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1. Introduction

Many results of the approximation theory to abstract differential equations in Banach
spaces simplify the design of concrete numerical approaches. Thus, an approximation
theory of differential equations has attracted much attention due to its wide application in
recent years.

In [1], Guidetti, Karasözen and Piskarev investigated the general approximation
theory for differential equations with first-order derivatives in Banach spaces. Using the
approximation theory, they analyzed the numerical problems of homogeneous differential
equations and semilinear differential equations, respectively. In [2,3], Li, Morozov and
Piskarev considered the approximation theory for derivatives of integrated semigroups.
For other papers on the approximation of first-order differential equations, we suggest that
readers consult [4–9].

Recently, fractional Cauchy problems and their approximation have become an im-
portant topic due to their broad application in engineering, physics and biology. A large
number of findings on this topic have been reported in the literature [10–33]. Among these,
in [22], Liu, Li and Piskarev considered the fulldiscretization approximation for solutions
of the following equation with fractional time derivative α ∈ (0, 1){

Dα
t u(t) = Au(t), 0 < t ≤ L,

u(0) = u0,
(1)

in abstract space E, by virtue of finite differences and projection methods. In the same
year, by discussing the relations of compact convergence of resolvents and semidiscrete
approximation, the authors [23] studied the semidiscretization approximation of semilinear
fractional problems{

Dα
t u(t) = Au(t) + J1−α f (t, u(t)), 0 < t ≤ L,

u(0) = u0,
(2)

where 0 < α < 1. They demonstrated that the semidiscrete approximation to the solu-
tion is convergent if the corresponding resolvents are compactly convergent. However,
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in [23], the authors did not consider the fulldiscretization of the nonlinear term J1−α f (t, u(t)).
In [20], the authors discussed the well-posedness and maximal regularity of fractional semi-
linear differential equations in Hölder space, and derived the existence and stability of an
implicit difference scheme for the fractional systems. We refer to [11,15,20,21,24,25,27,32]
and the references therein for the approximation of various differential equations in Ba-
nach spaces.

Motivated by above papers, we investigate the fulldiscrete approximation of nonho-
mogeneous fractional equation{

Dα
t u(t) = Au(t) + J1−α f (t), 0 < t ≤ L,

u(0) = u0,
(3)

in abstract space E, where operator A is the generator of C0-semigroup exp(tA), 0 < α ≤ 1,
f is a smooth enough function, the Caputo fractional-order derivative Dα

t with order α is
defined by

Dα
t u(t) =

∫ t

0

(t− s)−α

Γ(1− α)
u′(s)ds

and the Riemann–Liouville fractional order integral J1−α f (t) with order 1− α is defined by

J1−α f (t) =
∫ t

0

(t− s)−α

Γ(1− α)
f (s)ds,

if the above two integrals exist.
The general discretization scheme for problem (3) in Banach space En is{

Dα
t un(t) = Anun(t) + J1−α fn(t), 0 < t ≤ L,

un(0) = u0
n,

(4)

with a series of smooth enough functions fn(·).
In this paper, we find new iteration formulas of solutions to the implicit scheme

and explicit scheme for the nonhomogeneous Cauchy problem (3) using the methods of
iteration, finite differences and projection. At the same time, we discuss the stability for the
two schemes using the Trotter–Kato theorem.

Define En and E as Banach spaces, pn ∈ B(E, En), Bn ∈ B(En) and B ∈ B(E)
with n ∈ N, where B(E, En) denotes the space of all continuous linear operators from E
to En, B(En) denotes B(En, En). Now, we introduce some notations and definitions of
approximation theory, as follows.

By [9], we always assume that {pn}, pn ∈ B(E, En), satisfies that ‖pnx‖En goes to
‖x‖E when n tends to infinity for each x ∈ E.

Definition 1 ([8]). The family {xn}, xn ∈ En, is P-converging to x belonging to E if

limn→∞ ‖xn − pnx‖En
= 0. This can also be written as xn

P−→ x.

Definition 2 ([8]). The family {Bn}, Bn ∈ B(En), is PP-converging to B belonging to B(E) if

xn
P−→ x implies Bnxn

P−→ Bx for any xn ∈ En and x ∈ E. It is also denoted as Bn
PP−−→ B.

Use C(E) to denote the space of all densely defined closed linear operators on E.
One version of the Trotter–Kato theorem [1], which is essential in the investigation of the
approximation theory for differential equations, is shown as follows.

Theorem 1. Assume that A ∈ C(E) and An ∈ C(En) are generators of C0-semigroups, respec-
tively. Then, the hypotheses (A) and (B) are equivalent to (C).

(A). Coordination. There is one number λ ∈ ρ(A)
⋂∩nρ(An) that satisfies (λIn −

An)−1 PP−−→ (λI − A)−1.
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(B). Stability. There are two real numbers, ω and M1 ≥ 1, satisfying ‖ exp(tAn)‖ ≤
M1 exp(ωt) for each t ≥ 0 and n ∈ N, where ω and M1 are independent of n.

(C). Convergence. For every L > 0, the relation

lim
n→∞

max
t∈[0,L]

‖ exp(tAn)u0
n − pn exp(tA)u0‖ = 0

holds if u0
n
P−→ u0, u0

n ∈ En and u0 ∈ E.

2. Explicit and Implicit Schemes for the Approximation

The main purpose of the paper is to investigate the fulldiscrete approximation of
the Equation (4). Therefore, the difference schemes for the general approximation to the
problem (3) are needed.

Let tm = mτn, m = 0, 1, 2, . . .; we approximate the fractional derivative (Dα
t xn)(tm) of

functions xn : [0, L]→ En by the finite difference scheme4α
tm

xn(·), where

(Dα
t xn)(tm) = J1−αx′n(tm)

=
1

Γ(1− α)

∫ tm

0

x′n(tm − s)
sα

ds

=
1

Γ(1− α)

m−1

∑
j=0

∫ tj+1

tj

x′n(tm − s)
sα

ds

and

4α
tm xn(·) =

1
Γ(2− α)

m−1

∑
j=0

(t1−α
j+1 − t1−α

j )
xn(tm−j)− xn(tm−j−1)

τn
.

In view of [24], the solution of the homogeneous equation of problem (4) can be
expressed by un(t) = Sα(t, An)u0

n for any smooth initial value u0
n ∈ D(Al+1

n ) with the
smallest integer l, such that (l + 1)α ≥ 2. In this situation, they proved the following
relation regarding the order of convergence

4α
tm un(·)− (Dα

t un)(tm) = O(τα
n ).

On the other hand, we approximate J1−α f (tm) by J1−α
tm

fn(·), where

J1−α f (tm) =
1

Γ(1− α)

∫ tm

0

f (tm − s)
sα

ds

=
1

Γ(1− α)

m−1

∑
j=0

∫ tj+1

tj

f (tm − s)
sα

ds

and

J1−α
tm

fn(·) =
1

Γ(2− α)

m−1

∑
j=0

(t1−α
j+1 − t1−α

j ) fn(tm−j).

Now, we can approximate problem (3) using the implicit difference scheme{
∆α

tm
Un(·) = AnUn(tm) + J1−α

tm
fn(·),

Un(0) = u0
n,

(5)

and the explicit scheme {
∆α

tm
Un(·) = AnUn(tm−1) + J1−α

tm
fn(·),

Un(0) = u0
n,

(6)



Symmetry 2023, 15, 1355 4 of 13

respectively.

3. Existence and Stability

Now, we present the proofs of the iteration formulas that solve the two difference
schemes through the method of induction, and discuss the stability of the solutions under
the condition (B) with ω = 0 in the Trotter–Kato theorem.

Let bj = (j + 1)1−α − j1−α in the sequel. The two iteration formulas of solutions for
implicit and explicit difference schemes are presented as follows.

Theorem 2. For the implicit scheme (5), we obtain the relation

Un(mτn) =
m

∑
j=1

c(m)
j Rju0

n +
m

∑
j=1

a(j)
m Rτn fn(jτn), (7)

where R = (In − Γ(2− α)τα
n An)−1, Un(0) = u0

n, and c(m)
1 = bm−1, c(m)

j = ∑
m−j+1
i=1 (bi−1 −

bi)c
(m−i)
j−1 , j = 2, ..., m, ∑m

j=1 c(m)
j = 1, c(m)

j > 0, j = 1, ..., m, a(1)m = bm−1 + R ∑m−1
i=1 (bi−1 −

bi)a(1)m−i, a(j)
m = a(1)m−j+1, j = 2, ..., m, a(j)

i = 0, j > i.

Proof. For the implicit difference scheme (5), i.e., for the scheme

1
Γ(2− α)

m−1

∑
j=0

bj
Un((m− j)τn)−Un((m− j− 1)τn)

τnα

= AnUn(tm) +
1

Γ(2− α)
τn

1−α
m−1

∑
j=0

bj fn((m− j)τn),

it follows that

Un(mτn) = Rbm−1u0
n + R

m−1

∑
j=1

(bj−1 − bj)Un((m− j)τn)

+R
m−1

∑
j=0

τnbj fn((m− j)τn).

We prove (7) by induction as follows.
For m = 1, Un(τn) = Ru0

n + Rτn fn(τn), c(1)1 = 1, a(1)1 = b0 = 1.
For m = 2,

Un(2τn) = Rb1u0
n + R(b0 − b1)Un(τn) + Rτn fn(2τn) + Rb1τn fn(τn)

= Rb1u0
n + R2(1− b1)u0

n + b1Rτn fn(τn)

+R2(b0 − b1)τn fn(τn) + Rτn fn(2τn)

= Rb1u0
n + R2(1− b1)u0

n + [b1 + R(b0 − b1)]Rτn fn(τn)

+Rτn fn(2τn),

where c(2)1 = b1, c(2)2 = 1− b1, c(2)1 + c(2)2 = 1, a(1)2 = b1 + R(b0 − b1)a(1)1 , a(2)1 = 0 and

a(2)2 = a(1)1 = 1.
Assume that (7) holds when 1 ≤ m ≤ M− 1. Then, for m = M, we deduce

Un(Mτn) = RbM−1u0
n + R

M−1

∑
i=1

(bi−1 − bi)Un((M− i)τn)
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+R
M−1

∑
i=0

τnbi fn((M− i)τn)

= RbM−1u0
n + R

M−1

∑
i=1

(bi−1 − bi)

·[
M−i

∑
j=1

c(M−i)
j Rju0

n +
M−i

∑
j=1

a(j)
M−iRτn fn(jτn)]

+R
M−1

∑
i=0

τnbi fn((M− i)τn)

:= P1 + P2,

where

P1 = RbM−1u0
n + R

M−1

∑
i=1

(bi−1 − bi)
M−i

∑
j=1

c(M−i)
j Rju0

n,

P2 = R
M−1

∑
i=1

(bi−1 − bi)
M−i

∑
j=1

a(j)
M−iRτn fn(jτn) + R

M−1

∑
i=0

τnbi fn((M− i)τn).

Next, we verify P1 = ∑M
j=1 c(M)

j Rju0
n and P2 = ∑M

j=1 a(j)
M Rτn fn(jτn) by induction, re-

spectively.
In fact,

P1 = RbM−1u0
n + R

M−1

∑
i=1

(bi−1 − bi)
M−i

∑
j=1

c(M−i)
j Rju0

n

= RbM−1u0
n +

M−1

∑
j=1

M−j

∑
i=1

(bi−1 − bi)c
(M−i)
j Rj+1u0

n

= RbM−1u0
n +

M

∑
j=2

M−j+1

∑
i=1

(bi−1 − bi)c
(M−i)
j−1 Rju0

n,

where c(M)
1 = bM−1, c(M)

j = ∑
M−j+1
i=1 (bi−1 − bi)c

(M−i)
j−1 , j = 2, ..., M, and

M

∑
j=1

c(M)
j = bM−1 +

M−1

∑
i=1

M−i

∑
j=1

(bi−1 − bi)c
(M−i)
j

= bM−1 +
M−1

∑
i=1

(
M−i

∑
j=1

c(M−i)
j )(bi−1 − bi)

= bM−1 +
M−1

∑
i=1

(bi−1 − bi) = 1.

Thus, P1 = ∑M
j=1 c(M)

j Rju0
n.

On the other hand,

P2 = R
M−1

∑
i=1

M−i

∑
j=1

(bi−1 − bi)a(j)
M−iRτn fn(jτn) + R

M−1

∑
i=0

τnbi fn((M− i)τn)

= R
M−1

∑
j=1

M−j

∑
i=1

(bi−1 − bi)a(j)
M−iRτn fn(jτn) + R

M

∑
j=1

τnbM−j fn(jτn)



Symmetry 2023, 15, 1355 6 of 13

= R
M

∑
j=1

M−j

∑
i=1

(bi−1 − bi)a(j)
M−iRτn fn(jτn) + R

M

∑
j=1

τnbM−j fn(jτn)

=
M

∑
j=1

M−j

∑
i=1

R(bi−1 − bi)a(1)M−i−j+1Rτn fn(jτn) + R
M

∑
j=1

τnbM−j fn(jτn).

By assumption, ∑
M−j
i=1 R(bi−1 − bi)a(1)M−i−j+1 = a(1)M−j+1 − bM−j. It follows that

P2 =
M

∑
j=1

(a(1)M−j+1 − bM−j)Rτn fn(jτn) + R
M

∑
j=1

τnbM−j fn(jτn)

=
M

∑
j=1

a(1)M−j+1Rτn fn(jτn)

=
M

∑
j=1

a(j)
M Rτn fn(jτn).

Hence, Un(Mτn) = ∑M
j=1 c(M)

j Rju0
n + ∑M

j=1 a(j)
M Rτn fn(jτn).

Theorem 3. Considering the explicit difference scheme (6), the relation

Un(mτn) =
m

∑
j=0

c(m)
j Rju0

n +
m

∑
j=1

a(j)
m τn fn(jτn) (8)

holds for m ∈ N, where R = In +
Γ(2−α)

1−b1
τn

α An and

c(m)
0 = ∑m

i=2(bi−1 − bi)c
(m−i)
0 + bm,

c(m)
j = (1− b1)c

(m−1)
j−1 + ∑

m−j
i=2 (bi−1 − bi)c

(m−i)
j , j = 1, ..., m− 1,

c(m)
m−1 = (1− b1)c

(m−1)
m−2 , c(m)

m = (1− b1)c
(m−1)
m−1 ,

a(1)m = bm−1 + R(1− b1)a(1)m−1 + ∑m−1
i=2 (bi−1 − bi)a(1)m−i,

a(j)
m = a(1)m−j+1, j = 2, ..., m, a(j)

i = 0, j > i,

and ∑m
j=0 = c(m)

j = 1.

Proof. From the explicit difference scheme (6), i.e.,

1
Γ(2− α)

m−1

∑
j=0

bj
Un((m− j)τn)−Un((m− j− 1)τn)

τnα

= AnUn((m− 1)τn) +
1

Γ(2− α)

m−1

∑
j=0

τn
1−αbj fn((m− j)τn),

we get

Un(mτn) = (1− b1)(In +
Γ(2− α)

1− b1
τn

α An)Un((m− 1)τn)

+
m

∑
j=2

(bj−1 − bj)Un((m− j)τn) + bmu0
n +

m−1

∑
j=0

τnbj fn((m− j)τn)

= (1− b1)RUn((m− 1)τn) +
m

∑
i=2

(bi−1 − bi)Un((m− i)τn)

+bmu0
n +

m−1

∑
i=0

τnbi fn((m− i)τn).
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Next, we prove relation (8) by induction.
For m = 1,

Un(τn) = (1− b1)(In +
Γ(2− α)

1− b1
τn

α An)u0
n + b1u0

n + τn fn(τn)

= (1− b1)Ru0
n + b1u0

n + τn fn(τn),

where c(1)0 = b1 > 0, c(1)1 = 1− b1 > 0, c(1)0 + c(1)1 = 1 and a(1)1 = b0 = 1.
For m = 2,

Un(2τn) = (1− b1)RUn(τn) + (b1 − b2)Un(0) + b2Un(0)

+τn fn(2τn) + τnb1 fn(τn)

= (1− b1)
2R2u0

n + b1(1− b1)Ru0
n + b1u0

n

+(1− b1)Rτn fn(τn) + τn fn(2τn) + τnb1 fn(τn),

where c(2)0 = b1 > 0, c(2)1 = b1(1− b1) > 0, c(2)2 = (1− b1)
2 > 0, c(2)0 + c(2)1 + c(2)2 = 1,

a(1)1 = b0, a(2)1 = 0, a(1)2 = b1 + (1− b1)R = b1 + R(1− b1)a(1)1 , a(2)2 = 1 = a(1)1 .
Assume the relation (8) holds for 1 ≤ m ≤ M− 1. Then,

Un(Mτn)

= (1− b1)RUn((M− 1)τn) +
M

∑
i=2

(bi−1 − bi)Un((M− i)τn)

+bMUn(0) +
M−1

∑
i=0

τnbi fn((M− i)τn)

= (1− b1)R[
M−1

∑
j=0

c(M−1)
j Rju0

n +
M−1

∑
j=1

a(j)
M−1τn fn(jτn)]

+
M

∑
i=2

(bi−1 − bi)[
M−i

∑
j=0

c(M−i)
j Rju0

n +
M−i

∑
j=1

a(j)
M−iτn fn(jτn)]

+bMu0
n +

M−1

∑
i=0

τnbi fn((M− i)τn)

:= Q1 + Q2,

where

Q1 = (1− b1)R
M−1

∑
j=0

c(M−1)
j Rju0

n +
M

∑
i=2

(bi−1 − bi)
M−i

∑
j=0

c(M−i)
j Rju0

n + bMu0
n,

Q2 = (1− b1)R
M−1

∑
j=1

a(j)
M−1τn fn(jτn) +

M

∑
i=2

(bi−1 − bi)
M−i

∑
j=1

a(j)
M−iτn fn(jτn)

+
M−1

∑
i=0

τnbi fn((M− i)τn).

Now, our aim is to deduce Q1 = ∑M
j=0 c(M)

j Rju0
n and Q2 = ∑M

j=1 aj
Mτn fn(jτn) by induction,

respectively. As a matter of fact,

Q1 = (1− b1)R
M−1

∑
j=0

c(M−1)
j Rju0

n +
M

∑
i=2

(bi−1 − bi)
M−i

∑
j=0

c(M−i)
j Rju0

n + bMu0
n
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= (1− b1)
M

∑
j=1

c(M−1)
j−1 Rju0

n +
M−2

∑
j=0

M−j

∑
i=2

(bi−1 − bi)c
(M−i)
j Rju0

n + bMu0
n

=
M

∑
j=0

c(M)
j Rju0

n.

where
c(M)

0 = ∑M
i=2(bi−1 − bi)c

(M−i)
0 + bM > 0,

c(M)
j = (1− b1)c

(M−1)
j−1 + ∑

M−j
i=2 (bi−1 − bi)c

(M−i)
j > 0, j = 1, ..., M− 2,

c(M)
M−1 = (1− b1)c

(M−1)
M−2 > 0, c(M)

M = (1− b1)c
(M−1)
M−1 > 0.

Meanwhile, we can obtain

M

∑
j=0

c(M)
j = (1− b1)

M−1

∑
j=0

c(M−1)
j +

M

∑
i=2

(bi−1 − bi)
M−i

∑
j=0

c(M−i)
j + bM

= (1− b1)
M

∑
i=2

(bi−1 − bi) + bM

= 1.

Furthermore,

Q2 = (1− b1)R
M−1

∑
j=1

a(j)
M−1τn fn(jτn)

+
M

∑
i=2

(bi−1 − bi)
M−i

∑
j=1

a(j)
M−iτn fn(jτn) +

M−1

∑
i=0

τnbi fn((M− i)τn)

= (1− b1)R
M

∑
j=1

a(j)
M−1τn fn(jτn)

+
M−2

∑
j=1

M−j

∑
i=2

(bi−1 − bi)a(1)M−i−j+1τn fn(jτn) +
M

∑
j=1

τnbM−j fn(jτn)

= (1− b1)R
M

∑
j=1

a(1)M−jτn fn(jτn)

+
M

∑
j=1

M−j

∑
i=2

(bi−1 − bi)a(1)M−i−j+1τn fn(jτn) +
M

∑
j=1

τnbM−j fn(jτn)

=
M

∑
j=1

[bM−j + R(1− b1)a(1)M−j +
M−j

∑
i=2

(bi−1 − bi)a(1)M−i−j+1]τn fn(jτn)

=
M

∑
j=1

a(1)M−j+1τn fn(jτn)

=
M

∑
j=1

a(j)
M τn fn(jτn),

where a(1)M = bM−1 + R(1− b1)a(1)M−1 + ∑M−1
i=2 (bi−1 − bi)a(1)M−i, a(j)

i = 0, j > i, and

a(j)
M = R(1− b1)a(1)M−j +

M−j

∑
i=2

(bi−1 − bi)a(1)M−i−j+1 + bM−j

= a(1)M−j+1, j = 2, ..., M.
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Consequently,

Un(Mτn) =
M

∑
j=0

c(M)
j Rju0

n +
M

∑
j=1

a(j)
M τn fn(jτn).

On account of the above two relations, we now can establish the proof of stability to
the solutions, under the following conditions.

Theorem 4. Suppose condition (B) holds, with ω = 0. Then, the implicit difference scheme (5) is
stable, i.e.,

‖Un(mτn)‖ ≤ M‖u0
n‖+ Mmτn sup

1≤j≤m
‖ fn(jτn)‖, (9)

where M = max{1, M1}, mτn ∈ [0, L].

Proof. By condition (B), we have ‖etAn‖ ≤ M1 for any t ≥ 0. Thus,

‖Rj‖ = ‖(In − Γ(2− α)τn
α An)

−j‖

= ‖(Γ(2− α)τn
α)−j(

In

Γ(2− α)τnα
− An)

−j‖

≤ (Γ(2− α)τn
α)−j M1

(Γ(2− α)τnα)−j

= M1.

Next, we prove the inequality

‖a(1)j ‖ ≤ M, ‖Ra(1)j ‖ ≤ M, j = 1, 2, ..., m, (10)

by induction.
For m = 1, ‖a(1)1 ‖ = b0 ≤ M.

For m = 2, ‖a(1)2 ‖ = ‖b1 + R(b0 − b1)a(1)1 ‖ ≤ Mb1 + M(b0 − b1) = M.
Suppose the relation (10) holds for every 1 ≤ m ≤ M− 1. Then, for m = M, we obtain

‖a(1)M ‖ = ‖bM−1 + R
M−1

∑
i=1

(bi−1 − bi)a(1)M−i‖

≤ MbM−1 + M
M−1

∑
i=1

(bi−1 − bi)

= M.

From the above proof, one can also obtain that

‖Ra(1)j ‖ ≤ M, j = 1, 2, ..., m.

Consequently, using Theorem 2, we obtain

‖Un(Mτn)‖

≤
M

∑
j=1

c(M)
j ‖Rju0

n‖+
M

∑
j=1
‖a(j)

M R‖τn‖ fn(jτn)‖

≤
M

∑
j=1

c(M)
j M1‖u0

n‖+
M

∑
j=1
‖a(1)M−j+1R‖τn sup

1≤j≤M
‖ fn(jτn)‖
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≤ M‖u0
n‖+ M

M

∑
j=1

τn sup
1≤j≤M

‖ fn(jτn)‖

= M‖u0
n‖+ MMτn sup

1≤j≤M
‖ fn(jτn)‖.

Theorem 5. Let 1
2 < α ≤ 1. Suppose condition (B) holds with ω = 0 and ‖τn

2α−1 An
2‖ ≤ c,

where c is a constant. Then, the explicit scheme (6) is stable, i.e.,

‖Un(mτn)‖ ≤ M̃ exp{ cΓ2(2− α)

(1− b1)2 mτn}‖u0
n‖+ M̃mτn sup

1≤j≤m
‖ fn(jτn)‖, (11)

where M̃ = max{1, M1(1 +
cΓ2(2−α)
(1−b1)2 τn)}, c is independent of n and mτn ∈ [0, L].

Proof. By condition (B), we have ‖etAn‖ ≤ M1 for any t ≥ 0. Then, we have ‖(In −
Γ(2−α)

1−b1
τn

α An)−j‖ ≤ M1. Thus,

‖Rj‖ = ‖(In +
Γ(2− α)

1− b1
τn

α An)
j‖

= ‖(In −
Γ(2− α)

1− b1
τn

α An)
−j(In −

Γ2(2− α)

(1− b1)2 τn
2α An

2)j‖

≤ M1(1 + ‖
Γ2(2− α)

(1− b1)2 τn
2α−1 An

2‖τn)
j

≤ M1(1 +
cΓ2(2− α)

(1− b1)2 τn)
j.

Next, we prove
‖a(1)j ‖ ≤ M̃, j = 1, 2, ..., h, (12)

by induction.
For m = 1, ‖a(1)1 ‖ = b0 ≤ M̃.

For m = 2, ‖a(1)2 ‖ = ‖b1 + R(b0 − b1)a(1)1 ‖ ≤ M̃b1 + M̃(b0 − b1) = M̃.
Suppose the relation (12) holds for every 1 ≤ m ≤ M− 1. Then, for m = M, we obtain

‖a(1)M ‖ = ‖bM−1 + R(b0 − b1)a(1)M−1 +
M−1

∑
i=2

(bi−1 − bi)a(1)M−i‖

≤ M̃bM−1 + M̃(b0 − b1) + M̃
M−1

∑
i=2

(bi−1 − bi)

= M̃.

Consequently, we have the following estimate

‖Un(Mτn)‖

≤
M

∑
j=0

c(M)
j ‖Rj‖‖u0

n‖+
M

∑
j=1
‖a(j)

M ‖τn sup
1≤j≤M

‖ fn(jτn)‖

=
M

∑
j=0

c(M)
j ‖Rj‖‖u0

n‖+
M

∑
j=1
‖a(1)M−j+1‖τn sup

1≤j≤M
‖ fn(jτn)‖

≤
M

∑
j=0

c(M)
j M1(1 +

cΓ2(2− α)

(1− b1)2 τn)
j‖u0

n‖+ M̃
M

∑
j=1

τn sup
1≤j≤M

‖ fn(jτn)‖
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≤ M̃ exp{ cΓ2(2− α)

(1− b1)2 Mτn}‖u0
n‖+ M̃Mτn sup

1≤j≤M
‖ fn(jτn)‖.

Remark 1. Our results generalize Proposition 1, Proposition 2, Theorem 2 and Theorem 7 in [22],
where the authors consider the existence and stability of homogeneous fractional equations. Our
contribution in the present paper is that we find the new iteration formulas of solutions for the
implicit scheme and explicit scheme of the nonhomogeneous Cauchy problem (3) and obtain the
stability results for these two schemes.

4. Numerical Example

In this section, we provide a numerical example in one-dimensional space to show the
validity of our results. We consider the following differential equation{

Dα
t u(t) = −u(t) + J1−α sin t, 0 < t ≤ 20,

u(0) = 0.1,
(13)

in Euclidean space R, when τn = 0.2 and α equals 0.5, 0.25, 0.7, respectively.
According to Figures 1–3, one can see that the solutions of implicit schemes are stable.

Therefore, Theorem 4 is valid by means of these Figures. On the other hand, one can see
that the solutions of explicit schemes are unstable in Figures 1 and 2. The solution of explicit
scheme is shown to be stable in Figure 3. Thus, Theorem 5 is also valid, since α must be
greater than 0.5 in this theorem.
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Figure 1. α = 0.5.
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Figure 2. α = 0.25.



Symmetry 2023, 15, 1355 12 of 13

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

t

U
n
(t

)

 

 

Implicit scheme

Explicit scheme

Figure 3. α = 0.75.

5. Conclusions

In this work, the existence and stability of two difference schemes for nonhomoge-
neous fractional Cauchy problem are obtained in the space C(En) using of the methods
of numerical analysis and functional analysis. These approaches are efficient, simple and
can be applied to analogous problems. In the near future, we will investigate the order of
convergence of difference schemes and stability for problem (3) in suitable spaces.
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