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Abstract: In this investigation, the fractional Fornberg–Whitham equation (FFWE) is solved and
analyzed via the variational iteration method (VIM) and Adomian decomposition method (ADM)
with the help of the Aboodh transformation (AT). The FFWE is an important model for describing
several nonlinear wave propagations in various fields of science and plasma physics. The AT
provides a powerful tool for transforming fractional-order differential equations (DEs) into integer-
order ones, making them more amenable to analytical solutions. Accordingly, the main objective of
this investigation is to demonstrate the effectiveness and accuracy of ADM and VIM in deriving some
approximations for the FFWE. Furthermore, we highlight the advantages and potential applications
of these methods in solving other fractional-order nonlinear problems in several scientific fields,
especially in plasma physics and some engineering problems.

Keywords: Adomian decomposition method; variational iteration method; fractional Fornberg–
Whitham equation; Aboodh transformation

1. Introduction

The Fornberg–Whitham equation (FWE) holds significant physical meaning in the
field of fluid dynamics and wave propagation. It is a partial differential equation (PDE) that
combines dispersion and nonlinearity to describe the evolution of unidirectional wavepack-
ets in dispersive media. Dispersion occurs when waves of different frequencies travel at
different speeds, and this equation incorporates this effect, allowing for the examination
of dispersive wavepacket evolution. Nonlinearity, which refers to the interaction between
waves resulting in a wave that is not a simple superposition, is also included in the equation,
enabling the study of wave interactions and complex wave phenomena [1,2]. This equation
finds important applications in various physical systems. For example, in water waves, it
can be used to analyze surface wave behavior, including wave stability, breaking, and the
formation of rogue waves [3–7]. In optics, the FWE is applied to investigate the propaga-
tion of pulses and understand phenomena such as dispersion, self-focusing, and soliton
formation. Overall, the Fornberg–Whitham equation provides valuable insights into the
physical behavior of waves in dispersive media with nonlinear interactions, making it a
crucial tool in the study of wave dynamics [8–10].
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The fractional FWE (FFWE) is a nonlinear PDE (NLPDE) that describes the propagation
of nonlinear structures in different mediums with fractional derivatives. This equation
is a generalization of the classical FWE, which was widely used in the study of water
waves, solitons, and many other nonlinear phenomena. The FFWE has attracted a lot of
attention in recent years due to its wide range of applications in various fields such as
physics, mathematics, engineering, and finance. The main reason for this is the fact that
the FFWE can describe the behavior of a variety of complex systems more accurately than
traditional models based on integer derivatives [11–13]. The relation between symmetry
and the Fractional-Order Fornberg-Whitham equations lies in the preservation of certain
symmetry properties in the fractional-order formulation. Symmetry is a fundamental
concept in mathematics and physics, representing invariance under transformations. In the
context of fractional calculus, the Fornberg-Whitham equations are extended to include
fractional derivatives, which introduce additional degrees of freedom and complexity. The
fractional-order Fornberg-Whitham equations can exhibit symmetry properties such as
time-reversibility, translation invariance, or scaling invariance. These symmetries play a
crucial role in understanding the behavior and properties of the equations, enabling the
identification of specific solutions, conservation laws, and physical interpretations. By
studying the symmetries of the fractional-order Fornberg-Whitham equations, researchers
can gain insights into the underlying dynamics and develop efficient numerical methods
or analytical techniques for their analysis.

The study of fractional differential equations (FFEs) has gained a lot of attention in
recent years due to its numerous applications in various scientific fields, and physical
and engineering problems [14–19]. In particular, the FFWE has been the subject of intense
research in the last decade. A lot of progress has been made in the theoretical and numerical
analysis of this equation, as well as in its applications. One of the earliest works on the
FFWE was done by Deng and Li in 2010, where they studied the existence and uniqueness
of solutions to the FFWE with initial and boundary conditions. Later, Liu and Anh investi-
gated the well-posedness of the FFWE with different types of boundary conditions [20].
In 2013, Zhang and Deng introduced a finite difference scheme for solving the FFWE and
proved its convergence and stability [21].

Several researchers have also studied the numerical simulation of the FFWE. For ex-
ample, Liu et al. proposed a numerical scheme based on the finite volume method for
solving the FFWE and demonstrated its accuracy and efficiency [22,23]. In 2018, Li et al.
developed a spectral method for solving the FFWE and showed that it has higher accuracy
and a higher convergence rate than other numerical methods [24]. The FFWE has also been
applied in various fields, such as finance and image processing. For example, Hu et al.
used the FFWE to model the dynamics of stock prices and showed that it can provide more
accurate predictions than traditional models [25]. In 2015, Wang et al. used the FFWE
to remove noise from digital images and demonstrated that it can achieve better results
than other image denoising techniques [26]. In conclusion, the FFWE is a fascinating and
important equation that has attracted a lot of attention from researchers in various fields.
Theoretical and numerical studies of the FFWE have made significant progress in recent
years, and its applications are growing rapidly [27–31].

The variational iteration transform method (VITM) is a powerful mathematical tool
for solving nonlinear differential equations (NLDEs). The VITM was first introduced by
Professor J.H. He in 2006, and since then it has been applied in many different fields of
science and engineering. The VITM is based on the concept of a variational iteration, which
involves constructing an auxiliary linear operator and using it to iteratively approach the
solution of some NLDEs [32–34]. The VITM has several advantages over other methods
for solving nonlinear differential equations. It is simple to use, computationally efficient,
and can be applied to a wide range of NLDE. Additionally, the VITM can be used to obtain
analytical solutions, which can provide valuable insights into the behavior of the system
being studied. The VITM has been used to solve a variety of problems in science and
engineering, including fluid dynamics, quantum mechanics, and finance [35–37]. It has
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also been used to model and analyze complex systems such as chaotic systems, fractional
differential equations (FDEs), and systems with delay. Overall, the VITM is a powerful and
versatile tool for solving NLDEs, and its wide range of applications makes it an important
tool for researchers and engineers in many different fields [38–40].

The Adomian decomposition transform method (ADTM) and its family is a powerful
mathematical tool used to solve NLDEs. This method was developed by George Adomian
in the early 1980s and has since gained popularity due to its effectiveness in finding
analytical solutions to complex problems. ADTM involves breaking down a NLDE into
a series of linear equations, which are then solved sequentially. The solution is then
obtained by summing the series of solutions obtained [41–43]. This method has been
widely applied in various fields of science and engineering, including physics, chemistry,
biology, and finance. It has proven to be an efficient alternative to traditional numerical
methods as it provides closed-form solutions that are easy to interpret and can offer insights
into the underlying dynamics of the problem being studied. In this article, we will discuss
the principles and applications of the ADTM and explore some examples to illustrate
its effectiveness in solving NLDEs [44–47]. Additionally, we will make a comparison
between the approximations that will be obtained using the suggested methods and the
exact solutions for the integer case in order to verify the accuracy of the used methods and
their approximations. We will apply the suggested methods for analyzing two different
types of Fornberg–Whitham equations (FWEs).

The rest of the paper is divided into the following sections: Section 2 briefly describes
the Fundamental definitions. The general discussion of the proposed methods is presented
in Section 3. Numerical implementations are presented in Section 4, and Section 5 gives
the conclusion.

2. Fundamental Definitions

Definition 1. The Aboodh transformation (AT) of a function θ(ß) reads [48,49]

C =
{

θ : |θ(ß)| < Bepj |ß|, if ß ∈ (−1)i × [0, ∞), j = 1, 2; (B, p1, p2 > 0)
}

,

can be defined as
A[θ(ß)] =M(ψ),

which leads to
A[θ(ß)] = 1

ψ

∫ ∞

0
θ(ß)e−ψßdß =M(ψ), p1 ≤ ψ ≤ p2,

Definition 2. The inverse of the AT of the function θ(ß) reads [48,49]

θ(ß) = A−1[M(ψ)].

Definition 3. Let θ(ß) ∈ E ; then, the Laplace transformation (LT) of the function θ(ß)
reads [48,49]

L[θ(ß)] =
∫ ∞

0
θ(ß)e−sßdß = θ(s).

Theorem 1. If θ(ß) ∈ C with the AT A[θ(ß)] and LT L[θ(ß)] is given as [48,49]

M(ψ) =
1
ψ

θ(ψ).

Definition 4. The Mittag–Leffler function frequently arises in the solution of fractional calculus
and can be expressed as a special term [48,49]

E℘(Z) =
∞

∑
ρ=0

Zρ

Γ(ρ℘+ 1)
,℘, Z ∈ C,Re(℘) ≥ 0.
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In the general form, we have

Eξ
℘,γ =

∞

∑
ρ=0

Zρ(ξ)ρ

Γ(γ + ρ℘)ρ!
,℘, γ, Z ∈ C,R(℘) ≥ 0, Re(γ) ≥ 0.

Definition 5. The fractional AB derivative is a concept that pertains to the function θ ∈ H1(0, 1),
where 0 < ℘ < 1. The definition of the fractional AB derivative is as follows [48,49]:

ABC
0 D℘

ß θ(ß) =
N(℘)

1− ℘

∫ ß

0
θ′(x)E℘

(
−℘(ß− x)℘

1− ℘

)
dx.

Definition 6. Let θ be an element in the Sobolev space H1(0, 1), and let 0 < ω < 1; then, the
fractional AB derivatives can be defined using the Riemann-Liouville approach [48,49]

ABR
0 D℘

ß θ(ß) =
N(℘)

1− ℘

d
dß

∫ ß

0
θ(x)E℘

(
−℘(ß− x)℘

1− ℘

)
dx.

The normalization function N(℘) satisfies the requirement of being positive and has the values of
N(0) = 1 and N(1) = 1.

Theorem 2. The fractional AB operator of the LT in the presence of Caputo is given by [48,49]

L
[

ABC
0 D℘

ß θ(ß)
]
=

N(℘)

1− ℘
× s℘F(s)− s℘−1 f (0)

s℘ + ℘
1−℘

.

Additionally, the LT of the fractional AB derivative when utilizing the Riemann-Liouville method
reads

L
[

ABR
0 D℘

ß θ(ß)
]
=

N(℘)

1− ℘
× s℘F(s)

s℘+ ℘
1−℘

.

Theorem 3. If Ω,℘ ∈ C, with Re(℘) > 0, then the AT of E℘(Ωß℘) is given by [48,49]

M(E℘(Ωß℘)) =
1

ψ2

(
1− Ω

ψ℘

)−1
,

where |Ωψ−℘| < 1.

Theorem 4. The AT of ßγ−1Eξ
℘,ξ(Ωß℘) can be represented by the following: let ℘ and γ be complex

numbers such that their real part is positive, namely, Re(℘) > 0 and Re(γ) > 0 [48,49]

ßγ−1Eξ
℘,ξ(Ωß℘) =

1
ψγ+1

(
1−Ωψ−℘

)−ξ ,
∣∣Ωψ−℘

∣∣ < 1.

Theorem 5. The AT of a fractional AB operator in the presence of Caputo can be defined as follows:
ifM(ψ) represents the AT of θ(ß) ∈ C and the LT of θ(ß) ∈ C is θ(s) [48,49]

M
(

ABC
0 D℘

ß θ(ß)
)
=

N(℘)
(
M(ψ)− ψ−2θ(0)

)
1− ℘+ ℘ψ−℘

.

Theorem 6. The AT of a fractional AB operator in the context of Riemann-Liouville is defined as
follows: letM(ψ) represent the AT of θ(ß), which is an element of C. Additionally, let θ(s) be the
LT of θ(ß) ∈ C [48,49]

M
(

ABR
0 D℘

ß θ(ß)
)
=

N(℘)M(ψ)

1− ℘+ ℘ψ−℘
.
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3. The General Application of ADTM

Here, we will explore how the ADTM can be utilized for analyzing the following
FPDEs

ABCD℘
ß θ(ξ, ß) + Ḡ(ξ, ß) +N (ξ, ß)−P(ξ, ß) = 0, m− 1 < ℘ ≤ m, (1)

the initial condition is
θ(ξ, 0) = g(ξ). (2)

Let ABCD℘
ß denote the Caputo fractional derivative of order ℘ with respect to ß, and let

Ḡ and N represent the linear and nonlinear terms, respectively. Additionally, P is the
source term.

Using AT to Equation (1), we obtain

A[ABCD℘
ß θ(ξ, ß)]+A[Ḡ(ξ, ß) +N (ξ, ß)−P(ξ, ß)] = 0. (3)

Applying AT to the property of differentiation, we obtain

A[θ(ξ, ß)] =
1

v2 θ(ξ, 0) +
(

1− ℘+ ℘v−℘

N(℘)

)
A[P(ξ, ß)]−

(
1− ℘+ ℘v−℘

N(℘)

)
A{Ḡ(ξ, ß) +N (ξ, ß)}]. (4)

The MDM result of infinite series θ(ξ, ß),

θ(ξ, ß) =
∞

∑
φ=0

θφ(ξ, ß), (5)

where N denotes the nonlinear function, which is defined by

N (ξ, ß) =
∞

∑
φ=0
Aφ. (6)

The nonlinear terms can be analyzed using Adomian polynomials. Thus, the expres-
sion for the Adomian polynomial formula is:

Aφ =
1
j!

[
∂φ

∂λφ

{
N
(

∞

∑
φ=0

λφθφ

)}]
λ=0

. (7)

Then, putting Equations (5) and (6) into (4) gives

A
[

∞

∑
φ=0

θφ(ξ, ß)

]
=

1
v2 θ(ξ, 0) +

(
1− ℘+ ℘v−℘

N(℘)

)
A{P(ξ, ß)} −

(
1− ℘+ ℘v−℘

N(℘)

)
A
{
Ḡ(

∞

∑
φ=0

θφ) +
∞

∑
φ=0
Aφ

}
. (8)

By performing the inverse of the AT on Equation (8), we have

∞

∑
φ=0

θφ(ξ, ß) = A−1

[
1

v2 θ(ξ, 0) +
(

1− ℘+ ℘v−℘

N(℘)

)
A{P(ξ, ß)} −

(
1− ℘+ ℘v−℘

N(℘)

)
A
{
Ḡ
(

∞

∑
φ=0

θφ

)
+

∞

∑
φ=0
Aφ

}]
. (9)

Introducing the following terms:

θ0(ξ, ß) =A−1
[

1
v2 θ(ξ, 0) +

(
1− ℘+ ℘v−℘

N(℘)

)
A{P(ξ, ß)}

]
, (10)

θ1(ξ, ß) = −A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A{Ḡ1(θ0) +A0}

]
.
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In general, for φ ≥ 1, we obtain

θφ+1(ξ, ß) = −A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A{Ḡ(θφ) +Aφ}

]
.

4. Numerical Results

Example 1. Consider the following nonlinear FFWE [50]:

D℘
ß θ − Dξξßθ + Dξ θ =θDξξξθ − θDξ θ + 3Dξ θDξξθ, 0 < ℘ ≤ 1, (11)

with the initial condition

θ(ξ, 0) = e
(

ξ
2

)
. (12)

Taking the AT to Equation (11), we obtain(
N(℘)

1− ℘+ ℘v−℘

){
A[θ(ξ, ß)]− 1

v2 θ(ξ, 0)
}

= A
[
Dξξßθ − Dξ θ + θDξξξθ − θDξ θ + 3Dξ θDξξ θ

]
.

Using the inverse of AT

θ(ξ, ß) =A−1
[

θ(ξ, 0)
v2 −

(
1− ℘+ ℘v−℘

N(℘)

)
A
[
Dξξßθ − Dξ θ + θDξξξθ − θDξ θ + 3Dξ θDξξ θ

]]
.

Applying Adomain procedure, we obtain

θ0(ξ, ß) = A−1
[

θ(ξ, 0)
v2

]
= A−1

 e
(

ξ
2

)
v2

,

θ0(ξ, ß) = e
(

ξ
2

)
, (13)

∞

∑
φ=0

θφ+1(ξ, ß) = A−1

[(
1− ℘+ ℘v−℘

N(℘)

)
A
[

∞

∑
φ=0

(Dξξßθ)φ −
∞

∑
φ=0

(Dξ θ)φ +
∞

∑
φ=0

Aφ −
∞

∑
φ=0

Bφ + 3
∞

∑
φ=0

Cφ

]]
, φ = 0, 1, 2, · · ·

A0(θDξξξ θ) = θ0Dξξξθ0, B0(θDξ θ) = θ0Dξ θ0,

A1(θDξξξ θ) = θ0Dξξξ θ1 + θ1Dξξξθ0, B1(θDξ θ) = θ0Dξ θ1 + θ1Dξ θ0,

A2(θDξξξ θ) = θ1Dξξξ θ2 + θ1Dξξξ θ1 + θ2Dξξξθ0, B2(θDξ θ) = θ1Dξ θ2 + θ1Dξ θ1 + θ2Dξθ0,

C0(Dξ θDξξθ) = Dξ θ0Dξξθ0, C1(Dξ θDξξθ) = Dξ θ0Dξξθ1 + Dξ θ1Dξξ θ0,

C2(Dξ θDξξθ) = Dξθ1Dξξθ2 + Dξ θ1Dξξ θ1 + Dξ θ2Dξξθ0,

for φ = 1

θ1(ξ, ß) = A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
[
Dξξßθ0 − Dξθ0 + A0 − B0 + 3C0

]]
= −1

2
e
(

ξ
2

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
. (14)

for φ = 2

θ2(ξ, ß) = A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
[
Dξξßθ1 − Dξ θ1 + A1 − B1 + 3C1

]]
,

θ2(ξ, ß) = −1
8

e
(

ξ
2

)
ß2℘−1

Γ(2℘)
+

1
4

e
(

ξ
2

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
,

(15)
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for φ = 3

θ3(ξ, ß) =A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
[
Dξξßθ2 − Dξθ2 + A2 − B2 + 3C2

]]
,

θ3(ξ, ß) =− 1
32

e
(

ξ
2

)
ß3℘−2

Γ(3℘− 1)
+

1
8

e
(

ξ
2

)
ß3℘−1

Γ(3℘)

− 1
8

e
(

ξ
2

){
(1− ℘)3 + ℘(1− ℘)(1 + ℘+ 2℘2)

ß℘

Γ(℘+ 1)
+

3℘2(1− ℘)ß2℘

Γ(2℘+ 1)
+

℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
.

(16)

The solution of example (1) using the MDM reads

θ(ξ, ß) = θ0(ξ, ß) + θ1(ξ, ß) + θ2(ξ, ß) + θ3(ξ, ß) + θ4(ξ, ß) + · · · ,

θ(ξ, ß) = e
(

ξ
2

)
− 1

2
e
(

ξ
2

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 1

8
e
(

ξ
2

)
ß2℘−1

Γ(2℘)
+

1
4

e
(

ξ
2

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)

− 1
32

e
(

ξ
2

)
ß3℘−2

Γ(3℘− 1)
+

1
8

e
(

ξ
2

)
℘3℘−1

Γ(3℘)
− 1

8
e
(

ξ
2

){
(1− ℘)3 + ℘(1− ℘)(1 + ℘+ 2℘2)

ß℘

Γ(℘+ 1)

+
3℘2(1− ℘)ß2℘

Γ(2℘+ 1)
+

℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
− · · · .

(17)

The simplification form to Equation (17) reads

θ(ξ, ß) =e
(

ξ
2

)[
1− 1

2

(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 1

8
ß2℘−1

Γ(2℘)
+

1
4

(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)

− 1
32

ß3℘−2

Γ(3℘− 1)
+

1
8

ß3℘−1

Γ(3℘)
− 1

8

{
(1− ℘)3 + ℘(1− ℘)(1 + ℘+ 2℘2)

ß℘

Γ(℘+ 1)
+

3℘2(1− ℘)ß2℘

Γ(2℘+ 1)

+
℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
+ · · ·

]
.

(18)

To obtain a solution in series form, the variational method can be applied.
By deriving the iteration formulas for Equation (11), we obtain:

θφ+1(ξ, ß) = θj(ξ, ß)−A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθφ + Dξ θφ − θφDξξξθφ + θφDξθφ − 3Dξ θφDξξθφ

}]
, (19)

with

θ0(ξ, ß) = e
(

ξ
2

)
. (20)

For φ = 0, 1, 2, · · ·

θ1(ξ, ß) = θ0(ξ, ß)−A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθ0 + Dξ θ0 − θ0Dξξξθ0 + θ0Dξ θ0 − 3Dξθ0Dξξθ0
}]

,

θ1(ξ, ß) = e
(

ξ
2

)
− 1

2
e
(

ξ
2

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
,

(21)
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θ2(ξ, ß) = θ1(ξ, ß)−A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθ1 + Dξ θ1 − θ1Dξξξθ1 + θ1Dξ θ1 − 3Dξ θ1Dξξ θ1
}]

,

θ2(ξ, ß) = e
(

ξ
2

)
− 1

2
e
(

ξ
2

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 1

8
e
(

ξ
2

)
ß2℘−1

Γ(2℘)
+

1
4

e
(

ξ
2

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
,

(22)

θ3(ξ, ß) = θ2(ξ, ß)−A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθ2 + Dξ θ2 − θ2Dξξξθ2 + θ2Dξ θ2 − 3Dξ θ2Dξξ θ2
}]

,

θ3(ξ, ß) = e
(

ξ
2

)
− 1

2
e
(

ξ
2

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 1

8
e
(

ξ
2

)
ß2℘−1

Γ(2℘)
+

1
4

e
(

ξ
2

)(
(1− ℘)2 +

γ2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)

− 1
32

e
(

ξ
2

)
ß3℘−2

Γ(3℘− 1)
+

1
8

e
(

ξ
2

)
ß3℘−1

Γ(3℘)
− 1

8
e
(

ξ
2

){
(1− ℘)3 + ℘(1− ℘)(1 + ℘+ 2℘2)

ß℘

Γ(℘+ 1)

+
3℘2(1− ℘)ß2℘

Γ(2℘+ 1)
+

℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
,

(23)

θ(ξ, ß) = e
(

ξ
2

)
− 1

2
e
(

ξ
2

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 1

8
e
(

ξ
2

)
ß2℘−1

Γ(2℘)
+

1
4

e
(

ξ
2

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)

− 1
32

e
(

ξ
2

)
ß3℘−2

Γ(3℘− 1)
+

1
8

e
(

ξ
2

)
℘3℘−1

Γ(3℘)
− 1

8
e
(

ξ
2

){
(1− ℘)3 + ℘(1− ℘)(1 + ℘+ 2℘2)

ß℘

Γ(℘+ 1)
+

3℘2(1− ℘)ß2℘

Γ(2℘+ 1)

+
℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
− · · · .

(24)

The exact solution of Equation (11) at ℘ = 1, reads

θ(ξ, ß) = e
(

ξ
2−

2ß
3

)
. (25)

In Figure 1, we make a comparison between both the approximate solution (18) or (24)
at ℘ = 1 using ADTM/VITM and the exact solution (25) to Equation (11). Moreover,
the absolute error for this case is estimated at t = 0.1, as demonstrated in Table 1. Almost
perfect agreement between the two solutions is noted, which confirms the high accuracy
and high efficiency of the used approximate methods (ADTM/VITM). On the other hand,
the obtained approximations (18) or (24) are simulated numerically at different values
of the fractional-order ℘, as shown in Figure 2. From the later figure, we can observe
the effect of changing ℘ on the profile of the solutions. This graphical representation
allows us to visually observe any changes in the shape, magnitude, or other properties
of the solution as ℘ varies. These graphical discussions provide a visual representation
of the solutions obtained using ADTM/VITM for Example 1 at different values of ℘1.
They help us to understand the impact of changing the fractional order on the behavior of
the solution, allowing for a more comprehensive analysis of the problem.
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-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

�
b

θ

ADTM/VITM

Exact

Figure 1. In this figure, both the approximate solution (18) or (24) at γ = ℘ = 1 using ADTM/VITM
and the exact solution (25) are considered for Example 1.

Figure 2. In this figure, both the approximate solution (18) or (24) using ADTM/VITM for Example 1
at different values of ℘ is considered: (a) ℘ = 0.2, (b) ℘ = 0.5 (c) ℘ = 0.8, and (d) two-dimensional
plot for the cases (a–c) at t = 0.1.



Symmetry 2023, 15, 1353 10 of 16

Table 1. Numerical values for both approximate and exact solutions for Example 1 and the
absolute error.

x ADTM/VITM Exact Solution Absolute Error

−1.0 0.567414 0.567839 0.000425389
−0.9 0.596506 0.596953 0.000447199
−0.8 0.627089 0.627559 0.000470128
−0.7 0.659241 0.659735 0.000494232
−0.6 0.693041 0.69356 0.000519572
−0.5 0.728574 0.72912 0.000546211
−0.4 0.765928 0.766503 0.000574215
−0.3 0.805198 0.805802 0.000603656
−0.2 0.846482 0.847116 0.000634606
−0.1 0.889882 0.890549 0.000667143
0.0 0.935507 0.936208 0.000701348
0.1 0.983471 0.984209 0.000737307
0.2 1.0339 1.03467 0.00077511
0.3 1.0869 1.08772 0.00081485
0.4 1.14263 1.14349 0.000856629
0.5 1.20121 1.20212 0.000900549

Example 2. Consider the following nonlinear FFWE [51]:

D℘
ß θ − Dξξßθ + Dξ θ =θDξξξθ − θDξ θ + 3Dξ θDξξ θ, ß > 0, 0 < ℘ ≤ 1, (26)

with the initial condition

θ(ξ, 0) = cosh2
(

ξ

4

)
. (27)

Applying the AT to (26), we obtain(
N(℘)

1− ℘+ ℘v−℘

){
A[θ(ξ, ß)]− 1

v2 θ(ξ, 0)
}

= A
[
Dξξßθ − Dξ θ + θDξξξθ − θDξ θ + 3Dξ θDξξ θ

]
.

Using the inverse of AT

θ(ξ, ß) =A−1
[

θ(ξ, 0)
v2 −

(
1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθ − Dξθ + θDξξξθ − θDξ θ + 3DξθDξξθ
}]

.

Using the ADM procedure, we find

θ0(ξ, ß) = A−1
[

θ(ξ, 0)
v2

]
= A−1

exp
(

cosh2
(

ξ
4

))
v2

,

θ0(ξ, ß) = cosh2
(

ξ

4

)
, (28)

∞

∑
φ=0

θφ+1(ξ, ß) = A−1

[(
1− ℘+ ℘v−℘

N(℘)

)
A
[

∞

∑
φ=0

(Dξξßθ)φ −
∞

∑
φ=0

(Dξ θ)φ +
∞

∑
φ=0

Aφ −
∞

∑
φ=0

Bφ + 3
∞

∑
φ=0

Cφ

]]
, φ = 0, 1, 2, · · ·

for φ = 0

θ1(ξ, ß) = A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
[
Dξξßθ0 − Dξ θ0 + A0 − B0 + 3C0

]]
= −11

32
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
. (29)

for φ = 1
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θ2(ξ, ß) =A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
[
Dξξßθ1 − Dξ θ1 + A1 − B1 + 3C1

]]
,

θ2(ξ, ß) =− 11
28

sinh
(

ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
+

121
1024

cosh
(

ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
,

(30)

for φ = 2

θ3(ξ, ß) =A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
[
Dξξßθ2 − Dξ θ2 + A2 − B2 + 3C2

]]
,

θ3(ξ, ß) =− 11
512

sinh
(

ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
+

121
2048

cosh
(

ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)

− 1331
49, 152

sinh
(

ξ

4

){
(1− ℘)3 + ℘(1− ℘)(1 + ℘+ 2℘2)

ß℘

Γ(℘+ 1)
+

3℘2(1− ℘)ß2℘

Γ(2℘+ 1)
+

℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
,

(31)

The MDM solution of example (2) reads

θ(ξ, ß) = θ0(ξ, ß) + θ1(ξ, ß) + θ2(ξ, ß) + θ3(ξ, ß) + θ4(ξ, ß) + · · · ,

θ(ξ, ß) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 11

28
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)

+
121
1024

cosh
(

ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
− 11

512
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)

+
121
2048

cosh
(

ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
− 1331

49, 152
sinh

(
ξ

4

){
(1− ℘)3

+ ℘(1− ℘)(1 + ℘+ 2℘2)
ß℘

Γ(℘+ 1)
+

3℘2(1− ℘)ß2℘

Γ(2℘+ 1)
+

℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
· · · .

(32)

To obtain an analytical solution, the variational method can be employed.
We can obtain the iteration formulas for Equation (26), as follows:

θφ+1(ξ, ß) = θj(ξ, ß)−A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθφ + Dξθφ − θφDξξξθφ + θφDξ θφ − 3Dξ θφDξξ θφ

}]
, (33)

with
θ0(ξ, ß) = cosh2

(
ξ

4

)
. (34)

For φ = 0, 1, 2, · · ·

θ1(ξ, ß) = θ0(ξ, ß)−A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθ0 + Dξ θ0 − θ0Dξξξθ0 + θ0Dξ θ0 − 3Dξθ0Dξξθ0
}]

,

θ1(ξ, ß) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
,

(35)
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θ2(ξ, ß) = θ1(ξ, ß)−A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθ1 + Dξ θ1 − θ1Dξξξθ1 + θ1Dξ θ1 − 3Dξθ1Dξξθ1
}]

,

θ2(ξ, ß) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 11

28
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)

+
121

1024
cosh

(
ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
,

(36)

θ3(ξ, ß) =θ2(ξ, ß)−A−1
[(

1− ℘+ ℘v−℘

N(℘)

)
A
{

Dξξßθ2 + Dξθ2 − θ2Dξξξθ2 + θ2Dξθ2 − 3Dξ θ2Dξξθ2
}]

,

θ3(ξ, ß) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 11

28
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)

+
121

1024
cosh

(
ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
− 11

512
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)

+
121

2048
cosh

(
ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
− 1331

49, 152
sinh

(
ξ

4

){
(1− ℘)3+

℘(1− ℘)(1 + ℘+ 2℘2)
ß℘

Γ(℘+ 1)
+

3℘2(1− ℘)ß2℘

Γ(2℘+ 1)
+

℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
,

(37)

θ(ξ, ß) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)
− 11

28
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)

+
121
1024

cosh
(

ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
− 11

512
sinh

(
ξ

4

)(
(1− ℘) +

℘ß℘

Γ(℘+ 1)

)

+
121
2048

cosh
(

ξ

4

)(
(1− ℘)2 +

℘2ß2℘

Γ(2℘+ 1)
+

2(1− ℘)℘ß℘

Γ(℘+ 1)

)
− 1331

49, 152
sinh

(
ξ

4

){
(1− ℘)3+

℘(1− ℘)(1 + ℘+ 2℘2)
ß℘

Γ(℘+ 1)
+

3℘2(1− ℘)ß2℘

Γ(2℘+ 1)
+

℘3Γ(2℘+ 1)ß3℘

Γ(3℘+ 1)

}
+ · · · .

(38)

We put ℘ = 1; then, the series solution is given as

θ(ξ, ß) = cosh2
(

ξ

4

)
− 11

32
sinh

(
ξ

4

)
ß− 11

28
sinh

(
ξ

4

)
ß

+
121

1024
cosh

(
ξ

4

)
℘2

2
− 11

512
sinh

(
ξ

4

)
℘

+
121

2048
cosh

(
ξ

4

)
℘2

2
− 1331

49, 152
sinh

(
ξ

4

)
℘3

3
+ · · · .

(39)

The exact result of Equation (26) at ℘ = 1 reads

θ(ξ, ß) = cosh2
(

ξ

4
− 11ß

24

)
. (40)

In Figure 3, a comparison between both the approximate solution (32) or (38) at ℘ = 1
using ADTM/VITM and the exact solution (40) to Equation (26) is presented. Further,
the absolute error for this case is estimated at t = 0.1, as illustrated in Table 2. It is noted
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from the comparison results that the two solutions are compatible to a large degree, which
enhances the accuracy and efficiency of the used numerical techniques (ADTM/VITM).
Additionally, the obtained approximations (32) or (38) are displayed in Figure 4 at different
values of the fractional-order ℘. This graphical representation allows us to visually observe
any changes in the shape, magnitude, or other properties of the solution as ℘ varies.
These graphical discussions provide a visual representation of the solutions obtained
using ADTM/VITM for Example 2 at different values of ℘. These figures demonstrate
how the wavepacket evolves and interacts within the dispersive medium according to
the Fornberg–Whitham equation. Comparing this figure with the previous one at ℘ = 1,
noticeable changes in the wavepacket’s behavior can be observed. The alterations might
include variations in amplitude, shape, and propagation speed. These changes indicate
the influence of the fractional order on the dynamics of the wavepacket. By examining
both Figures 3 and 4, it becomes evident that altering the fractional order affects the
characteristics of the solutions to Equation (26). The plots provide graphical insights
into how changes in the fractional order parameter influence the wavepacket’s behavior,
allowing for a better understanding of the physical significance of the equation.

-1 0 1 2 3

1.0

1.1

1.2

1.3

1.4

1.5

1.6

�
b

θ

ADTM/VITM

Figure 3. In this figure, both the approximate solution (32) or (38) at ℘ = 1 using ADTM/VITM and
the exact solution (40) are considered for Example 2.

Table 2. Numerical values of both approximate and exact solutions for Example 2 and the
absolute error.

x ADTM/VITM Exact Solution Absolute Error

0.0 1.0021 1.00089 0.00121594
0.1 1.00043 0.999616 0.000818105
0.2 1.00002 0.999597 0.000420427
0.3 1.00085 1.00083 0.0000183526
0.4 1.00294 1.00333 0.000392684
0.5 1.00628 1.0071 0.000817276
0.6 1.01089 1.01215 0.00126006
0.7 1.01678 1.0185 0.00172572
0.8 1.02396 1.02618 0.00221902
0.9 1.03245 1.03519 0.0027448
1.0 1.04227 1.04557 0.003308
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Figure 4. In this figure, both the approximate solution (32) or (38) using ADTM/VITM for Example 2
at different values of ℘ is considered: (a) ℘ = 0.2, (b) ℘ = 0.5 (c) ℘ = 0.8, and (d) two-dimensional
plot for the cases (a–c) at t = 0.1.

5. Conclusions

In summing up, this study has presented a comprehensive comparison between the
Adomian decomposition method (ADM) and the variational iteration method (VIM) for
solving the fractional Fornberg–Whitham equation (FFWE) in the sense of the Aboodh
transformation. Both methods have demonstrated their effectiveness and accuracy in
solving this complex nonlinear fractional partial differential equation (FPDE). The ADM
and VIM were employed to obtain approximate solutions of the FFWE, taking into account
their inherent advantages and limitations. The ADM, a semi-analytical method, was shown
to provide a systematic approach to constructing the solution in the form of a convergent
series, while the VIM, an iterative method, provided a more straightforward and simpler
approach for obtaining approximate solutions. A thorough analysis of the numerical results
revealed that both methods have the potential to deliver accurate and reliable solutions to
the FFWE. However, the choice of the most appropriate method may depend on the specific
problem at hand, the computational resources, and the desired level of accuracy. Future
research could focus on extending the application of these methods to other types of FPDEs,
as well as exploring the combination of these methods with other numerical or analytical
techniques to enhance their efficiency and accuracy. Furthermore, the implementation
of these methods in high-performance computing environments could be investigated to
tackle more complex problems and improve computational efficiency.
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