonstrated that the order of transactions in the H-DAG was globally consistent, and the
confirmation time of transactions was predictable. The H-DAG improved the anti-fork ability and
enhanced the security of the blockchain to ensure a degree of decentralization of the blockchain
system. Therefore, the system throughput was enhanced by improving the block structure using
symmetric key technology.

Keywords: blockchain; cryptographic technology; directed acyclic graph; throughput

1. Introduction

In this research, we employed cryptography technology to propose a hybrid blockchain
structure; namely, a hybrid-DAG (H-DAG) blockchain. This was based on the characteris-
tics of single-chain blockchain architecture and DAG distributed ledgers. Sa and Zhang
proposed a scheme combining ABE and blockchains to hide the access strategy of their
model [1,2]. These two schemes prevented the leakage of data relevant to the privacy of
users and achieved secure access control using blockchain technology to realize the process
of data storage and sharing without the involvement of a third party. Pournaghi et al. used
double-chain architecture to improve the efficiency of remote sharing and treatment while
supporting the protection of user privacy [3,4]. Gao et al. linked a small part of critical
data, matching data storage, data sharing, and key information with two blockchains to
reduce the load pressure on the blockchain. The two blockchains played a role in reducing
the access control pressure of the single-chain system, thus improving its efficiency [5].
Research on multi-chain, cross-chain, side-chain, and fragmentation technology has im-
proved blockchain scalability [6–9], but all these solutions were on the blockchain. Different
schemas of blockchain architectures have significant potential to break through the current
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blockchain performance bottleneck, providing new directions to improve the consensus
speed and throughput of blockchain systems.

In this paper, we improved a currently used blockchain structure and consensus mech-
anism to propose new options. We verified the performance and reliability of the system
through theoretical proof and experiments to achieve a blockchain system architecture with
superior throughput, security, and scalability.

The reference relationship between units in a DAG distributed ledger is used in a
blockchain transaction to improve the concurrency and throughput of the blockchain. This
simultaneously builds the dependency relationship between transactions [10] to avoid
the problem of transaction order dependency. Regarding the consensus mechanism of
a blockchain, a proper accounting competition is performed by means of a computing
power competition. Thus, all the nodes of an entire network can quickly reach a consensus
to ensure decentralization. The confirmation time of each transaction can be expected
to improve the reliability, robustness, and anti-attack ability of the blockchain system,
achieving the global order of all trades [11].

In terms of the blockchain structure [12], we combined the chain structure of a tradi-
tional blockchain with a DAG structure, which solved the security problems caused by
the transaction decisions related to conventional blockchain order miners while retaining
high-throughput characteristics [13]. A single-chain blockchain architecture was combined
with a DAG distributed ledger structure to improve the system throughput. By improving
the PoW (proof of work) consensus mechanism and introducing a lightweight PoW mecha-
nism for transactions, the anti-fork ability of the blockchain was enhanced [14]. Thus, the
hybrid blockchain system architecture based on a DAG proposed in this paper achieved
high throughput, security, and scalability.

2. Hybrid Blockchain System Architecture
2.1. Blockchain Network Structure

The H-DAG network structure of the hybrid blockchain based on a DAG is shown in
Figure 1. The nodes in a network are divided into full nodes and light nodes. Full nodes
store all blockchain information, collect all transactions on the web, and restrict blocks
from participating in mining. They are also called miner nodes [15]. Light nodes send
transactions in blockchain networks and include mobile phones, sensors, and other terminal
devices. These devices often do not have high computing power and storage capacity and
cannot save all the information of a blockchain to participate in mining [16]. Therefore,
light nodes must interact with whole nodes to participate in a blockchain network.
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2.2. Blockchain System Framework

This framework is based on the open-source framework of Ethereum and modifies its
trading pool, trading structure, block structure, and consensus mechanism, as well as other
parts. The trading structure adopts a DAG structure based on the reference relationship.
The consensus algorithm modifies the PoW of Ethereum. The overall architecture of an
H-DAG is shown in Figure 2, which is divided into application, data, consensus, and
network layers [17].
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The application layer provides services for H-DAG application scenarios. Users apply
cryptography to generate accounts. External accounts can request smart contracts by
sending transactions to contract accounts. Functions such as DAPP and the Internet of
Things are implemented based on smart contracts. The global order of transactions through
the H-DAG structure and consensus mechanism can ensure that all transactions correctly
execute intelligent contracts, solving the problem of transaction order dependence and
significantly improving blockchain security. Therefore, IoT scenarios with high-throughput
and security requirements are more suitable, such as vehicle networks and the Industrial
Internet [18].

With the data layer, the data storage of an H-DAG adopts the block storage form of a
single-chain blockchain. The block is composed of the block header and transaction data.
The block header contains the basic information of the league and is used to verify the
validity of the block [19]. All transaction information in the current block is recorded in
the transaction data. In the process of consensus, only the hash value of the transaction
is required to be written into the league [20]. Miners construct an index according to the
hash value when verifying the block to obtain the complete transaction information. This
improves bandwidth utilization, thereby improving the system throughput [21].

The consensus layer contains the PoW for the block consensus as well as the DAG
consensus mechanism for the trading consensus. Similar to the consensus process of Bitcoin
and Ethereum, the block consensus adds the computing power of a lightweight PoW in
each transaction to improve the security of the blockchain. In the process of the transaction
consensus, the entire node accepts and verifies the transaction [22], and then saves it in the
local DAG and simultaneously broadcasts the transaction. In the process of complete node
verification, if no transaction referenced by an exchange is found, it indicates a transaction
in the current network that is not locally stored. It is then required to request other nodes
to synchronize the transaction information. This mechanism also ensures that the structure
of a DAG composed of transactions in all full-node stores is consistent [23].
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With the network layer, a P2P network is formed among all nodes. All nodes are
equal and jointly participate in and maintain the blockchain system [24]. Light nodes
in the network are primarily devices with low computing power and storage capacity,
such as mobile phones and sensors [25,26], which mainly participate in the network in the
form of sending transactions. Thus, it is necessary to rely on all nodes to provide partial
information to participate in the network [27].

3. Improved Consensus Mechanism Based on a PoW
3.1. Consensus Mechanism Process

In a single-chain blockchain, miners first select transactions from the mining pool
in the process of block packaging. To maximize benefits, miners choose transactions
according to their mining strategies for the package, usually prioritizing transactions with
high commissions. This results in uncertainty when dealings with low commissions are
packaged into the block. As the mining strategy of each miner is different, the trades
that are packaged in each block are unpredictable. In the DAG represented by IOTA
and Byteball, transactions are required to be verified and confirmed by the reference
of subsequent transactions. There is no clear strategy for quoting transactions in their
consensus mechanism. Therefore, the time when each transaction is mentioned cannot
be determined.

To improve the scalability of the system and ensure the randomness of selecting
miner nodes, we improved the consensus mechanism PoW, which is the most widely used
mechanism in the current public chain. The H-DAG blockchain is divided into two parts:
the block of packaged transactions and the DAG connected by the Genesis node. The
sender selects the appropriate Genesis node and secures the transaction in the subsequent
DAG. Miners package the DAGs of transactions into blocks, which are then broadcast to
the blockchain network, where other nodes verify them and reach a final consensus.

The process of nodes joining a blockchain network for the first time is shown in
Figure 3. The nodes first request the neighboring nodes in the network to synchronize
the blockchain data. After verifying and synchronizing all block data, the nodes compete
for computing power and participate in mining as full nodes. The part of the DAG
connected by the current Genesis node is packaged, and the Merkle tree is calculated
according to the transactions in the DAG. The Merkle root, block hash value, difficulty
value, timestamp, and version information are then packaged into the block header. The
hash value of the current block is then calculated. If the hash value of the block exceeds
the difficulty value, the random number must be changed and recalculated until the hash
value is less than the difficulty value and a legal block is found. This process is shown in
Figure 4. In the competition for computing power, the whole node is required to monitor
the information in the network, accept and verify the transactions on the web, and then
broadcast the transactions.

When the whole node receives the new block broadcast by other nodes, it verifies
it. When the new block is legitimate, that round of computing power competition is
abandoned. The latest block is recorded on the local blockchain and broadcast, and then
the next round of computing power competition begins. The validation process of a block
is shown in Figure 5. First, the block header information is verified, and then the local
complete transaction information is added to the league through the transaction hash
value contained in the Merkle tree. If there is a transaction whose reference transaction
is empty during the transaction search, the adjacent node is requested to synchronize the
transaction information.
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When a miner receives two blocks of the same height at the same time or a synchronous
blockchain, the difficulty of the value of all partnerships in each fork and the synthesis of
the difficulty value of the block containing the transactions are counted. The chain with
the most significant difficulty value is obtained as the main chain. The process is shown in
Algorithm 1.

Algorithm 1. Bifurcation selection algorithm.

Input: Conflict block B1; B2
1. Initialize the difficulty value D1; D2
2. While B1

′s parent block is Different from B2:
3. D1 + = B1 Block difficulty value + B1 Transaction total difficulty value
4. D2 + = B2 Block difficulty value + B2 Transaction total difficulty value
5. B1 = B1

′s parent block; B2 = B2
′s parent block

6. End While
7. If D1 > D2:
8. return: Bifurcation of Block B1
9. Else
10. return: Bifurcation of Block B2

3.2. Trading Weight Mechanism

Every time a whole node discovers a legal block and it is agreed upon by the entire
network, it obtains a block reward. The block reward includes the mintage reward for
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the discovery of a new partnership as well as the commission for all transactions with the
league block. The commission for a single transaction is shown in Formula (1).

Transaction renewal fee = transaction fee − min(logw
α ∗ k, maxcharge) (1)

where maxcharge is the maximum reduction in commission charges, k is the adjustment
coefficient, and the transaction weight w is the sum of the number of directly and indirectly
referenced transactions. The calculation method is shown in Algorithm 2. The commission
function is similar to a margin. The probability of being quoted increases after quoting
the correct trade, which reduces the commission of the work. Choosing an incorrect
business does not reduce, or only slightly reduces, the commission. Through this incentive
mechanism, honest nodes are guided to reference unreferenced transactions when sending
transactions to ensure the stable extension of the DAG structure. Adding a lightweight
PoW mechanism for transactions increases the cost of sending spam transactions while
providing computing power to maintain H-DAG network security.

Algorithm 2. Weight calculation.

Input: Transaction t
1. Initializes the transaction set L = {}; Ls = {}; transaction weight w
2. Add t to set L
3. While L 6= 0:
4. Add two reference transactions of transaction L(1) to set L
5. Move L{1} out of set L
6. If L /∈ Ls:
7. Add L to Set Ls
8. W+=1
9. End While
10. Add all transaction sets Lc to set L that referenced transaction t
11. While L 6= 0:
12. Add all transaction sets Lc to set L that referenced transaction L(1)
13. Move L(1) out of set L
14. W+=1
15. End While
16. Return: W

3.3. Difficulty Value Adjustment Mechanism

The difficulty value reflects that the node is consumed by force. First, the hash value
must finish to quantify the workforce, which is converted into a binary format. The hash
value of several consecutive zeros of the front-end for n is the difficulty of the importance
of 2 n tradings. The object is, in theory, to discover the first n zeros and attempt to calculate
the maximum times required to force the standard for an evaluation. After receiving or
packaging the new block, miners compete for the next block. The difficulty value of the
next block should be included in the newly generated block, as shown in Formula (2).

Difficultyvalue = Currentdifficulty × Time spent in the past n blocks
n× t

(2)

where t is the block production time set by the blockchain. The average block production
time of n blocks in the past is followed and the difficulty value is dynamically adjusted to
ensure that the average block production time is stable at time t. When the current time
is t1, the whole network agrees upon block 7, and miners compete for the permissions
to block 8. The timestamp of Genesis node 10 contained in block 7 is then t1 + 2 ∗ t. In
an ideal situation, the interval between the timestamp of Genesis node 9 and block 7 is
t. After time t, the current time is t1 + t, and the mining competition time of block 8 is t.
Ideally, the whole network should calculate and agree upon block 8. In this way, all nodes
in the asynchronous system receive the majority of the transaction information. When the
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network status is incorrect, the latest Genesis node can be selected to ensure that all nodes
in the network have enough broadcast time to receive the transaction. Transactions sent by
each node are packaged in fixed blocks. For example, transactions connected at Genesis
node 8 are packaged in block 8; therefore, only block 8 is required to be read to identify if a
transaction has been confirmed.

As mobile phones, sensors, and other lightweight devices often only have a tiny
amount of computing power and storage capacity, they cannot save all the blockchain
information and participate in mining. Therefore, this aspect of network participation is
called a light node. The light nodes in a network are only required to hold information
about the block sizes in all the blocks. When a transaction is sent, the DAG to which the
current Genesis node is connected is first requested from the entire node. Two transactions
are then referenced and a lightweight PoW is performed. The transaction is broadcast after
calculating a hash that meets the difficulty value.

Thus, the DAG hybrid blockchain structure consensus mechanism PoW can be im-
proved based on the data structure of an H-DAG. The process of nodes—from joining
the network to participating in mining—has been explained, the consensus mechanism
has been introduced in detail, and the specific methods of all nodes in a network regard-
ing packaging blocks, verification blocks, and computing power competition have been
described through algorithms and flow charts.

4. System Implementation
4.1. Experimental Environment

This experiment simulated a blockchain network by creating virtual machines. There
were 20 virtual machines in total, of which 10 were virtual machines operating as full
nodes and were responsible for packaging transactions and maintaining the operation of
the blockchain network, and 10 were virtual machines operating as light nodes and were
responsible for sending transactions. We ran the virtual machine software on three servers
using VMware Workstation Pro 16.

4.2. System Deployment

This experiment used Geth, an Ethereum client written by Golang, to modify part
of the code of Ethereum. We deployed the modified code to 20 virtual machines. We
initialized all nodes using a configuration file and ran the client program. The startup
parameters and functions of Geth are shown in Table 1.

Table 1. Geth startup parameter description.

Boot Option Function

datadir Specifies the data directory for the database and keystore key
networkid Network ID
nod discover The node discovery mechanism is disabled
allow-insecure-unlock Allows an account to be unlocked
rpc Enables the HTTP–RPC server
rpcapi This is based on the API provided by the HTTP–RPC interface
ws WS–RPC server is enabled
wsorigins WebSocket Source allowed for the request

By using RPC to start the HTTP–RPC server, the default listening was on port 8545.
Using WS to start the WS–RPC server, the default listening was on port 8546, which
was used for web3.js to communicate with the Ethereum client through HTTP and the
WebSocket protocol. After the node began the Ethereum client, its query was encoded
and written into the same static-nodes.json file. This was then distributed to the directory
specified by the data-dir of each node. Thus, the node could automatically connect to other
nodes in the network when it started up and try to reconnect when it disconnected. This
ensured network stability.
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In terms of the block time, H-DAG uses a consensus mechanism based on an
improvement of the PoW to maintain the average value of the block time at a fixed
value by dynamically adjusting the difficulty value. We set different block times for the
control experiments.

This experiment adopted Truffle’s innovative contract framework to develop, debug,
test, and deploy smart contracts. We used the interface provided by Truffle to simplify the
development process and used the command line tool provided by Truffle to invoke the
output results to directly debug the intelligent contracts.

4.3. Analysis of Experimental Results

Using a theoretical analysis and an experimental comparison, we analyzed the per-
formance of the H-DAG from three aspects: the difficulty of the bifurcation attack, the
transaction confirmation time, and the commission fee.

4.3.1. Fork Attack Difficulty

In our scenario, the attacker wanted to launch a forking attack, starting with the block
that began the forking. The following two blocks used the Genesis node published by
the previous two blocks; therefore, republishing the block required all the transactions
connected to the Genesis block to be packaged. Starting from the third block, this creation
node was not used by other miners because the block mined by the attacker defined the
creation node. Thus, no transactions referenced this creation node. The attacker would
have been required to create many transactions and pack them into the block to increase
the total difficulty value of the block. Therefore, forking attacks need to be considered in
two stages. In the first stage, the fork height was less than 3. The blockchain state at this
stage is shown in Figure 6. The probability of success of the attacker is shown in Formula (3).

qz

{
1 p ≤ q

(q/p)z p > q
(3)
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p: The probability that the honest node finds the next block.
q: The probability that the attacker finds the next block.
qz: The probability of the attacker catching up with the honest chain from z blocks

behind (z ≤ 2).
When the fork height was greater than 3, the Genesis node at this time was generated

by the block mined by the attacker. The attacker was required to simultaneously fight
against the final force of other miners as well as all transaction senders in the network by
connecting a large number of transactions behind its Genesis node to increase the block
difficulty value. The blockchain state at this time is shown in Figure 7. The probability that
the attacker successfully forked into the main chain is shown in Formula (4).

pl = The computational power o f all transaction senders

qz

{
1 p + pl ≤ q(

q
p

)2
∗
(

q
p+pl

)z−2
p + pl > q

(4)
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In a payment scenario, the time it takes for a new transaction to progress from record-
ing to the blockchain to determining that the transaction is not double-spent must be
considered. For example, when a second block is published, the attacker has mined the first
two blocks and has begun to compete with the honest node for the third block. In the third
block, the probability of the attacker mining blocks is a Poisson process. T is an extended
period; therefore, in T time, the honest node mines p blocks and the attacker mines q blocks.
The time t used by the honest node to mine x blocks then satisfies z =

(
p+pl

T

)
t. The time

used by the attacker to mine x blocks satisfies x =
( p

T
)
t, x = q

p+pl
z. Thus, the number of

mines secretly mined by the attacker satisfies the Poisson distribution P(x) of λ = q
p+pl

z.
The probability of attack success is then as follows:

Qz =
+∞

∑
x=2

P(x) ∗ qz(z− x) =
+∞

∑
x=2

λxe−λ

x!
∗
{

1 x > z(
q
p

)2
∗
(

q
p+pl

)z−x−2
x ≤ z

(5)

According to Formulas (3)–(5), when the computing power ratios between the attacker
and the honest node are 3:7 and 1:1, the probability that the attacker can catch up with
the main chain is calculated, as shown in Tables 2 and 3, respectively. The computing
power of the light node is 0, which is the success rate of a traditional PoW computing
mechanism, such as a Bitcoin blockchain fork attack. As seen in the above data, the H-DAG
could operate normally and ensure safety, even when malicious nodes accounted for half
of the computing power of all miner nodes. The main reason for this was that although
all transaction senders and light nodes did not directly participate in mining, they still
contributed computing power to maintain network security. Their computing power was
transferred to honest miners. This was a significant boost to the bifurcation difficulty for
malicious attackers.

Table 2. Results when the power ratio of the attacker to the honest miner node was 3:7.

Block Number/
Calculation Ratio 0 0.25 0.5 0.75

1 0.627759 0.469143 0.309697 0.152646
2 0.445716 0.257055 0.11503 0.0285795
3 0.324583 0.145217 0.0442274 0.00555341
4 0.239126 0.083148 0.0172527 0.00109569
5 0.177351 0.0479671 0.0067836 0.000217937
6 0.132110 0.0278042 0.00268046 4.35635 × 10−5

7 0.0987124 0.00161692 0.00106263 8.73635 × 10−6

8 0.0739243 0.00942538 0.00042226 1.75606 × 10−6

9 0.0554571 0.00550406 0.000168097 3.53583 × 10−7

10 0.0416604 0.00321865 6.70056 × 10−5 7.12852 × 10−8

20 0.0024803 1.56432 × 10−5 7.04034 × 10−9 8.16637 × 10−15

30 0.000152235 7.82213 × 10−8 7.59298 × 10−13 8.78355 × 10−17
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Table 3. Results when the power ratio of the attacker to the honest miner node was 1:1.

Block Number/
Calculation Ratio 0 0.25 0.5 0.75

1 1 0.780476 0.522311 0.256961
2 1 0.662661 0.315443 0.0798236
3 1 0.572867 0.196114 0.0256902
4 1 0.499526 0.123511 0.00839166
5 1 0.437833 0.078356 0.00276311
6 1 0.385092 0.0499425 0.000914305
7 1 0.339557 0.0319347 0.000303542
8 1 0.299976 0.0204681 0.00010101
9 1 0.2654005 0.0131421 3.36716 × 10−5

10 1 0.235101 0.0084502 1.12397 × 10−5

20 1 0.0725322 0.000106114 2.00088 × 10−10

30 1 0.023062 1.37197 × 10−6 3.57754 × 10−15

4.3.2. Transaction Confirmation Time

As two transactions are referenced before each transaction is sent, the transactions
they refer to eventually point to the Genesis node. Therefore, after each Genesis node is
packaged into a block and agreed upon by the whole network, all transactions connected
to the node are packaged into the league. As the block output under the PoW mechanism
is a random event, the block output time of each block cannot accurately be predicted. In
our experiment, we used the 15 s block-out interval in Ethereum and the 10 min block-out
interval in Bitcoin, respectively, to test the distribution of the block-out frequency under
these two block-out times. The experimental results are shown in Figures 8 and 9.
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We observed that under the PoW consensus mechanism, the block-out time presented
an apparent exponential distribution. When this was combined with the conclusion of [20],
we judged that the block-out time followed the exponential distribution of λ = (average
block-out time). In our structure, sending a transaction required the creation node to be
selected; thus, the transaction only appeared on a particular block. The time a transaction
was recorded on the blockchain could be estimated based on the probability distribution
of the block production. In an H-DAG, when a transaction is sent at any time, the miners
of the network compete for the last block. After selecting a Genesis node and sending
the marketing, they are required to wait for one or two blocks before they can query their
transaction in the following block. At this time, the transaction is recorded on the chain. If
the available closest creation node is selected, the transaction is recorded on the chain two
blocks later. After the transaction is sent, two blocks are created in the blockchain, and the
transaction is recorded in the second block. Due to the block time obeying an exponential
distribution, the risk of multiple blocks should abide by the gamma distribution. This
should confirm the relationship between the time interval and a piece of f (x β, α).

f (x, β, α) =
βα

Γ(α)
xα−1e−βx, x > 0 (6)

where the random variable x is the time required to generate α blocks. The beta is λ in the
exponential distribution formula, which we approximated as the average block generation
time. We analyzed the block distribution when the block production time was set at 10 min
and 15 s, as shown in Figures 10 and 11.
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When the block output interval was set to 15 s, the average value of the actual block
output interval was approximately 13 s due to computational power fluctuations, network
delays, etc. When the block output interval was set to 10 min, the average value of
the block output interval was close to 10 min. Compared with Figures 10 and 11, the
distribution function curve gradually smoothed as the number of blocks increased. The
block distribution followed the gamma distribution and was consistent with the theoretical
value. In our system, the confirmation time of a transaction can be predicted based on the
gamma distribution. For example, when the block time was 15 s, we chose the current node
and selected the nearest creation trading time distribution of the chain for f (x, 0.0667, 2); in
34 s, a 90% probability was confirmed.

4.3.3. Fee

Introducing fees can guide submitters to refer to appropriate transactions, reduce
their costs by referring to proper transactions, and enable the DAG to expand and enhance
blockchain security. In our experiment, the arrival of a trade to the blockchain was modeled
using the standard method of the Poisson process. This set the transaction rate to a fixed
value of λ. The relationship between the sum of obtained transaction references and the
number of citations, as well as the number of transactions contained in the current block,
was assessed.

Figure 12 shows the ratio of the total number of quoted transactions and quoted
transactions of each exchange in 1000 blocks to the total number of all transactions contained
in the block. With an increase in the number of transactions, the number of quoted
transactions of each transaction accounted for an increasing proportion of the total number
of transactions in the block. The number of unacknowledged transactions at the end of the
DAG fluctuated around a constant. Thus, the appropriate trades were referenced by most
exchanges while ensuring that the directed acyclic graph formed between transactions
had extended.
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5. Conclusions 
By modifying the Ethereum client, a data structure based on an H-DAG and the over-

all architecture of the blockchain, encryption technology, and consensus mechanisms 
were realized. The performance and safety of the H-DAG were verified by theories and 
experiments. The results demonstrated that the H-DAG realized the confirmation of a 
transaction order while maintaining the high-throughput characteristics of a DAG distrib-
uted ledger. The anti-fork ability of the blockchain was improved, the transaction order 
dependence problem in blockchain smart contracts was solved, and the anti-double-blos-
som and anti-private-mining abilities were improved. In the network, the ratio of the com-
puting power of the light node to all miners was 1:3. The computing power ratio of the 
attack node to the honest node was 3:7. The success rate of a forking attack after six blocks 
was 0.027%, significantly lower than the success rate of 0.13% for a Bitcoin blockchain 
attack (Table 2). This proved that the H-DAG dramatically improved security compared 
with a traditional blockchain. 
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5. Conclusions

By modifying the Ethereum client, a data structure based on an H-DAG and the
overall architecture of the blockchain, encryption technology, and consensus mechanisms
were realized. The performance and safety of the H-DAG were verified by theories and
experiments. The results demonstrated that the H-DAG realized the confirmation of a trans-
action order while maintaining the high-throughput characteristics of a DAG distributed
ledger. The anti-fork ability of the blockchain was improved, the transaction order depen-
dence problem in blockchain smart contracts was solved, and the anti-double-blossom and
anti-private-mining abilities were improved. In the network, the ratio of the computing
power of the light node to all miners was 1:3. The computing power ratio of the attack
node to the honest node was 3:7. The success rate of a forking attack after six blocks was
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0.027%, significantly lower than the success rate of 0.13% for a Bitcoin blockchain attack
(Table 2). This proved that the H-DAG dramatically improved security compared with a
traditional blockchain.
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