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Abstract: Many properties of special polynomials, such as recurrence relations, sum formulas, and
symmetric properties, have been studied in the literature with the help of generating functions and
their functional equations. In this study, we define Frobenius–Euler–Genocchi polynomials and
investigate some properties by giving many relations and implementations. We first obtain different
relations and formulas covering addition formulas, recurrence rules, implicit summation formulas,
and relations with the earlier polynomials in the literature. With the help of their generating function,
we obtain some new relations, including the Stirling numbers of the first and second kinds. We also
obtain some new identities and properties of this type of polynomial. Moreover, using the Faà di
Bruno formula and some properties of the Bell polynomials of the second kind, we obtain an explicit
formula for the Frobenius–Euler polynomials of order α. We provide determinantal representations
for the ratio of two differentiable functions. We find a recursive relation for the Frobenius–Euler
polynomials of order α. Using the Mathematica program, the computational formulae and graphical
representation for the aforementioned polynomials are obtained.

Keywords: Changhee–Genocchi polynomials; Changhee–Frobenius-Euler polynomials; Changhee–
Frobenius–Genocchi polynomials and numbers

MSC: 11B83; 11B73; 05A19

1. Introduction

Recently, a lot of mathematicians [1–22] have introduced and formulated generat-
ing functions for new families of special polynomials, such as Bernoulli, Euler, Genocchi,
etc., using Frobenius–Euler polynomials and Frobenius–Genocchi polynomials. These
types of papers have provided basic properties and different applications for these poly-
nomials. After Frobenius–Euler and Frobenius–Genocchi polynomials, modified gener-
ating functions for the Frobenius–Euler and the Frobenius–Genocchi polynomials have
been given by many researchers almost regularly every year. Most of this research con-
sists of modifying or unifying existing generating functions by adding either parame-
ters or a few polynomials to the coefficients of existing generating functions. Recently
Belbachir et al. [23] introduced the Euler–Genocchi polynomials, and Goubi [6] general-
ized them to the Euler–Genocchi polynomials of order α. From this idea of generalized
Euler–Genocchi polynomials, we introduce Frobenius–Euler–Genocchi polynomials and
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higher-order Frobenius–Euler–Genocchi polynomials of order α. In addition, we introduce
Changhee–Frobenius–Euler–Genocchi polynomials. The aim of this paper is to study cer-
tain properties and identities involving those polynomials, the Stirling numbers of the first
and second kinds, higher-order Frobenius–Euler polynomials of order α, and generalized
falling factorials. Furthermore, we derive some properties of Bell polynomials of the second
kind by using the Faà di Bruno formula and also derive determinantal representation for
the ratio of the two differentiable functions.

For these fundamental reasons, the main motivation of this article is to focus on the
generating functions constructed below and to explore their properties.

2. Preliminaries

In order to present our results, we need to give some special classes of polynomials
and numbers with their generating functions.

The ordinary Bernoulli, Euler, and Genocchi polynomials are introduced by (see [2,11])

2τ

eτ + 1
eξτ =

∞

∑
ω=0

Bω(ξ)
τω

ω!
| τ |< 2π, (1)

2
eτ + 1

eξτ =
∞

∑
ω=0

Eω(ξ)
τω

ω!
| τ |< π, (2)

and
2τ

eτ + 1
eξτ =

∞

∑
ω=0

Gω(ξ)
τω

ω!
| τ |< π, (3)

respectively.
In the case when ξ = 0, Bω = Bω(0), Eω = Eω(0) and Gω = Gω(0) are called the

Bernoulli, Euler, and Genocchi numbers.
We note that

G0(ξ) = 0, Eω(ξ) =
Gω+1(ξ)

ω + 1
(ω ≥ 0).

The Stirling numbers of the first kind are provided by

1
ν!
(log(1 + τ))ν =

∞

∑
ω=ν

S1(ω, ν)
τω

ω!
(ν ≥ 0). (4)

The Stirling numbers of the second kind are provided by

1
ν!
(eτ − 1)ν =

∞

∑
ω=ν

S2(ω, ν)
τω

ω!
(ν ≥ 0). (5)

The Bernoulli polynomials of the second kind are introduced by (see [24])

τ

log(1 + τ)
(1 + τ)ξ =

∞

∑
ω=0

bω(ξ)
τω

ω!
. (6)

When ξ = 0, bω = bω(0) are called the Bernoulli numbers of the second kind.
The Changhee polynomials are introduced by (see [12])

2
2 + τ

(1 + τ)ξ =
∞

∑
ω=0

Chω(ξ)
τω

ω!
. (7)

When ξ = 0, Chω = Chω(0) are called the Changhee numbers.
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The Changhee–Genocchi polynomials are introduced by the generating function
(see [1,13])

2 log(1 + τ)

2 + τ
(1 + τ)ξ =

∞

∑
ω=0

CGω(ξ)
τω

ω!
. (8)

When ξ = 0, CGω = CGω(0) are termed as the Changhee–Genocchi numbers.
Recently, Kim et al. [14] introduced the modified Changhee–Genocchi polynomials

as follows:
2τ

2 + τ
(1 + τ)ξ =

∞

∑
ω=0

CG∗ω(ξ)
τω

ω!
. (9)

When ξ = 0, CG∗ω = CG∗ω(0) are termed as the modified Changhee–Genocchi numbers.
From (2) and (9), we see that

2τ

2 + τ
(1 + τ)ξ =

2τ

elog(1+τ) + 1
eξ log(1+τ)

= τ
∞

∑
ν=0

Eν(ξ)
1
ν!
(log(1 + τ))ν

= τ
∞

∑
ω=0

(
ω

∑
ν=0

Eν(ξ)S1(ω, ν)

)
τω

ω!
. (10)

Thus, from (9) and (10), we obtain

CG∗ω+1(ξ)

ω + 1
=

ω

∑
ν=0

Eν(ξ)S1(ω, ν) (ω ≥ 0).

For u ∈ C with u 6= 1, the Frobenius–Euler polynomials are defined by (see [5])

1− u
eτ − u

eξτ =
∞

∑
ω=0

Hω(ξ; u)
τω

ω!
. (11)

When ξ = 0, Hω(u) = Hω(0; u) are termed as the Frobenius–Euler numbers.
For u ∈ C with u 6= 1, the Frobenius–Genocchi polynomials are introduced by

(see [15])
(1− u)τ

eτ − u
eξτ =

∞

∑
ω=0

GF
ω(ξ; u)

τω

ω!
. (12)

When ξ = 0, GF
ω(u) = GF

ω(0; u) are termed as the Frobenius–Genocchi numbers.
The generalized λ-Stirling numbers of the second kind Sω

m(λ) are provided by
(see [21,22])

(λeτ − 1)m

m!
=

∞

∑
ω=0

Sω
m(λ)

τω

ω!
, (13)

for λ ∈ C and m ∈ N0 = {0, 1, 2, · · · , }, where λ = 1 gives the well-known Stirling numbers
of the second kind.

By virtue of (13), the λ-array type polynomials Sω
m(ξ, λ) are defined by (see [21])

(λeτ − 1)m

m!
eξτ =

∞

∑
ω=0

Sω
m(ξ, λ)

τω

ω!
. (14)

The following paper is as follows. In Section 3, we introduce Frobenius–Euler–Genocchi
numbers and polynomials. We examine some new properties of these numbers and polyno-
mials and obtain some new identities and relations between the Frobenius–Euler–Genocchi
numbers and polynomials and Stirling numbers of the first and second kinds. In Section 4,
for r = 0, using the Faà di Bruno formula and some properties of the Bell polynomials
of the second kind, we give an explicit formula for the Frobenius–Euler polynomials of
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order α. We provide determinantal representations for the ratio of two differentiable func-
tions. We obtain a recursive relation for the Frobenius–Euler polynomials of order α. In
Section 5, we give new definitions and derive some beautiful results. In Section 6, we
provide zeros and graphical representations of the Frobenius–Euler–Genocchi polynomials.
Finally, in the last section, we give certain zeros and graphical representations for the
Changhee–Frobenius–Euler–Genocchi polynomials.

3. The Frobenius–Euler–Genocchi Polynomials

In this section, we introduce Frobenius–Euler–Genocchi polynomials and investigate
some explicit expressions of Frobenius–Euler–Genocchi polynomials. We start with the
following definition:

For u ∈ C with u 6= 1 and r ∈ Z with r ≥ 0, we consider the Frobenius–Euler–Genocchi
polynomials given by

(1− u)τr

eτ − u
eξτ =

∞

∑
ω=0

A(r)
ω (ξ; u)

τω

ω!
. (15)

Note that A(r)
0 (ξ; u) = A(r)

1 (ξ; u) = · · · = A(r)
r−1(ξ; u) = 0.

At the point ξ = 0,A(r)
ω (u) = A(r)

ω (0; u) are termed as the Frobenius–Euler–Genocchi
numbers. Observe that

A(0)
ω (ξ; u) = Hω(ξ; u), A(1)

ω (ξ; u) = GF
ω(ξ; u) (ω ≥ 0). (16)

From (15), we have

∞

∑
ω=0

A(r)
ω (ξ + 1; u)

τω

ω!
=

(1− u)τr

eτ − u
e(ξ+1)τ

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
A(r)

ν (ξ; u)

)
τω

ω!
.

Therefore, we have

A(r)
ω (ξ + 1; u) =

ω

∑
ν=0

(
ω

ν

)
A(r)

ν (ξ; u) (ω ≥ 0). (17)

Theorem 1. For ω ≥ 0, we have

ξω =
1

(1− u)(ω + r)r

(
ω

∑
ν=0

(
ω + r
ν + r

)
A(r)

ν+r(ξ; u)− uA(r)
ω+r(ξ; u)

)
, (18)

where

(α)n =
Γ(α + n)

Γ(α)
.

Proof. Using (15), we note that

∞

∑
ω=0

ξω τω

ω!
=

1
(1− u)τr

∞

∑
ν=0

A(r)
ν (ξ; u)

τν

ν!
(eτ − u)

=
1

1− u

∞

∑
ν=0

A(r)
ν+r(ξ; u)

τν

(ν + r)!

(
∞

∑
ω=0

τω

ω!
− u

)

=
1

1− u

∞

∑
ω=0

ω

∑
ν=0

(
ω + r
ν + r

)
ω!

(ω + r)!
A(r)

ν+r(ξ; u)
τω

ω!
− u

1− u

∞

∑
ω=0

A(r)
ω+r(ξ; u)

ω!
(ω + r)!

τω

ω!
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=
∞

∑
ω=0

1
1− u

(
ω

∑
ν=0

(
ω + r
ν + r

)A(r)
ν+r(ξ; u)
(ω + r)r

− u
A(r)

ω+r(ξ; u)
(ω + r)r

)
τω

ω!
. (19)

Therefore, by (19), we obtain the result.

Corollary 1. For u = −1 and r = 0 in Theorem 1, we obtain

ξω =
1
2

[
Eω(ξ) +

ω

∑
ν=0

(
ω

ν

)
Eν(ξ)

]
. (20)

Corollary 2. For u = −1 and r = 1 in Theorem 1, we obtain

ξω =
1

2(ω + 1)

[
Gω+1(ξ) +

ω

∑
ν=0

(
ω + 1
ν + 1

)
Gν+1(ξ)

]
. (21)

Theorem 2. For ω, r ≥ 0 with ω ≥ r, we have

A(r)
ω (ξ; u) = (ω)rHω−r(ξ; u). (22)

Proof. By using (15), we see that

∞

∑
ω=r

A(r)
ω (ξ; u)

τω

ω!
= τr (1− u)

eτ − u
eξτ

= τr
∞

∑
ω=0

Hω(ξ; u)
τω

ω!

=
∞

∑
ω=r

Hω−r(ξ; u)
ω!

(ω− r)!
τω

ω!
=

∞

∑
ω=r

(ω)rHω−r(ξ; u)
τω

ω!
. (23)

Therefore, by (15) and (23), we obtain the result.

Theorem 3. For ω ≥ 0, we have

A(r)
ω+1(ξ; u) =

(
ξ +

r
τ

)
A(r)

ω (ξ; u)− 1
1− u

ω

∑
ν=0

(
ω

ν

)
A(0)

ω−ν(1; u)A(r)
ν (ξ; u). (24)

Proof. Differentiating both sides of (15) with respect to τ yields

d
dτ

∞

∑
ω=0

A(r)
ω (ξ; u)

τω

ω!
=

(1− u)ξτr

eτ − u
eξτ +

(1− u)rτr−1(eτ − u)− (1− u)τreτ

(eτ − u)2 eξτ

= ξ
∞

∑
ω=0

A(r)
ω (ξ; u)

τω

ω!
+

r

τ

∞

∑
ω=0

A(r)
ω (ξ; u)

τω

ω!

− eτ

eτ − u

∞

∑
ω=0

A(r)
ω (ξ; u)

τω

ω!

=
(

ξ +
r
τ

) ∞

∑
ω=0

A(r)
ω (ξ; u)

τω

ω!
− 1

1− u

∞

∑
ω=0

A(0)
ω (1; u)

τω

ω!

∞

∑
ω=0

A(r)
ω (ξ; u)

τω

ω!

∞

∑
ω=0

A(r)
ω+1(ξ; u)

τω

ω!
=
(

ξ +
r
τ

) ∞

∑
ω=0

A(r)
ω (ξ; u)

τω

ω!
− 1

1− u

∞

∑
ω=0

(
ω

∑
v=0

A(0)
ω−v(1; u)A(r)

v (ξ; u)

)
τω

ω!

− 1
1− u

∞

∑
ω=0

(
ω

∑
v=0

A(0)
ω−v(1; u)A(r)

v (ξ; u)

)
τω

ω!
. (25)
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In view of (25), we obtain (24).

Let α, u ∈ C with u 6= 1 and r ∈ Z with r ≥ 0; we consider the Frobenius–Euler–
Genocchi polynomials of order α which are given by

τr
(

1− u
eτ − u

)α

eξτ =
∞

∑
ω=0

A(r,α)
ω (ξ; u)

τω

ω!
. (26)

When ξ = 0, A(r,α)
ω (u) = A(r,α)

ω (0; u) are called the Frobenius–Euler–Genocchi numbers
of order α.

We mention here that these polynomials can be viewed as a special case of polynomials
L( f ,g,h)

ω defined by the generating function

f (τ)g ◦ h(τ) = ∑
ω≥0

L( f ,g,h)
ω

τω

ω!
,

which are recently studied by Goubi [6]. For this, one can take

f (τ) = τreξτ , g(τ) = τα, h(τ) =
1− u
eτ − u

.

Theorem 4. For ω ≥ 0, we have

A(r,α)
ω (ξ; u) =

ω

∑
ν=0

(
ω

ν

)
A(r,α)

ν (u)ξω−ν, (27)

A(r,α)
ω (ξ + η; u) =

ω

∑
ν=0

(
ω

ν

)
A(r,α)

ν (ξ; u)ηω−ν, (28)

and

A(r,α+β)
ω (ξ; u) =

ω

∑
ν=0

(
ω

ν

)
A(r,α)

ω−ν(ξ; u)H(β)
ν (u). (29)

Proof. By using (26), we can easily furnish a proof of (27) and (28). Again, we write the
generating function (24) in the following form

∞

∑
ω=0

A(r,α+β)
ω (ξ; u)

τω

ω!
= τr

(
1− u
eτ − u

)α+β

eξτ

=
∞

∑
ω=0

A(r,α)
ω (ξ; u)

τω

ω!

∞

∑
ν=0

H(β)
ν (u)

τν

ν!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
A(r,α)

ω−ν(ξ; u)H(β)
ν (u)

)
τω

ω!
. (30)

Comparing the coefficients of τω, we obtain the result.

Theorem 5. For ω ≥ 0, we have

A(r,−m)
ω (ξ; u) =

(
−u

1− u

)m
(ω)r

m

∑
k=0

(
m
k

)
(−u)k(k + ξ)ω−r. (31)

Proof. Let α = −m(m ∈ N). Then, by (26), we obtain

∞

∑
ω=0

A(r,−m)
ω (ξ; u)

τω

ω!
=

τr

(1− u)m (eτ − u)meξτ
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=
τr

(1− u)m

m

∑
k=0

(
m
k

)
(−u)m−ke(k+ξ)τ

=

(
−u

1− u

)m ∞

∑
ω=0

m

∑
k=0

(
m
k

)
(−u)k(k + ξ)ω τω+r

ω!

=

(
−u

1− u

)m ∞

∑
ω=0

m

∑
k=0

(
m
k

)
(−u)k(k + ξ)ω−r(ω)r

τω

ω!
. (32)

Therefore, by (26) and (32), we obtain the result.

Corollary 3. For ξ = 0 in Theorem 5, we have

A(r,−m)
ω (u) =

(
−u

1− u

)m
(ω)r

m

∑
k=0

(
m
k

)
(−u)kkω−r. (33)

Corollary 4. For ω ≥ 0, we have

A(r,−m)
ω (ξ; u) =

(
−u

1− u

)m ω

∑
k=0

m

∑
j=0

(
ω

k

)(
m
j

)
(−u)j(j)ω−k−r(ω− k)rξk. (34)

Proof. By (27) and (33), we have

A(r,−m)
ω (ξ; u) =

ω

∑
ν=0

(
ω

ν

)
A(r,−m)

ω−ν (u)ξν

=

(
−u

1− u

)m ω

∑
k=0

m

∑
j=0

(
ω

k

)(
m
j

)
(−u)j(j)ω−k−r(ω− k)rξk. (35)

The complete proof of the corollary.

Theorem 6. For ω, r ≥ 0 with ω ≥ r, we have

A(r,α)
ω (ξ; u) = (ω)rH(α)

ω−r(ξ; u). (36)

Proof. From (26), we observe that

∞

∑
ω=r

A(r,α)
ω (ξ; u)

τω

ω!
= τr

(
1− u
eτ − u

)α

eξτ

= τr
∞

∑
ω=0

H(α)
ω (ξ; u)

τω

ω!

=
∞

∑
ω=r

H(α)
ω−r(ξ; u)

ω!
(ω− r)!

τω

ω!

=
∞

∑
ω=r

(ω)rH(α)
ω−r(ξ; u)

τω

ω!
. (37)

By (26) and (37), we obtain the result.

Corollary 5. For ξ = 0 in Theorem 6, we have

A(r,α)
ω (u) = (ω)rH(α)

ω−r(u). (38)
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Theorem 7. For ω ≥ 0, we have

A(r,α)
ω (ξ; u) = (ω)r(ξ)

ω−r + (ω)r

ω−r−1

∑
ν=0

(
ω− r

ν

)
H(α)

ω−ν−r(u)ξ
ν.

Proof. By using (27) and (38), we see that

A(r,α)
ω (ξ; u) =

ω

∑
ν=0

(
ω

ν

)
A(r,α)

ω−ν(u)ξ
ν

=
ω−r

∑
ν=0

(
ω

ν

)
A(α)

ω−ν(u)ξ
ν

=
ω−r

∑
ν=0

(
ω

ν

)
(ω− ν)rH(α)

ω−ν−r(u)ξ
ν = (ω)r

ω−r

∑
ν=0

(
ω− r

ν

)
H(α)

ω−ν−r(u)ξ
ν

= (ω)rξω−r + (ω)r

ω−r−1

∑
ν=0

(
ω− r

ν

)
H(α)

ω−ν−r(u)ξ
ν. (39)

Therefore, by (39), we obtain the result.

Theorem 8. For ω ≥ 0, we have

A(r,α−γ)
ω (ξ; u) = γ!

(
u

1− u

)γ ∞

∑
ω=0

ω

∑
ν=0

(
ω

ν

)
A(r,α)

ν (ξ; u)Sω−ν
γ (u−1)

τω

ω!
. (40)

Proof. We write the generating function (26) in the following form:

∞

∑
ω=0

A(r,α−γ)
ω (ξ; u)

τω

ω!
= τr

(
1− u
eτ − u

)α

eξτ(eτ − u)γ(1− u)−γ

= γ!
(

u
1− u

)γ ∞

∑
ω=0

A(r,α)
ω (ξ; u)

τω

ω!

∞

∑
ν=0

Sν
γ(u
−1)

τν

ν!

= γ!
(

u
1− u

)γ ∞

∑
ω=0

ω

∑
ν=0

(
ω

ν

)
A(r,α)

ν (ξ; u)Sω−ν
γ (u−1)

τω

ω!
. (41)

In view of (37), we obtain the result.

Theorem 9. For ω ≥ 0, we have

A(r,α)
ω (ξ; u) =

ω

∑
µ=0

µ

∑
ν=0

(
ω

µ

)
(ξ)νA(r,α)

ω−ν(u)S2(µ, ν). (42)

Proof. From (26), we have

∞

∑
ω=0

A(r,α)
ω (ξ; u)

τω

ω!
= τr

(
1− u
eτ − u

)α

eξτ

= τr
(

1− u
eτ − u

)α

(eτ − 1 + 1)ξ

= τr
(

1− u
eτ − u

)α ∞

∑
ν=0

(
ξ

ν

)
(eτ − 1)ν

=
∞

∑
ω=0

A(r,α)
ω (u)

τω

ω!

∞

∑
ν=0

(ξ)ν

∞

∑
µ=ν

S2(µ, ν)
τµ

µ!
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=
∞

∑
ω=0

(
ω

∑
µ=0

µ

∑
ν=0

(
ω

µ

)
(ξ)νA(r,α)

ω−ν(u)S2(µ, ν)

)
τω

ω!
. (43)

In view of (41), we obtain the result.

Theorem 10. For ω ≥ 0, we have

(1− u)γA(r,α−γ)
ω (ξ; u) =

ω

∑
ν=0

(
ω

ν

)
A(r,α)

ω−ν(ξ; u)
γ

∑
p=0

(
γ

p

)
pν(−u)γ−p. (44)

Proof. We write the generating function (26) in the following form

∞

∑
ω=0

A(r,α−γ)
ω (ξ; u)

τω

ω!
= τr

(
1− u
eτ − u

)α

eξτ(eτ − u)γ(1− u)−γ

= (1− u)−γ
∞

∑
ω=0

A(r,α)
ω (ξ; u)

τω

ω!

∞

∑
ν=0

γ

∑
p=0

(
γ

p

)
pν(−u)γ−p τν

ν!

= (1− u)−γ
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
A(r,α)

ω−ν(ξ; u)
γ

∑
p=0

(
γ

p

)
pν(−u)γ−p

)
τω

ω!
. (45)

In view of (45), we obtain the result.

4. Some Applications of Frobenius–Euler–Genocchi Polynomials of Order α

In this part of the paper, by virtue of the Faà di Bruno Formula (46) in Lemma 1 and
identities (47) and (48) in Lemmas 2 and 3 for the Bell polynomials of the second kind Bn,k,
we obtain an explicit formula for Frobenius–Euler–Genocchi polynomials of order α, for
r = 0. We also obtain a determinantal representation of Frobenius–Euler polynomials of
order α A(0,α)

ω (ξ; u) = H(α)
ω (ξ; u) by using a general derivative Formula (49) in Lemma 4 for

the ratio of two differentiable functions. Finally, a recursive relation for the Frobenius–Euler
polynomials of order α is given. In order to prove our theorems, we give several lemmas
below. For previous papers using this method, please see [25–31].

Lemma 1 ([32]). For 0 ≤ k ≤ n, the Bell polynomials of the second kind are defined by

Bn,k(ξ1, ξ2, . . . , ξn−k+1) = ∑
1≤i≤n

li∈{0}∪N
∑n

i=1 ili=n
∑n

i=1 li=k

n!
l−k+1

∏
i=1

li!

l−k+1

∏
i=1

(
ξi
i!

)li
.

The Faà di Bruno formula can be described in terms of the Bell polynomials of the second kind
Bn,k(ξ1, ξ2, . . . , ξn−k+1),

dn

dtn p ◦ g(t) =
n

∑
k=0

p(k)(g(t))Bn,k

(
g′(t), g′′(t), . . . , g(n−k+1)(t)

)
. (46)

Lemma 2 ([32]). For 0 ≤ k ≤ n, we have

Bn,k

(
abξ1, ab2ξ2, . . . , abn−k+1ξn−k+1

)
= akbnBn,k(ξ1, ξ2, . . . , ξn−k+1), (47)

where a and b are any complex number.

Lemma 3 ([32]). For n ≥ k ≥ 0, we have

Bn,k(1, 1, . . . , 1) = S2(n, k). (48)
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Lemma 4 ([33]). Let t(τ) and v(τ) 6= 0 be differentiable functions; then the kth derivative of the
ratio t(τ)

v(τ) can be computed by

dk

dτk

[
t(τ)
v(τ)

]
=

(−1)k

vk+1(τ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t(τ) v(τ) 0 · · · 0 0
t′(τ) v′(τ) v(τ) · · · 0 0
t′′(τ) v′′(τ) (2

1)v
′(τ) · · · 0 0

...
...

...
. . .

...
...

t(k−2)(τ) v(k−2)(τ) (k−2
1 )v(k−3)(τ) · · · v(τ) 0

t(k−1)(τ) v(k−1)(τ) (k−1
1 )v(k−2)(τ) · · · (k−1

k−2)v
′(τ) v(τ)

t(k)(τ) v(k)(τ) (k
1)v

(k−1)(τ) · · · ( k
k−2)v

′′(τ) ( k
k−1)v

′(τ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(49)

Theorem 11. For ω ≥ 0, the Frobenius–Euler polynomials of order α; H(α)
ω (ξ; u) can be expressed as

H(α)
ω (ξ; u) =

ω

∑
i=0

(
ω

i

)
(1− u)αξ i

ω−i

∑
j=0

(−α)j

(1− u)α+j S2(n− i, j),

where

(α)ω =
Γ(α + ω)

Γ(α)
.

Proof. Applying p(v) = 1
vα and v = g(τ) = (eτ − u) to the Faà di Bruno Formula (46) and

using the identities (47) and (48) yield

dk

dτk

(
1

(eτ − u)α

)
=

k

∑
i=0

(
1
vα

)(i)
Bk,i

(
v′(τ), v′′(τ), . . . , v

(k−i+1)
(τ)
)

=
k

∑
i=0

(−α)i (e
τ − u)−α−iBk,i(eτ , eτ , . . . , eτ)

→
k

∑
i=0

(−α)i(e
τ − u)−α−i(eτ)iBk,i(1, 1, . . . , 1)

=
k

∑
i=0

(−α)i(1− u)−α−iS2(k, i),

as τ → 0. It is easy to see that

dk

dτk

(
(1− u)αeξτ

)
= (1− u)αξk,

as τ → 0. By virtue of Leibniz’s formula for the derivative of product of two functions and
considering the generating function (26), we obtain

H(α)
ω (ξ; u) = lim

τ→0

dω

dτω

((
1− u
eτ − u

)α

eξτ

)
=

ω

∑
i=0

(
ω

i

)
(1− u)αξ i

ω−i

∑
j=0

(−α)j

(1− u)α+j S2(ω− i, j).

So, the proof is completed.
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Theorem 12. For ω ≥ 0, the determinantal representation of Frobenius–Euler polynomials of
order α; H(α)

ω (ξ; u) can be computed by

H(α)
ω (ξ; u) = (−1)ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 η0 0 · · · 0 0
ρ1 η1 η0 · · · 0 0
ρ2 η2 (2

1)η1 · · · 0 0
...

...
...

. . .
...

...
ρω ηω−2 (ω−2

1 )ηω−3 · · · η0 0
ρω−1 ηω−1 (ω−1

1 )ηω−2 · · · (ω−1
ω−2)η1 η0

ρω ηω (ω
1 )ηω−1 · · · ( ω

ω−2)η2 ( ω
ω−1)η1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where
ρω = ξω,

and

ηω =
ω

∑
i=0

(α)i

(1− u)i S2(k, i).

Proof. Let us apply Lemma 4 to t(τ) = (1− u)αeξτ and v(τ) = (eτ − u)α. Using a similar
approach as in the proof of Theorem 11, we obtain

lim
τ→0

dωt(τ)
dτω

= (1− u)αξω,

and

lim
τ→0

dωv(τ)
dτω

= (1− u)α
ω

∑
i=0

(α)i

(1− u)i S2(k, i).

Thus, we find that

dω

dτω

((
1− u
eτ − u

)α

eξτ

)
=

(−1)ω

(eτ − u)α(ω+1)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t(τ) v(τ) 0 · · · 0 0
t′(τ) v′(τ) v(τ) · · · 0 0
t′′(τ) v′′(τ) (2

1)v
′(τ) · · · 0 0

...
...

...
. . .

...
...

t(ω−2)(τ) v(ω−2)(τ) (ω−2
1 )v(ω−3)(τ) · · · v(τ) 0

t(ω−1)(τ) v(ω−1)(τ) (ω−1
1 )v(ω−2)(τ) · · · (ω−1

ω−2)v
′(τ) v(τ)

t(ω)(τ) v(ω)(τ) (ω
1 )v

(ω−1)(τ) · · · ( ω
ω−2)v

′′(τ) ( ω
ω−1)v

′(τ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

→ (−1)ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0 η0 0 · · · 0 0
ρ1 η1 η0 · · · 0 0
ρ2 η2 (2

1)η1 · · · 0 0
...

...
...

. . .
...

...
ρω−2 ηω−2 (ω−2

1 )ηω−3 · · · η0 0
ρω−1 ηω−1 (ω−1

1 )ηω−2 · · · (ω−1
ω−2)η1 η0

ρω ηω (ω
1 )ηω−1 · · · ( ω

ω−2)η2 ( ω
ω−1)η1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

as τ → 0. By virtue of generating function (26), we obtain the desired result.
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Theorem 13. For ω ≥ 0, the Frobenius–Euler polynomials of order α; H(α)
ω (ξ; u) satisfy the

recurrence relation as follows:

ω

∑
k=0

(
ω

k

) ω−k

∑
i=0

(α)i

(1− u)i S2(ω− k, i)H(α)
k (ξ; u) = ξω.

Proof. Differentiating ω times both sides of the following equation with respect to τ,

(eτ − u)α
(

1− u
eτ − u

)α

eξτ = (1− u)αeξτ ,

we have

ω

∑
k=0

(
ω

k

)
dω−k

dτω−k (e
τ − u)α dk

dτk

[(
1− u
eτ − u

)α

eξτ

]
=

dω

dτω

[
(1− u)αeξτ

]
.

Taking the limit τ → 0, taking into account the Formula (26), and using the Faà di Bruno
Formula (46), we obtain

ω

∑
k=0

(
ω

k

) ω−k

∑
i=0

(α)i

(1− u)i S2(ω− k, i)H(α)
k (ξ; u) = ξω.

5. Further Remarks

In this section, we introduce Changhee–Frobenius–Euler–Genocchi polynomials and
investigate some explicit expressions of Changhee–Frobenius–Euler–Genocchi polynomials.
We start with the following definition as.

For u ∈ C with u 6= 1 and r ∈ Z with r ≥ 0, the Changhee–Frobenius–Euler–Genocchi
polynomials are defined by means of the following generating function:

(1− u)(log(1 + τ))r

(1 + τ)− u
(1 + τ)ξ =

∞

∑
ω=0

CG
(r)
ω (ξ; u)

τω

ω!
. (50)

At the point ξ = 0, CG
(r)
ω (u) = CG

(r)
ω (0; u) are called the Changhee–Frobenius–Euler–

Genocchi numbers.
For u = −1 and r = 1 in (50), we obtain (see [14])

2τ

2 + τ
(1 + τ)ξ =

∞

∑
ω=0

CGω(ξ)
τω

ω!
. (51)

Thus, by (50) and (51), we have

CG
(1)
ω (ξ;−1) = CGω(ξ) (ω ≥ 0).

Theorem 14. For ω ≥ 0, we have

CG
(r)
ω (ξ; u) =

ω

∑
σ=0

σ

∑
ν=0

(
ω

σ

)
CG

(r)
ω−σ(u)ξ

νS1(σ, ν). (52)

Proof. By using (4) and (50), we see that

∞

∑
ω=0

CGω(ξ; u)
τω

ω!
=

(1− u)(log(1 + τ))r

(1 + τ)− u
eξ log(1+τ)
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=
∞

∑
ω=0

CG
(r)
ω (u)

τω

ω!

∞

∑
ν=0

ξν (log(1 + τ))ν

ν!

=
∞

∑
ω=0

CG
(r)
ω (u)

τω

ω!

∞

∑
σ=0

σ

∑
ν=0

(ξ)νS1(σ, ν)
τσ

σ!

=
∞

∑
ω=0

(
ω

∑
σ=0

σ

∑
ν=0

(
ω

σ

)
CG

(r)
ω−σ(u)ξ

νS1(σ, ν)

)
τω

ω!
. (53)

Therefore, by (50) and (53), we obtain the result.

Theorem 15. For ω ≥ 0, we have

A(r)
ω (ξ; u) =

ω

∑
ν=0

CGν(ξ; u)S2(ω, ν). (54)

Proof. By replacing τ by eτ − 1 in (50) and using (5), we obtain

(1− u)τr

eτ − u
eξτ =

∞

∑
ν=0

CG
(r)
ω (ξ; u)

(eτ − 1)ν

ν!

=
∞

∑
ν=0

CG
(r)
ν (ξ; u)

∞

∑
ω=ν

S2(ω, ν)
τω

ω!

=
∞

∑
ω=0

(
ω

∑
ν=0

CG
(r)
ν (ξ; u)S2(ω, ν)

)
τω

ω!
. (55)

Therefore, by (15) and (55), we obtain at the required result.

Theorem 16. For ω ≥ 0, we have

CGω(ξ; u) =
ω

∑
ν=0

GF
ν (ξ; u)S1(ω, ν). (56)

Proof. Replacing τ by log(1 + τ) in (12) and using (4), we obtain

(1− u) log(1 + τ)

(1 + τ)− u
(1 + τ)ξ =

∞

∑
ν=0

GF
ν (ξ; u)

1
ν!
(log(1 + τ))ν

=
∞

∑
ν=0

GF
ν (ξ; u)

∞

∑
ω=ν

S1(ω, ν)
τω

ω!

=
∞

∑
ω=0

(
ω

∑
ν=0

GF
ν (ξ; u)S1(ω, ν)

)
τω

ω!
. (57)

By using (50) and (57), we acquire at the desired result.

6. Computational Values and Graphical Representations of
Frobenius–Euler–Genocchi Polynomials

In this section, certain zeros of the Frobenius–Euler–Genocchi polynomials A(2)
ω (ξ; u)

and beautifully graphical representations are shown. A few of them are
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A(2)
0 (ξ; u) = 0,

A(2)
1 (ξ; u) = 0,

A(2)
2 (ξ; u) = 2,

A(2)
3 (ξ; u) =

6
−1 + u

− 6ξ

−1 + u
+

6uξ

−1 + u
,

A(2)
4 (ξ; u) =

12
(−1 + u)2 +

12u
(−1 + u)2 −

24ξ

(−1 + u)2 +
24uξ

(−1 + u)2 +
12ξ2

(−1 + u)2

− 24uξ2

(−1 + u)2 +
12u2ξ2

(−1 + u)2 ,

A(2)
5 (ξ; u) = − 20

(−1 + u)4 −
60u

(−1 + u)4 +
60u2

(−1 + u)4 +
20u3

(−1 + u)4 −
60ξ

(−1 + u)3

+
60u2ξ

(−1 + u)3 −
60ξ2

(−1 + u)2 +
60uξ2

(−1 + u)2 +
20ξ3

1− u
− 20uξ3

1− u
,

A(2)
6 (ξ; u) =

720
(1− u)5 −

1080
(1− u)4 +

420
(1− u)3 −

30
(1− u)2 −

720u
(1− u)5 +

1080u
(1− u)4

− 420u
(1− u)3 +

30u
(1− u)2 −

120ξ

(−1 + u)4 −
360uξ

(−1 + u)4 +
360u2ξ]

(−1 + u)4 +
120u3ξ

(−1 + u)4

− 180ξ2

(−1 + u)3 +
180u2ξ2

(−1 + u)3 −
120ξ3

(−1 + u)2 +
120uξ3

(−1 + u)2 +
(30ξ4

1− u
− 30uξ4

1− u
.

We investigate the beautiful zeros of the Frobenius–Euler–Genocchi polynomials
A(2)

ω (ξ; u) by using a computer. We plot the zeros of the Frobenius–Euler–Genocchi polyno-
mials A(2)

ω (ξ; u) = 0 for ω = 40 (Figure 1).
In Figure 1 (top left), we choose r = 2 and u = −7. In Figure 1 (top right), we choose

r = 2 and u = −3 . In Figure 1 (bottom-left), we choose r = 2 and u = 3. In Figure 1
(bottom-right), we choose r = 2 and u = 7.

Stacks of zeros of the Frobenius–Euler–Genocchi polynomials A(r)
ω (ξ; u) = 0 for

3 ≤ ω ≤ 40, forming a 3D structure, are presented (Figure 2).

-20 -10 0 10 20 30
-20

-10

0

10

20

Re(ξ)

Im(ξ)

-20 -10 0 10 20 30
-20

-10

0

10

20

Re(ξ)

Im(ξ)

Figure 1. Cont.
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Figure 1. Zeros of A(r)
ω (ξ; u) = 0.

Figure 2. Zeros of A(r)
ω (ξ; u) = 0.

In Figure 2 (top left), we choose r = 2 and u = −7. In Figure 2 (top right), we choose
r = 2 and u = −3 . In Figure 2 (bottom-left), we choose r = 2 and u = 3. In Figure 2
(bottom-right), we choose r = 2 and u = 7.
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Next, we calculated an approximate solution satisfying the Frobenius–Euler–Genocchi
polynomials A(2)

ω (ξ; u) = 0 for u = 3. The results are given in Table 1.

Table 1. Approximate solutions of A(2)
ω (ξ; u) = 0.

Degree ω ξ

3 −0.50000

4 −0.50000 − 0.86603i, −0.50000 + 0.86603 i

5 −1.0800, −0.2100 − 1.5819 i, −0.2100 + 1.5819 i

6 −1.1991 − 0.7701 i, −1.1991 + 0.7701 i ,
0.1991 − 2.2101 i, 0.1991 + 2.2101 i

7 −1.6268, −1.1130 − 1.4787i, −1.1130 + 1.4787 i,
0.6764 − 2.7763 i, 0.6764 + 2.7763 i

8 −1.7906 − 0.7321 i, −1.7906 + 0.7321i, −0.9087 − 2.1385 i ,
−0.9087 + 2.1385 i, 1.1993 − 3.2957i, 1.1993 + 3.2957 i

9 −2.1611, −1.7990 − 1.4290 i, −1.7990 + 1.4290 i, −0.6261 − 2.7580 i,
−0.6261 + 2.7580 i, 1.7556 − 3.7778 i, 1.7556 + 3.7778 i

10 −2.3477 − 0.7111 i, −2.3477 + 0.7111 i, −1.7030 − 2.0940 i,
−1.7030 + 2.0940 i, −0.2870 − 3.3436 i, −0.2870 + 3.3436 i,

2.3378 − 4.2296 i, 2.3378 + 4.2296 i

11 −2.6889, −2.4100 − 1.3992 i, −2.4100 + 1.3992 i,
−1.5315 − 2.7306 i, −1.5315 + 2.7306 i, 0.0952 − 3.8998 i,

0.0952 + 3.8998 i, 2.9407 − 4.6560 i, 2.9407 + 4.6560 i

7. Computational Values and Graphical Representations of
Changhee–Frobenius–Euler–Genocchi Polynomials

In this section, certain zeros of the Changhee–Frobenius–Euler–Genocchi CG
(r)
ω (ξ; u)

and beautifully graphical representations are shown. A few of them are

CG
(2)
1 (ξ; u) = 0,

CG
(2)
2 (ξ; u) = 2,

CG
(2)
3 (ξ; u) =

12
−1 + u

− 6u
−1 + u

− 6ξ

−1 + u
+

6uξ

−1 + u
,

CG
(2)
4 (ξ; u) =

70
(−1 + u)2 −

68u
(−1 + u)2 +

22u2

(−1 + u)2 −
60ξ

(−1 + u)2 +
96uξ

(−1 + u)2 −
36u2ξ

(−1 + u)2

+
12ξ2

(−1 + u)2 −
24uξ2

(−1 + u)2 +
12u2ξ2

(−1 + u)2 ,

CG
(2)
5 (ξ; u) =

450
(−1 + u)3 −

640u
(−1 + u)3 +

410u2

(−1 + u)3 −
100u3

(−1 + u)3 −
510ξ

(−1 + u)3 +
1110uξ

(−1 + u)3

− 810u2ξ

(−1 + u)3 +
210u3ξ

(−1 + u)3 +
180ξ2

(−1 + u)3 −
480uξ2

(−1 + u)3 +
420u2ξ2

(−1 + u)3

− 120u3ξ2

(−1 + u)3 −
20ξ3

(−1 + u)3 +
60uξ3

(−1 + u)3 −
60u2ξ3

(−1 + u)3 +
20u3ξ3

(−1 + u)3 ,
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CG
(2)
6 (ξ; u) =

720
(1− u)5 +

660
(1− u)3 +

548
1− u

+
720

(−1 + u)4 +
600

(−1 + u)2 −
720u

(1− u)5

− 660u
(1− u)3 −

548u
1− u

− 720u
(−1 + u)4 −

600u
(−1 + u)2 −

1080ξ

(1− u)3 −
1350ξ

1− u
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We plot the zeros of the Changhee–Frobenius–Euler–Genocchi CG
(r)
ω (ξ; u) = 0 for

ω = 50 (Figure 3).
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Figure 3. Zeros of CG
(r)
ω (ξ; u) = 0.

In Figure 3 (top left), we choose r = 2 and u = −7. In Figure 3 (top right), we choose
r = 2 and u = −3 . In Figure 3 (bottom left), we choose r = 2 and u = 3. In Figure 3
(bottom right), we choose r = 2 and u = 7.

Stacks of zeros of the Changhee–Frobenius–Euler–Genocchi CG
(r)
ω (ξ; u) = 0

for 3 ≤ ω ≤ 50, forming a 3D structure, are presented (Figure 4).
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Figure 4. Zeros of H(α,c)
n,q (x, y; u; λ).

In Figure 4 (top left), we choose r = 2 and u = −7. In Figure 4 (top right), we choose
r = 2 and u = −3 . In Figure 4 (bottom left), we choose r = 2 and u = 3. In Figure 4
(bottom right), we choose r = 2 and u = 7.

Next, we calculated an approximate solution satisfying the Changhee–Frobenius–
Euler–Genocchi CG

(r)
ω (ξ; u) = 0. The results are given in Table 2.

Table 2. Approximate solutions of CG
(2)
ω (ξ;−3) = 0.

Degree ω ξ

3 1.2500
4 0.97272, 2.5273
5 0.83715, 2.2045, 3.7084
6 0.75834, 2.0289, 3.3703, 4.8425
7 0.70700, 1.9225, 3.1696, 4.5035, 5.9475
8 0.67047, 1.8533, 3.0413, 4.2873, 5.6152, 7.0324
9 0.64266, 1.8052, 2.9562, 4.1418, 5.3905, 6.7113, 8.1024

10 0.62043, 1.7695, 2.8973, 4.0421, 5.2320, 6.4829, 7.7949, 9.1609
11 0.60202, 1.7414, 2.8545, 3.9723, 5.1194, 6.3151, 7.5666, 8.8684, 10.210
12 0.58638, 1.7185, 2.8218, 3.9220, 5.0389, 6.1915, 7.3925, 8.6427, 9.9333, 11.252
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8. Conclusions

The theory of multidimensional or multi-index special functions is a very relevant
field of investigation to simplify a wide range of operational relations. It has also been
shown that Bell polynomials play a fundamental role in the extension of the classical
special functions to the multidimensional case. In this article, we discuss a new class
of generalized Frobenius–Euler–Genocchi polynomials and related special cases for the
particular values of the parameters. We have used the generating Functions (15) and (26)
to study their properties and related results. Using our result (15) and (26) to generalize
the well-known class of Bernoulli, Euler, Genocchi, Changhee–Genocchi, and Bernoulli
polynomials of the second kind. Moreover, for r = 0, using the Faà di Bruno formula and
some properties of the Bell polynomials of the second kind, we have presented an explicit
formula for the Frobenius–Euler polynomials of order α. We have given determinantal
representations for the ratio of two differentiable functions. We have obtained a recursive
relation for the Frobenius–Euler polynomials of order α. Finally, we have checked the roots
and graphical representations of these types of polynomials by making use of Mathematica
software. Based on this article, readers can apply the method we presented in the article to
many polynomials.
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