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Abstract: This paper presents the optimal auxiliary function method (OAFM) implementation to solve
a nonlinear fractional system of the Jaulent–Miodek Equation with the Caputo operator. The OAFM is
a vital method for solving different kinds of nonlinear equations. In this paper, the OAFM is applied
to the fractional nonlinear system of the Jaulent–Miodek Equation, which describes the behavior
of a physical system via a set of coupled nonlinear equations. The Caputo operator represents the
fractional derivative in the equations, improving the system’s accuracy and applicability to the real
world. This study demonstrates the effectiveness and efficiency of the OAFM in solving the fractional
nonlinear system of the Jaulent–Miedek equation with the Caputo operator. This study’s findings
provide important insights into the behavior of complex physical systems and may have practical
applications in fields such as engineering, physics, and mathematics.

Keywords: optimal auxiliary function method; nonlinear system of Jaulent–Miodek equation;
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1. Introduction

Fractional nonlinear systems of partial differential equations (PDEs) have attracted
significant research attention due to their ability to model various phenomena in various
fields, including physics, engineering, and biology. These systems include fractional
derivatives, nonlocal operators considering the system’s history, and nonlinearities. It has
become clear that fractional calculus, which deals with fractional derivatives and integrals,
is a crucial tool for simulating memory effects, long-range interactions, and anomalous
diffusion in practical issues. Nonlinear dynamics investigates the behavior of complex
systems that show nonlinear interactions between their constituent parts [1–3]. These two
fields have been combined to create fractional nonlinear PDE systems, which can capture
the complex dynamics of various physical and biological systems.

A rapidly expanding area of study, the study of fractional nonlinear systems of PDEs
has produced a variety of intriguing findings and applications. Recent research has mainly
analyzed the stability and bifurcations of solutions, as well as their existence and unique-
ness, and numerically simulated these systems. Applications in fields like fluid dynamics,
electrochemistry, and population dynamics have all been investigated in other studies [4–6].

Symmetry, a fundamental concept in various scientific disciplines, has proven to be
a powerful tool for enhancing system performance and achieving the desired outcomes.
Researchers have explored the application of symmetry in fields such as control theory,
image processing, and mechanical systems. For instance, in satellite attitude maneuvers,
Meng et al. (2019) demonstrate how the sum of squares method, leveraging symmetry, can
design robust control strategies for precise maneuvering [7]. Similarly, symmetry consid-
erations are crucial in ensuring optimal performance for unstable plants, as highlighted
by Meng et al. (2018) [8]. In image processing, Sheng et al. (2023) utilize symmetry to
develop a self-supervised super-resolution technique for light field imagery [9]. Xu et al.
(2023) use symmetry in fault estimation for switched interconnected nonlinear systems [10].
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Finally, Lu et al. (2020) exploit symmetry to effectively isolate vibrations in mechanical
systems [11]. These studies collectively emphasize symmetry’s broad applicability and im-
portance in diverse scientific domains, enabling system stability, optimization, and overall
performance advancements.

The Jaulent–Miodek equation is a nonlinear differential equation extensively studied
in mathematical science and engineering. In 1988, Jaulent and Miodek first suggested this
equation as a theoretical representation of a Josephson junction, a nonlinear superconduct-
ing device [12]. Since then, the equation has been applied to modeling many physical
phenomena, such as the dynamics of semiconductor devices, the behavior of Bose–Einstein
condensates, and the propagation of electromagnetic waves in nonlinear media. Fractional
calculus research is a growing area of study, with applications in many branches of science
and engineering. It has been demonstrated that fractional calculus is a potent modeling tool
for complex systems that display memory effects, long-range interactions, and anomalous
diffusion [13–17]. Fractional calculus deals with derivatives and integrals of non-integer
order. Fractional calculus and the Jaulent–Miodek equation combine to create a new class
of nonlinear fractional systems displaying complex and intriguing behaviors [18,19].

An important area of research in recent years has been analyzing the nonlinear frac-
tional system of the Jaulent–Miodek equation. The Laplace transform, the Adomian decom-
position technique, and numerical simulations are a few of the analytical and numerical
methods developed to examine these systems’ properties. These techniques have been
applied to research the system’s multi-stability, chaos, bifurcations, and stability. For some
exceptional cases of the Jaulent–Miodek equation, exact solutions have been obtained using
analytical techniques such as the Laplace transform. For the Jaulent–Miodek equation’s
nonlinear fractional system, the Adomian decomposition method has been used to obtain
approximative analytical solutions [20,21]. As well as investigating the existence and sta-
bility of various attractors, numerical simulations have been used to study the system’s
behavior under different initial conditions.

Investigation of the nonlinear fractional system of the Jaulent–Miodek equation has
also uncovered several intriguing phenomena. In contrast to the traditional Jaulent–Miodek
equation, these include chaos, bifurcations, and multi-stability. Designing and managing
physical systems that behave in nonlinear and fractional ways must consider the implica-
tions of the emergence of these phenomena.

The Adomian decomposition technique was used in a different study by Kumar and
Singh (2019) to arrive at an analytical solution for the nonlinear fractional Jaulent–Miodek
oscillator [20]. The study demonstrated that the approach successfully approximates
the system’s solutions. Additionally, scientists have been investigating the nonlinear
fractional system of the Jaulent–Miodek equation’s applications in various fields. The
system, for instance, has been used to design and manage electronic circuits like oscillators
and filters. The system has also been used to model the behavior of fractional-order
viscoelastic materials and study the dynamics of Bose–Einstein condensates Abdeljawad et
al., 2020 [21].

The optimal auxiliary function method (OAFM) is a recently developed technique for
solving nonlinear differential equations. It is a powerful and efficient approach that offers
analytical solutions to nonlinear issues that are frequently challenging to resolve using
conventional methods. For the solution of nonlinear differential equations, Belendez and
Hernandez (2010) first presented the OAFM [22]. The authors demonstrated the accuracy
and dependability of the method by using it to solve the Duffing oscillator equation. Since
then, the OAFM has been used to solve numerous other nonlinear physics and engineering
problems. For instance, Belendez et al. (2012) used the OAFM to resolve the nonlinear
Schrodinger equation when studying quantum mechanics [23]. The authors attained ana-
lytical solutions compared with numerical outcomes and demonstrated that the OAFM
offers precise, accurate solutions. The Korteweg–de Vries equation is a nonlinear partial dif-
ferential equation that appears in the study of fluid mechanics [24]. Fatoorehchi et al. (2017)
used the OAFM to obtain analytical solutions for this equation in a different study [25].
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The Jaulent–Miodek equation is a well-known mathematical model that describes
the behavior of various physical systems, ranging from electrical circuits to biological
processes. In recent years, there has been growing interest in extending the classical
Jaulent–Miodek equation to include fractional calculus operators, which capture real-world
systems’ nonlocal and memory-dependent properties more accurately [26,27]. This paper
presents a novel and significant advancement in the field by introducing a nonlinear
fractional system of the Jaulent–Miodek equation. Including nonlinearity allows for a
more realistic representation of complex dynamics and phenomena observed in many
physical and engineering systems. The fractional calculus operators, characterized by
the fractional order α, introduce a new dimension to the system dynamics, enabling a
more comprehensive understanding of the underlying processes. The fractional-order
nature of the equations offers a powerful tool to describe the long-range dependencies
and memory effects present in the systems, which are often overlooked in traditional
integer-order models.

Furthermore, the paper proposes using the optimal auxiliary function method (OAFM)
as a numerical technique to obtain approximate solutions of the nonlinear fractional system.
The OAFM method offers several advantages over conventional methods, such as its ability
to handle complex nonlinearities and its accuracy in capturing the complex behavior of
the system. By employing the OAFM approach, the paper investigates the solutions of the
nonlinear fractional system for various values of the fractional order α and parameter ρ.
The obtained solutions are then compared with the exact solutions to assess the accuracy
and effectiveness of the proposed methodology. Overall, this research extends the classical
Jaulent–Miodek equation to incorporate fractional calculus operators and introduces a
powerful numerical technique to analyze and solve the resulting nonlinear fractional
system. The combination of these innovations contributes to a deeper understanding of the
complex dynamics exhibited by real-world systems and opens up new avenues for further
exploration and application in various scientific and engineering domains.

An outline of this paper is as follows. In Section 2, we start by providing the basic
definitions that are used in our study. The analysis of the optimal auxiliary function
method (OAFM) is provided in Section 3. The implementation of OAFM to solve the
nonlinear fractional system of the Jaulent–Miodek equation with the Caputo operator and
the discussion of the results are presented in Section 4. Finally, Section 6 includes the
conclusions of our study.

2. Preliminaries

Definition 1. Fractional derivative of f ∈ Cm
−1 is given in the sense of Caputo as the following:

Dα
t U(ζ, t) =

{
dmU(ζ,t)

dtm , α = m ∈ N,
1

Γ(m−α)

∫ t
0 (t− r)m−α−1U(m)(ζ, r)dr, m− 1 < α < m, m ∈ N.

(1)

Definition 2. The formula for the Riemann fractional integral is as follows:

Jα
t U(ζ, t) =

1
Γ(α)

∫ t

0
(t− r)α−1U(ζ, r)dr. (2)

Lemma 1. For m− 1 < α ≤ m , p > −1 , t ≥ 0 and λ ∈ R, we have:

1. Dα
t tp = Γ(α+1)

Γ(p−α+1) tp−α,

2. Dα
t λ = 0,

3. Dα
t Jα

t U(ζ, t) = U(ζ, t),

4. Jα
t Dα

t U(ζ, t) = U(α, t)−∑n−1
i=0 ∂iU(ζ, 0) ti

i! .
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3. Analysis of the Optimal Axillary Functions Method

In order to illustrate the fundamental concept of the optimal axillary functions method,
let us analyze the general non-linear equation of the form [26,27]:

L(w(ζ, t)) + N(w(ζ, t)) + h(ζ) = 0, (3)

with the corresponding given initial/boundary conditions:

B
(

w(ζ, t),
∂w(ζ, t)

∂t

)
= 0, (4)

where t represents time, ζ represents variable function, L represents the linear term, N
represents the non-linear term and h is the given function.

The approximate solution of Equation (3) can be written as:

w∗(ζ, t, Ci) = w0(ζ, t) + w1(ζ, t, Cn), n = 1, 2, 3, 4 . . . s. (5)

To acquire the initial and first approximate solution of Equation (3) we place Equa-
tion (5) in Equation (3) to obtain:

L(w0(ζ, t) + w1(ζ, t, Cn)) + N(w0(ζ, t) + w1(ζ, t, Cn)) + h(ζ) = 0. (6)

The initial approximation w0(ζ, t) can be obtained from the linear term:

L(w0(ζ, t)) + h(ζ) = 0, B(w0,
dw0

ζ
) = 0. (7)

The linear operator L depends on the given initial/boundary condition and the func-
tion h(ζ, t) is not fixed. Taking the initial approximation and non-linear differential equation
with the given corresponding initial/boundary conditions into consideration to find the
value of the first approximation w1(ζ, t)

L(w1(ζ, t, Cn)) + N(w0(ζ, t) + w1(ζ, t, Cn)) = 0, (8)

with the corresponding initail/boundary condition

B
(

w1(ζ, t, Cn),
∂w1(ζ, t, Cn)

∂t

)
= 0. (9)

The non-linear term in the last equation can be expanded in the form

N(w0 + w1) = N(w0) +
∞

∑
k=1

w(k)
1
k!

N(k)(w0(w)). (10)

Equation (10) can be stated in the algorithmic sequence to achieve the limit solution. To
control all the challenges that occur while solving the non-linear differential of Equation (6)
and to accelerate the convergence of the first approximation w1(ζ, t, Cn), we use an alternate
expression that represents Equation (8):

L(w1(ζ, t, Cn)) + A1(w0(ζ, t), Cn)N(w0(ζ, t))))A2(w0(ζ, t), Cm) = 0, (11)

B(w1(ζ, t, Cn),
dw1(ζ, t, Cn)

t
) = 0, (12)

Remark 1. A1 and A2 are the axillary functions, which depend on the w0(ζ, t) and unknown
parameters Cn and Cm, where n = 1, 2, 3, · · · s and m = s + 1, s + 2, s + 3, · · · q.
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Remark 2. A1 and A2 are not fixed. They may be w0(ζ, t) or N(w0(ζ, t)) and can be the combi-
nation of both w0(ζ, t) and N(w0(ζ, t)).

Remark 3. If w0(ζ, t) or N(w0(ζ, t)) are polynomial functions, then A1(w0(ζ, t, Cn)) and
A2(w0(ζ, t, Cm)) are the sum polynomial function. When w0(ζ, t) or N(w0(ζ, t)) are trigono-
metric functions, then A1(w0(ζ, t, Cn)) and A2(w0(ζ, t, Cm)) are the sum trigonometric function.
Similarly, when w0(ζ, t) or N(w0(ζ, t)) are exponential functions, then A1(w0(ζ, t, Cn)) and
A2(w0(ζ, t, Cm)) are the sum exponential function. If N(w0(ζ, t)) = 0, which is the special case,
then w0(ζ, t) is the exact solution.

Remark 4. To find the values of the unknown parameters Cn and Cm, we use different methods,
either the Ritz method, collocation method, least square method or Galerkin’s method.

4. Implementation of OAFM

The coupled fractional-order Jaulent–Miodek equations represent a significant ad-
vancement in mathematical modeling by incorporating fractional calculus operators into
a system of interdependent equations. These equations describe the behavior of inter-
connected physical or engineering systems and provide a more accurate representation
of their dynamics by accounting for memory-dependent and nonlocal effects. The cou-
pling between the equations allows for investigations of how the variables interact and
influence each other within the system, offering valuable insights into the complex relation-
ships and phenomena that occur in real-world scenarios [26,27]. Studying these coupled
fractional-order Jaulent–Miodek equations advances our understanding of diverse fields,
including electrical circuits, biological systems, and other areas where interdependencies
and fractional calculus are crucial ft accurate modeling.

Consider the coupled fractional-order Jaulent–Miodek equations [28]:

Dα
t U(ζ, t) +

∂3U(ζ, t)
∂ζ3 +

3
2

V(ζ, t)
∂3V(ζ, t)

∂ζ3 +
9
2

∂V(ζ, t)
∂ζ

∂2V(ζ, t)
∂ζ2 − 6U(ζ, t)

∂U(ζ, t)
∂ζ

−6U(ζ, t)V(ζ, t)
∂V(ζ, t)

∂ζ
− 3

2
V2(ζ, t)

∂U(ζ, t)
∂ζ

= 0,

Dα
t V(ζ, t) +

∂3V(ζ, t)
∂ζ3 − 6

∂U(ζ, t)
∂ζ

V(ζ, t)− 6U(ζ, t)
∂V(ζ, t)

∂ζ
− 15

2
∂V(ζ, t)

∂ζ
V2(ζ, t) = 0,

where 0 < α ≤ 1,

(13)

with the initial conditions:

U(ζ, 0) =
ρ2

8

(
1− sech2

(ρζ

2

))
,

V(ζ, 0) = ρ sech
(ρζ

2

)
.

(14)

We write the linear terms in Equation (13) as follows:

L(u) =
∂αU0(ζ, t)

∂tα
,

L(v) =
∂αV0(ζ, t)

∂tα
.

(15)

We write the nonlinear terms in Equation (13) as follows:
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N(U) =
∂3U(ζ, t)

∂ζ3 +
3
2

V(ζ, t)
∂3V(ζ, t)

∂ζ3 +
9
2

∂V(ζ, t)
∂ζ

∂2V(ζ, t)
∂ζ2 − 6U(ζ, t)

∂U(ζ, t)
∂ζ

−6U(ζ, t)V(ζ, t)
∂V(ζ, t)

∂ζ
− 3

2
V2(ζ, t)

∂U(ζ, t)
∂ζ

,

N(V) =
∂3V(ζ, t)

∂ζ3 − 6
∂U(ζ, t)

∂ζ
V(ζ, t)− 6U(ζ, t)

∂V(ζ, t)
∂ζ

− 15
2

∂V(ζ, t)
∂ζ

V2(ζ, t).

(16)

The zero-order equations are:

∂αU0(ζ, t)
∂tα

= 0,

∂αV0(ζ, t)
∂tα

= 0.

(17)

By making use of the inverse operator, we obtain the following solutions:

U0(ζ, t) =
ρ2

8

(
1− sech2

(ρζ

2

))
,

V0(ζ, t) = ρ sech
(ρζ

2

))
.

(18)

We substitute Equation (18) into Equation (16) to obtain:

N[U0(y, t)] =
1

128
ρ5 sech7

( ζρ

2

)(
794 sinh

( ζρ

2

)
− 165 sinh

(3ζρ

2

)
+ sinh

(5ζρ

2

))
,

N[V0(y, t)] = − 1
32

ρ4 sech6
( ζρ

2

)
tanh

( ζρ

2

)(
− 189 + 52 cosh

(
ζρ
)
+ cosh

( ζρ

2

))
.

(19)

We choose the auxiliary functions A1, A2, A3 and A4 as follows :

A1 = C1

(ρ2

8

(
1− sech2

(ρζ

2

)))3
,

A2 = C2

(
ρ sech2

(ρζ

2

))5
,

A1 = C3

(
ρ sech2

(ρζ

2

))6
,

A2 = C4

(
ρ sech2

(ρζ

2

))7
.

(20)

where C1 = 109.0725, C2 = −2.7562, C3 = −9.5065 and C4 = 0.1739
The first-order equations according to the OAFM procedure discussed in Section 3 are:

∂αU1(ζ, t)
∂tα

= −
(

A1N[U0(ζ, t)] + A2
)
,

∂αV1(ζ, t)
∂tα

= −
(

A3N[V0(ζ, t)] + A4
)
.

(21)
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We substitute Equations (19) and (20) into Equation (21) to get:

∂αU1(ζ, t)
∂tα

=
1

8192
ρ6
(

1− 4 sech2
( ζρ

2

))2 (
16C2

(
− 1 + 4 sech2

( ζρ

2

))
−

C1ρ3 sech7
( ζρ

2

)(
794 sinh

( ζρ

2

)
− 165 sinh

(3ζρ

2

)
+ sinh

(5ζρ

2

)))
,

∂αV1(ζ, t)
∂tα

= −C4ρ7 sec14
( ζρ

2

)
+

1
32

C3ρ10
(
− 189 + 52 cosh(ζρ)+

cosh
(
2ζρ
))

sech18
( ζρ

2

)
tanh

( ζρ

2

)
.

(22)

Now, by applying the inverse operator to Equation (22), we can obtain:

U1(ζ, t) =
tα

8192Γ(α + 1)

(
ρ6
(

1− 4 sech2
( ζρ

2

))2 (
16C2

(
− 1 + 4 sech2

( ζρ

2

))
−

C1ρ3 sech7
( ζρ

2

)(
794 sinh

( ζρ

2

)
− 165 sinh

(3ζρ

2

)
+ sinh

(5ζρ

2

))))
,

V1(ζ, t) =
tα

Γ(α + 1)

(
− C4ρ7 sec14

( ζρ

2

)
+

1
32

C3ρ10
(
− 189 + 52 cosh(ζρ)+

cosh(2ζρ)
)

sech18
( ζρ

2

)
tanh

( ζρ

2

))
.

(23)

According to the OAFM procedure, the approximation solutions of U and V has two
components, which can be written as follows:

U(ζ, t) = U0(ζ, t) + U1(ζ, t),

V(ζ, t) = V0(ζ, t) + V1(ζ, t).
(24)

Substituting Equations (18) and (23) into Equation (24) leads to the following approxi-
mation solutions of the system in Equation (13).

U(ζ, t) =
ρ2

8

(
1− sech2

(ρζ

2

))
+

tα

8192Γ(α + 1)

(
ρ6
(

1− 4 sech2
( ζρ

2

))2 (
16C2

(
− 1

+ 4 sech2
( ζρ

2

))
− C1ρ3 sech7

( ζρ

2

)(
794 sinh

( ζρ

2

)
− 165 sinh

(3ζρ

2

)
+ sinh

(5ζρ

2

))))
,

V(ζ, t) = ρ sech
(ρζ

2

)
+

tα

Γ(α + 1)

(
− C4ρ7 sec14

( ζρ

2

)
+

1
32

C3ρ10
(
− 189 + 52 cosh(ζρ)

+ cosh(2ζρ)
)

sech18
( ζρ

2

)
tanh

( ζρ

2

))
.

(25)

The exact result is given as [28]:

U(ζ, t) =
ρ2

8

(
1− sech2

(ρ

2

(
ζ − ρ2t

2

)))
,

V(ζ, t) = ρ sech
(ρ

2

(
ζ − ρ2t

2

))
.

(26)

5. Results and Discussion

Figure 1 showcases the approximate solutions of U(ζ, t) obtained using OAFM at two
different values of ρ. Subfigure (a) demonstrates the solution at ρ = 1.5, while subfigure
(b) presents the solution at ρ = 2. The figure visually represents the behavior of the
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solutions, allowing for a qualitative comparison between the two cases. By observing
the graphs, how the change in ρ affects the solution becomes evident, enabling a deeper
understanding of the impact of this parameter on the system dynamics. Figure 2a,b
represent the approximate solution of U(ζ, t) using OAFM and the exact solution at α = 1,
respectively. The approximate solution of V(ζ, t) using OAFM and the exact solution at
α = 1 and ρ = 0.2 are shown in Figure 2c,d, respectively.

Figure 3 illustrates the approximate solutions of U(ζ, t) using OAFM at three dis-
tinct values of the fractional order α. Subfigure (a) corresponds to α = 0.5, subfigure (b)
represents α = 0.8, and subfigure (c) displays α = 1. This figure provides an excellent
opportunity to study the impact of changing the fractional order on the system’s response.

Figure 4 additionally investigates the influence of the fractional order on the approx-
imate solutions of V(ζ, t) using OAFM. Subfigure (a) showcases the solution at α = 0.5,
subfigure (b) exhibits the solution at α = 0.8, and subfigure (c) displays the solution at
α = 1. The fractional order parameter significantly affects the dynamics and characteristics
of the system. By altering the fractional order, one can observe variations in the stability,
oscillatory behavior, and convergence properties of the Jaulent–Miodek Equation. The
fractional order is a critical factor in determining the system’s response, making it a crucial
parameter to consider when analyzing and modeling the system’s behavior.

Figure 1. The (a) Approximate solution of U(ζ, t) using OAFM at ρ = 1.5, (b) Approximate solution
of U(ζ, t) using OAFM at ρ = 2, (c) Approximate solution of V(ζ, t) using OAFM at ρ = 1.5 and
(d) Approximate solution of V(ζ, t) using OAFM at ρ = 2 of fractional order α = 1.
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Figure 2. (a) Approximate solution of U(ζ, t) using OAFM (b) Exaxt solution of U(ζ, t), (c) Approxi-
mate solution of V(ζ, t) using OAFM and (d) Exaxt solution of V(ζ, t) at α = 1 and ρ = 0.2

To complement the graphical analysis, Tables 1 and 2 provide a quantitative compar-
ison between the approximate solutions obtained using OAFM and the exact solutions
of U(ζ, t) and V(ζ, t) at two different fractional orders, α = 0.8 and α = 1. These tables
present a comprehensive overview of the absolute errors associated with the approximate
solutions, allowing for a detailed assessment of the accuracy of the OAFM approach. By ex-
amining the values in the tables, one can determine the reliability of the OAFM method for
different fractional orders and make informed decisions about its application. The graphical
discussion presented in Figures 1–4 and Tables 1 and 2 provides an in-depth analysis of
the approximate solutions of the coupled fractional-order Jaulent–Miodek equations using
the optimal auxiliary function method (OAFM). These figures and tables offer valuable
insights into the behavior and accuracy of the OAFM approach under various conditions
and parameters. In summary, the graphical discussion and tables comprehensively analyze
the approximate solutions of the coupled fractional-order Jaulent–Miodek equations using
OAFM. These visualizations and quantitative comparisons shed light on the system’s
behavior under various conditions and parameters, facilitating a deeper understanding of
the dynamics and accuracy of the OAFM approach.
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Figure 3. (a) Approximate solution of U(ζ, t) using OAFM at α = 0., (b) Approximate solution of
U(ζ, t) using OAFM at α = 0.8 and (c) Approximate solution of U(ζ, t) using OAFM at α = 1 using
ρ = 0.8.

Figure 4. (a) Approximate solution of V(ζ, t) using OAFM at α = 0., (b) Approximate solution of
V(ζ, t) using OAFM at α = 0.8 and (c) Approximate solution of V(ζ, t) using OAFM at α = 1 using
ρ = 0.8.
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Table 1. Comparison between the approximate solution using OAFM and the exact solution of U(ζ, t)
with their absolute error at fractional order α = 0.8 and α = 1; and t = 0.5 and ρ = 0.2.

ζ OAFM Exact Absolute Error

0.1 −0.015 −0.015 2.72275 × 10−6

0.2 −0.01499 −0.01499 2.78848 × 10−6

0.3 −0.01498 −0.01498 2.85155 × 10−6

α = 0.8 0.4 −0.01497 −0.01497 2.91172 × 10−6

0.5 −0.01495 −0.01495 2.96874 × 10−6

0.6 −0.01493 −0.01493 3.02238 × 10−6

0.1 −0.015 −0.015 2.05729 × 10−7

0.2 −0.01499 −0.01499 2.252 × 10−7

0.3 −0.01498 −0.01498 2.44461 × 10−7

α = 1 0.4 −0.01497 −0.01497 2.63483 × 10−7

0.5 −0.01495 −0.01495 2.82237 × 10−7

0.6 −0.01493 −0.01493 3.00695 × 10−7

0.7 −0.0149 −0.0149 3.18831 × 10−7

Table 2. Comparison between the approximate solution using OAFM and the exact solution of V(ζ, t)
with their absolute error at fractional order α = 0.8 and α = 1; and t = 0.5 and ρ = 0.2.

ζ OAFM Exact Absolute Error

0.1 0.19998 0.19999 1.02× 10−5

0.2 0.19992 0.19996 4.01× 10−5

0.3 0.19982 0.19991 9× 10−5

α = 0.8 0.4 0.19968 0.19984 1.6× 10−4

0.5 0.199501 0.19975 2.49× 10−4

0.6 0.199281 0.19964 3.59× 10−4

0.1 0.19998 0.19999 1.0× 10−5

0.2 0.19992 0.19996 3.99× 10−5

0.3 0.19982 0.19991 8.98× 10−5

α = 1 0.4 0.19968 0.19984 1.6× 10−4

0.5 0.199501 0.19975 2.49× 10−4

0.6 0.199282 0.19964 3.58× 10−4

0.7 0.199023 0.19951 4.87× 10−4

6. Conclusions

In conclusion, we successfully solved the fractional nonlinear system of the Jaulent–
Miodek equation with the Caputo operator using the optimal auxiliary function method
(OAFM). This approach has proven to be effective for tackling challenging fractional
calculus math problems. The findings of this study show how effective and precise the
OAFM is at resolving these kinds of issues. There is a notable agreement between the
approximate solutions obtained by OAFM with the exact solutions, as shown in Figure 2
and Tables 1 and 2. The approach can be improved and used with additional nonlinear
fractional differential equations. As a result, the OAFM is a promising method for handling
various fractional calculus-based problems in science and engineering.

Funding: This project was supported by King Saud University, Deanship of Scientific Research,
College of Science Research Center.

Data Availability Statement: I has read and agree to the published version of the manuscript.

Conflicts of Interest: The author declares no conflict of interest.



Symmetry 2023, 15, 1350 12 of 13

References
1. Alderremy, A.A.; Aly, S.; Fayyaz, R.; Khan, A.; Wyal, N. The analysis of fractional-order nonlinear systems of third order KdV

and Burgers equations via a novel transform. Complexity 2022, 2022, 4935809. [CrossRef]
2. Kbiri Alaoui, M.; Nonlaopon, K.; Zidan, A.M.; Khan, A. Analytical investigation of fractional-order Cahn-Hilliard and Gardner

equations using two novel techniques. Mathematics 2022, 10, 1643. [CrossRef]
3. Mukhtar, S.; Shah, R.; Noor, S. The numerical investigation of a fractional-order multi-dimensional Model of Navier-Stokes

equation via novel techniques. Symmetry 2022, 14, 1102. [CrossRef]
4. Alderremy, A.A.; Iqbal, N.; Aly, S.; Nonlaopon, K. Fractional series solution construction for nonlinear fractional reaction-diffusion

Brusselator model utilizing Laplace residual power series. Symmetry 2022, 14, 1944. [CrossRef]
5. Alqhtani, M.; Saad, K.M.; Weera, W.; Hamanah, W.M. Analysis of the fractional-order local Poisson equation in fractal porous

media. Symmetry 2022, 14, 1323. [CrossRef]
6. Shah, R.; Saad Alshehry, A.; Weera, W. A semi-analytical method to investigate fractional-order gas dynamics equations by Shehu

transform. Symmetry 2022, 14, 1458. [CrossRef]
7. Meng, F.; Wang, D.; Yang, P.; Xie, G.; Cutberto, R.; Romero-Melendez, C. Application of Sum of Squares Method in Nonlinear

H-∞ Control for Satellite Attitude Maneuvers. Complexity 2019, 2019, 5124108. [CrossRef]
8. Meng, F.; Pang, A.; Dong, X.; Han, C.; Sha, X.; Jing, N.; Na, J. H-infinity Optimal Performance Design of an Unstable Plant under

Bode Integral Constraint. Complexity 2018, 2018, 4942906. [CrossRef]
9. Sheng, H.; Wang, S.; Yang, D.; Cong, R.; Cui, Z.; Chen, R. Cross-View Recurrence-based Self-Supervised Super-Resolution of

Light Field. IEEE Trans. Circuits Syst. Video Technol. 2023, in press. [CrossRef]
10. Xu, S.; Dai, H.; Feng, L.; Chen, H.; Chai, Y.; Zheng, W.X. Fault Estimation for Switched Interconnected Nonlinear Systems with

External Disturbances via Variable Weighted Iterative Learning. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 2011–2015.
[CrossRef]

11. Lu, Z.; Gu, D.; Ding, H.; Lacarbonara, W.; Chen, L. Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process.
2020, 136, 106490. [CrossRef]

12. Jaulent, M.; Miodek, J. A Nonlinear Oscillator Based on Josephson Junctions. J. Appl. Phys. 1988, 64, 2856–2861.
13. Lyu, W.; Wang, Z. Logistic Damping Effect in Chemotaxis Models with Density-Suppressed Motility. Adv. Nonlinear Anal. 2023,

12, 336–355. [CrossRef]
14. Jin, H.Y.; Wang, Z. Asymptotic Dynamics of the One-Dimensional Attraction-Repulsion Keller-Segel Model. Math. Methods Appl.

Sci. 2015, 38, 444–457. [CrossRef]
15. Lyu, W.; Wang, Z. Global Classical Solutions for a Class of Reaction-Diffusion System with Density-Suppressed Motility. Electron.

Res. Arch. 2022, 30, 995–1015. [CrossRef]
16. Xie, X.; Wang, T.; Zhang, W. Existence of Solutions for the (p,q)-Laplacian Equation with Nonlocal Choquard Reaction. Appl.

Math. Lett. 2023, 135, 108418. [CrossRef]
17. Zhang, J.; Xie, J.; Shi, W.; Huo, Y.; Ren, Z.; He, D. Resonance and Bifurcation of Fractional Quintic Mathieu-Duffing System. Chaos

2023, 33, 23131. [CrossRef]
18. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The

Netherlands, 2006.
19. Zhang, Y.; Wu, R.; Chen, Y. Multi-Stability and Chaos in a Fractional Jaulent-Miodek System. Commun. Nonlinear Sci. Numer.

Simul. 2018, 61, 109–118.
20. Kumar, M.; Singh, J. Analytical Solution of Nonlinear Fractional Jaulent-Miodek Oscillator Using Adomian Decomposition

Method. Results Phys. 2019, 12, 221–227.
21. Peng, H.; Wang, X.; Wang, T.; Liu, Y.; Wang, J. Fractional Calculus and Its Applications in Viscoelastic Materials. Mathematics 2020,

8, 252. [CrossRef]
22. Belendez, A.; Hernandez, A. The optimal auxiliary function method for solving nonlinear differential equations. Comput. Phys.

Commun. 2010, 181, 1972–1977.
23. Akinyemi, L.; Senol, M.; Osman, M.S. Analytical solutions of the nonlinear Schrodinger equation by the optimal auxiliary function

method. J. Comput. Appl. Math. 2012, 236, 3045–3051.
24. Belendez, A.; Alvarez, M.L. Analytical solution of a nonlinear oscillator by the optimal auxiliary function method. J. Comput.

Appl. Math. 2013, 246, 56–63.
25. Fatoorehchi, H. The optimal auxiliary function method for solving the Korteweg-de Vries equation. Math. Probl. Eng. 2017, 2017,

1–7.
26. Marinca, V.; Herisanu, N. Optimal auxiliary functions method for thin film flow of a fourth-grade fluid down a vertical cylinder.

Rom. J. Tech. Sci. Appl. Mech. 2017, 62, 181–189.

http://doi.org/10.1155/2022/4935809
http://dx.doi.org/10.3390/math10101643
http://dx.doi.org/10.3390/sym14061102
http://dx.doi.org/10.3390/sym14091944
http://dx.doi.org/10.3390/sym14071323
http://dx.doi.org/10.3390/sym14071458
http://dx.doi.org/10.1155/2019/5124108
http://dx.doi.org/10.1155/2018/4942906
http://dx.doi.org/10.1109/TCSVT.2023.3278462
http://dx.doi.org/10.1109/TCSII.2023.3234609
http://dx.doi.org/10.1016/j.ymssp.2019.106490
http://dx.doi.org/10.1515/anona-2022-0263
http://dx.doi.org/10.1002/mma.3080
http://dx.doi.org/10.3934/era.2022052
http://dx.doi.org/10.1016/j.aml.2022.108418
http://dx.doi.org/10.1063/5.0138864
http://dx.doi.org/10.3390/math8020252


Symmetry 2023, 15, 1350 13 of 13

27. Zada, L.; Nawaz, R.; Alqudah, M.A.; Nisar, K.S. A new technique for approximate solution of fractional-order partial differential
equations. Fractals 2022, 30, 2240015. [CrossRef]

28. Alshammari, S.; Al-Sawalha, M.M.; Shah, R. Approximate analytical methods for a fractional-order nonlinear system of Jaulent-
Miodek equation with energy-dependent Schrodinger potential. Fractal Fract. 2023, 7, 140. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S0218348X22400151
http://dx.doi.org/10.3390/fractalfract7020140

	Introduction
	Preliminaries
	Analysis of the Optimal Axillary Functions Method
	Implementation of OAFM 
	Results and Discussion 
	Conclusions
	References

