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Abstract: Shortly after Schrödinger’s wave mechanics in terms of complex wave functions was
published, Madelung formulated this theory in terms of two real hydrodynamic-like equations. This
version is also the formal basis of Bohmian mechanics, albeit with a different ontological interpretation.
A point of criticism raised by Pauli against Bohmian mechanics is its missing symmetry between
position and momentum that is present in classical phase space as well as in the quantum mechanical
position and momentum representations. Both Madelung’s quantum hydrodynamics formulation
and Bohmian mechanics are usually expressed only in position space. Recently, with the use of
complex quantities, we were able to provide a hydrodynamic formulation also in momentum space.
In this paper, we extend this formalism to include dissipative systems with broken time-reversal
symmetry. In classical Hamiltonian mechanics and conventional quantum mechanics, closed systems
with reversible time-evolution are usually considered. Extending the discussion to include open
systems with dissipation, another form of symmetry is broken, that under time-reversal. There are
different ways of describing such systems; for instance, Langevin and Fokker–Planck-type equations
are commonly used in classical physics. We now investigate how these aspects can be incorporated
into our complex hydrodynamic description and what modifications occur in the corresponding
equations, not only in position, but particularly in momentum space.

Keywords: complex quantum hydrodynamics; momentum space; broken time-reversal symmetry

1. Introduction

In 1926, Schrödinger published his communications on wave mechanics [1,2] in terms
of a linear differential equation for a complex wave function ψ(~r, t). Using a polar ansatz
in terms of amplitude and phase of this complex function ψ(~r, t) =

√
ρ(~r, t) exp

( i
h̄ S(~r, t)

)
,

already in the same year Madelung [3] found a reformulation in terms of two real equa-
tions that have close similarity with equations known from hydrodynamics. One is a
continuity equation for the square of the amplitude, interpreted as a probability density
ρ(~r, t) = ψ∗(~r, t)ψ(~r, t), containing a contribution from the phase via a velocity field in a
convection current. The other is a modified Hamilton–Jacobi-type equation for the phase
S(~r, t), containing a contribution from the amplitude via a so-called “quantum potential”,
Vqu, apparently representing a typical quantum mechanical contribution and providing
another coupling between the two equations for amplitude and phase. Madelung consid-
ered Vqu as the origin of “internal forces” of the continuum. Around 25 years later, Bohm
used the same hydrodynamic formulation for his approach to find a deterministic version
of quantum mechanics in terms of hidden variables [4,5]. Although formally equivalent,
the approaches are ontologically totally different. Bohm assumed Vqu to be a characteristic
quantum mechanical potential that establishes a difference between the classical Hamilton–
Jacobi equation and the quantum mechanical version of Madelung. (At first sight this
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seems reasonable, as formally for h̄→ 0 the expression for Vqu (see Section 2, Equation (5))
vanishes, but even for the harmonic oscillator this is not quite correct, as has been shown
by Ling [6].) Concerning the hidden variable aspect, in Bohm’s approach it is assumed
that from the velocity field in the continuity equation via integration a so-called Bohmian
trajectory can be obtained, that is interpreted as a real path in physical space taken by a
really existing quantum particle. The results obtained from Bohm’s version and those from
the conventional formulation that is associated with the Copenhagen interpretation are
both in agreement with experiment (although recently some experiments [7–9] claim to be
able to exclude the existence of hidden variables), therefore, there seems to exist no clear
experimental evidence to confirm which approach is the correct one.

However, there was already early criticism by Pauli [10], pointing out that Bohmian
mechanics is only formulated in position space, therefore, the symmetry between position
and momentum that exists in the classical phase space formulation is missing in Bohm’s
approach. In recent work [11], we were able to show that this symmetry can be achieved if
the hydrodynamic formulation is generalized to complex quantities. On the other hand,
it was also possible to show [12] that the Bohmian trajectories are not real trajectories
in physical space, but have to be considered in a probabilistic context. Nevertheless,
Bohmian mechanics can still provide interesting information for problems such as tunneling
processes and particularly the numerical results can be quite useful.

In this paper, we do not want to enter any ontological discussions, but want to concen-
trate on the hydrodynamic form of the equations of motion, its extension to incorporate
complex quantities, and its generalization to include open systems.

The symmetry between position and momentum, addressed by Pauli, is not the only
relevant one in classical and quantum mechanics. Another important symmetry is the one
under time-reversal (or, according to Wigner, motion-reversal). While the fundamental
equations of classical and quantum mechanics are invariant under time-reversal, daily
experience shows irreversible time-evolution and dissipation of energy (often combined,
but not necessarily always). The question arises, how these phenomena can be incorporated
into the classical and quantum mechanical description. In the conventional approach, the
system of interest is coupled to an environment with a large number of degrees of freedom
(in the limit, infinitely many) and the whole, system plus environment, is considered a
closed Hamiltonian system [13]. This approach not only leads to extensive, cumbersome,
and expensive calculations, but also faces additional problems. In one of the most com-
monly used methods, where the system is coupled to a bath of harmonic oscillators (often
attributed to Caldeira and Legget [14,15], although other authors also followed this line of
thinking), there can show up the problem that the corresponding density operator is no
longer positive definite. This problem can be avoided using a mathematically motivated
extension of the evolution operator that guarantees this positivity [16,17], but in this case,
the physical meaning of the terms that are added is not uniquely determined, but “guided
by intuition” [18]. An approach to minimize the number of external degrees of freedom
has been used by Bateman [19], taking into account only one environmental degree of
freedom that absorbs the energy dissipated by the system of interest. However, the physical
meaning of this external degree of freedom is rather obscure.

Finally, there are the so-called effective methods, that do not take into account any
environmental degrees of freedom but only consider the effect of the environment on the
system of interest. Classical models such as the Langevin equation in the trajectory picture
or, equivalently, Fokker–Planck-type equations in the picture of distribution functions serve
as a basis for these modifications.

There are also approaches to this problem using non-canonical extensions of classical
mechanics with subsequent canonical quantization [20,21], but in this paper we restrict
our discussion to approaches where the canonical variables can be associated with the
physical ones.

These effective approaches usually lead to nonlinear modifications of the time-dependent
Schrödinger equation. In order to find the additional (nonlinear) terms describing the effect
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of the environment, two different types of approaches are frequently taken. One is based on
the Langevin equation, that contains a linear velocity dependent friction force. As criterion
for the definition of the friction term in the Schrödinger equation, it is requested that the
mean value of the negative gradient of the friction term W provides the friction force
proportional to velocity or momentum, i.e., 〈−∇W〉 = −γ〈~p〉 = −mγ〈~υ〉 (with 〈. . .〉 =∫

d~rψ∗(~r, t) . . . ψ(~r, t)). However, this is a very vague request that can be fulfilled by several
different approaches; however, most of them lead to unphysical results [22,23]. A major
problem of these attempts is caused by the fact that they only add a real contribution to
the Hamiltonian, providing the requested friction force for the (then irreversible) Ehrenfest
equation of motion, however, the imaginary part of the corresponding Schrödinger equation
stays unchanged, thus still leading to the reversible continuity equation for the probability
density. An additional imaginary part to the Hamiltonian was obtained by Gisin [24,25],
using a modified derivation of a generalized master equation, but now for a pure state
wave function instead of the density operator. Although the imaginary contribution
leads to a non-Hermitian Hamiltonian, corresponding to a non-unitary time-evolution,
normalizability of the corresponding wave functions can be achieved. However, this
approach leads to a wrong expression for the energy dissipation.

Another alternative starts from the distribution function viewpoint, adding a time-
symmetry-breaking diffusion term to the continuity equation, turning it into a Fokker–
Planck-type equation, in position space called the Smoluchowski equation. This provides
the irreversibility of the time-evolution, but the dissipative aspect is related to the phase
of the wave function. To find the corresponding contribution, a separation of the Smolu-
chowski equation for ρ(~r, t) = ψ∗(~r, t)ψ(~r, t) into two complex conjugate equations for ψ
and ψ∗ is necessary. This cannot be achieved in general, but a specific separation condition
does not only allow this separation, leading to a modified Schrödinger equation with
complex logarithmic nonlinearity, but also provides the contribution from the phase that
leads to the correct friction force. Moreover, unphysical results such as a wrong frequency
for the damped harmonic oscillator or the violation of the uncertainty principle do not
show up in this case. The inclusion of a diffusion term into the equation of motion for
the probability density was later supported by Doebner and Goldin [26] using group
theoretical arguments.

In the classical theory of Brownian motion, the interaction of the system with the
environment is (artificially) divided into a dissipative friction force proportional to velocity
and a stochastic force, vanishing on average. In the effective nonlinear quantum mechanical
models the friction force is related to an additional real contribution to the Hamiltonian.
The additional contribution from an imaginary term to the continuity equation, in our case
the additional diffusion term in the Smoluchowski equation, should, therefore, be related to
the stochastic force. Hence, our extension of the Madelung picture to include open systems
could also be considered in the context of a recent stochastic quantum hydrodynamic
model [27,28]. This model relates vacuum fluctuations to dark matter and, thus, provides
even connections with cosmological models, thus extending substantially the domain of
possible applicability of our approach.

Our nonlinear Schrödinger equation based on the separation of a Smoluchowski
equation for the probability density and its relation to other nonlinear ones will be used to
find modifications of our complex hydrodynamic approach to include effects due to the
interaction with a dissipative environment in position as well as in momentum space.

To make the paper self-contained, in Section 2, the hydrodynamic version of quantum
mechanics according to Madelung and our complex generalization are recapitulated in
position space, as well as its specific form for Gaussian wave packets. An equivalent
formulation in momentum space shows how the corresponding symmetry between position
and momentum can be achieved.

The discussion of the irreversible, dissipative case starts in Section 3 in position
space. The complex logarithmic effective interaction term provides contributions to the
two hydrodynamic equations. These contributions are compared with those from two
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similar approaches, one in terms of an anti-commutator of position and momentum and
another in terms of a modified kinetic energy term. Both also possess exact Gaussian
wave packet solutions and lead to the same physical results as the logarithmic nonlinear
Schrödinger equation. The equivalence in terms of our complex hydrodynamic quantities
will be explained in detail.

In Section 4, the discussion of irreversible, dissipative systems is extended to momen-
tum space. In this case, the formulation in terms of the logarithm of the wave function
does not provide the requested friction force in the expected way, however, the two other
approaches present apparently reasonable alternatives. The consequences for the two
hydrodynamic equations in momentum space are shown and discussed.

Finally, in the conclusions, open questions concerning the logarithmic approach and
the two alternative approaches are addressed.

2. Complex Hydrodynamic Description in Position and Momentum Space
2.1. Position Space

We start our discussion with the time-dependent Schrödinger equation in position
space, and restrict this discussion to one dimension (extension to higher dimensions is
possible), which will be indicated by a subscript “x”.

In position space, the physical position variable is represented by a c-number x, and the
physical momentum variable p by a differential operator, pop = h̄

i
∂

∂x . The corresponding
Schrödinger equation is

ih̄
∂

∂t
ψx(x, t) =

{
− h̄2

2m
∂2

∂x2 + V(x)
}

ψx(x, t) = HLψx(x, t) (1)

where the potential V(x), in principle, can also contain an explicit time-dependence (as
in the case of the parametric oscillator with time-dependent frequency ω(t), leading to a
Hamiltonian that is no longer a constant of motion).

With the polar ansatz,

ψx(x, t) =
√

ρx(x, t) exp
( i

h̄
Sx(x, t)

)
(2)

for the wave function, the complex Schrödinger Equation (1) can be rewritten in terms of
two coupled real hydrodynamic-like equations, the continuity equation

∂

∂t
ρx +

∂

∂x

[
ρx

1
m

∂

∂x
Sx

]
= 0 (3)

and a modified Hamilton–Jacobi equation,

∂

∂t
Sx +

1
2m

( ∂

∂x
Sx

)2
+ V(x) + Vqu,x = 0 (4)

with the so-called quantum potential

Vqu,x = − h̄2

2m

∂2

∂x2
√

ρx
√

ρx
. (5)

For the extension to our complex formulation, we define the complex quantities Fc,
corresponding to physical quantities F with the associated quantum mechanical operators
Fop in the a-representation (in this paper, “a” is position “x” or momentum “p”) according to

Fc =
〈a|Fop|ψ(t)〉
〈a|ψ(t)〉 = FR + iFI. (6)
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In position space, this means for the canonical variables

Xc = x, (7)

Pc =
h̄
i

∂
∂x ψx

ψx
=

∂

∂x
Sx − i

h̄
2

∂
∂x ρx

ρx
= PR + iPI, (8)

where in general the mean value of the imaginary parts vanishes, 〈FI〉 = 0, i.e., the
mean value is completely determined by the real part, 〈Fc〉 = 〈FR〉. (It should be empha-
sized, that this is usually no longer the case if one considers powers of Fc, so in general
〈F2

c〉 = 〈F2
R − F2

I 〉+ i2〈FRFI〉 also has contributions from the imaginary part FI in the real
part of 〈F2

c〉; an example is Vqu,x, that entirely depends on FI).
In terms of the complex variables, the hydrodynamic equations can be rewritten as

∂

∂t
ρx +

∂

∂x

[
ρx

1
m

PR

]
= 0 (9)

∂

∂t
Sx +

1
2m

P2
R + V(x) + Vqu,x = 0 (10)

with the quantum potential in the form

Vqu, x = − 1
2m

[
P2

I − h̄
∂

∂x
PI

]
. (11)

Taking the spatial derivative of (10) leads to the Euler-type equation( ∂

∂t
+

1
m

PR
∂

∂x

)
PR =

D
Dt

PR = − ∂

∂x
(
V(x) + Vqu, x

)
, (12)

i.e., a Newton-type equation for a co-moving observer with the substantial time-
derivative D

Dt .
The time-dependent Schrödinger Equation (1) possesses exact analytic solutions in the

form of Gaussian wave packets if the potential is at most quadratic in the position variable,
particularly for the harmonic oscillator, the parametric oscillator with time-dependent
frequency ω = ω(t) and, in the limit ω −→ 0, the free motion.

In these cases, the wave packet can be written in the form

ψWP, x(x, t) = Nx(t) exp
{ i

h̄

[m
2
C x̃2 + 〈p〉x̃ + Kx(t)

]}
(13)

with x̃ = x− 〈x〉 = x− η(t), 〈x〉 =
∫ +∞
−∞ dx ψ∗x xψx = η(t), 〈p〉 = mη̇.

Gaussian functions are completely determined by their maximum, here 〈x〉 = η(t),
and their width

√
〈x̃2〉 with 〈x̃2〉 = 〈x2〉 − 〈x〉2, and in our case by the time-evolution of

these parameters. The width is connected with the complex coefficient C(t) of the quadratic
term in the exponent of the Gaussian wave packet. Therefore, the dynamics of the wave
packet is completely determined by the two equations of motion for η(t) and C(t), that can
be obtained by inserting the ansatz (13) into Equation (1), leading to

η̈ + ω2η = 0, (14)
d
dt
C + C2 + ω2 = 0. (15)

Equation (15) for the complex quantity C(t) is a nonlinear Riccati equation. Riccati
equations have the property that they can be linearized, in our case to a complex Newtonian
equation formally equivalent to (14) (for further details, see, e.g., [23]). With C = λ̇

λ this
leads to

d2

dt2 λ + ω2λ = 0 (16)
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with complex λ.
Not only can the position uncertainty 〈x̃2〉 be expressed in terms of C = CR + iCI, but

also the correlation of position and momentum uncertainties 〈[x̃, p̃]+〉 (with [ , ]+ =
anti-commutator) and 〈 p̃2〉.

For the following, we need

CR =
1

2m
〈[x̃, p̃]+〉
〈x̃2〉 =

1
2

∂
∂t 〈x̃

2〉
〈x̃2〉 , (17)

CI =
h̄

2m
1
〈x̃2〉 . (18)

In terms of the complex Riccati variable C(t), the complex momentum can be expressed
as

Pc = mC x̃ + 〈p〉 = P̃c + 〈p〉 = PR + iPI = mCR x̃ + 〈p〉+ imCI x̃. (19)

This quantity will be useful for the description of open dissipative systems in position
space, as will be discussed in Section 3

2.2. Momentum Space

In momentum space, the momentum operator is a c-number and the position operator
is represented by the differential operator xop = − h̄

i
∂

∂p . In order to allow comparison with

position space, the oscillator potential proportional to x2 is considered, equivalent to the
kinetic energy, that is proportional to p2. In addition, this choice also guarantees analytical
solutions in the form of Gaussian wave packets in momentum space.

The corresponding Schrödinger equation in (again one-dimensional) momentum
space is

ih̄
∂

∂t
ψp(p, t) =

{ p2

2m
− m

2
ω2h̄2 ∂2

∂p2

}
ψp(p, t), (20)

where now the subscript “p” indicates quantities in momentum space. Using again a polar
ansatz according to

ψp(p, t) =
√

ρp(p, t) exp
( i

h̄
Sp(p, t)

)
(21)

the two real hydrodynamic equations corresponding to the complex Equation (20) are

∂

∂t
ρp +

∂

∂p

[
ρp
(
mω2 ∂

∂p
Sp
)]

= 0, (22)

∂

∂t
Sp +

p2

2m
+

m
2

ω2
[( ∂

∂p
Sp
)2 − h̄2

∂2

∂p2
√

ρp
√

ρp

]
= 0. (23)

In analogy to the quantum potential Vqu, x in position space, one could consider
the term

Vqu,p = −m
2

ω2h̄2
∂2

∂p2
√

ρp
√

ρp
(24)

as a quantum potential Vqu, p in momentum space.
The complex canonical variables in momentum space are now given by

Pc = p (25)

Xc = −
h̄
i

∂
∂p ψp

ψp
= − ∂

∂p
Sp + i

h̄
2

∂
∂p ρp

ρp
= XR + iXI, (26)

again with 〈XI〉 = 0, i.e., vanishing imaginary part, and 〈Xc〉 = 〈XR〉. In terms of the
complex variable, Equations (22) and (23) can be rewritten as
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∂

∂t
ρp +

∂

∂p

[
ρp
(
−mω2XR

)]
= 0, (27)

∂

∂t
Sp +

p2

2m
+ V(XR) + Vqu,p = 0. (28)

The potential term in Equation (28) can be written in terms of XR as

V(XR) =
m
2

ω2X2
R, (29)

which allows us to express the convection term in momentum space in Equation (27) as a
flux connected with a change in time of momentum according to

Ṗ = −mω2XR = − ∂

∂x
V(x)

∣∣
x=XR

. (30)

An attempt to obtain an Euler equation corresponding to Equation (12) does not
make sense, as “x” is not an independent variable in momentum space, therefore, a
derivative with respect to this variable always vanishes. However, we have seen in
Equations (27) and (28), a replacement of V(x) by V(XR) provides reasonable expressions.
Therefore, looking for an Euler equation connected with Equation (28), one can at least
consider the potential term, the force that can be derived from it in terms of XR, and the
corresponding mean value.

In this sense, the negative derivative of V(XR) with respect to XR provides, according
to (30), a force − ∂

∂XR
V(XR) = −mω2XR, and, since 〈XR〉 = 〈x〉, considering the mean

values this is identical with the classical force, i.e., 〈− ∂
∂XR

V(XR)〉 = −mω2〈x〉.
Furthermore, in momentum space, the time-dependent Schrödinger equation, here in

the form of (20), has analytical solutions in the form of Gaussian wave packets. In this case,
they can be formulated as

ψWP, p(p, t) = Np(t) exp
{
− i

h̄

[m
2
( 1
C
) p̃2

m2 + 〈x〉 p̃ + Kp(t)
]}

(31)

with p̃ = p− 〈p〉 = p−mη̇. The purely time-dependent terms Np(t) and Kp(t) are, like
their counterparts in position space, not relevant for the following discussion.

Inserting wave packet (31) into (20) provides the two equations that determine the
time-evolution of the maximum and width of the Gaussian function (31),

d
dt
〈p〉+ mω2〈x〉 = m

(
η̈ + ω2η

)
= 0, (32)

− d
dt
( 1
C
)
+ ω2( 1

C
)2

+ 1 = 0. (33)

The complex Riccati equation (33) for the quantity determining the width of the wave
packet in momentum space can again be linearized via a logarithmic derivative, in this case( 1
C
)
= λ

λ̇
, leading to the same complex linear Newtonian equation

d2

dt2 λ + ω2λ = 0 (34)

as in position space.
In momentum space, the real and imaginary parts of the inverse of C(t) are useful and

can be expressed in terms of the uncertainties, in analogy to (17) and (18), as

( 1
C
)

R =
m
2
〈[x̃, p̃]+〉
〈 p̃2〉 , (35)

( 1
C
)

I = −mh̄
2

1
〈 p̃2〉 . (36)
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Note that
( 1
C
)

R 6=
1
C R and

( 1
C
)

I 6=
1
C I!

In terms of the complex Riccati variable C(t) or its inverse, the complex position can
be written as

Xc =
1
C

p̃
m

+ 〈x〉 = X̃c + 〈x〉 = XR + iXI =
( 1
C
)

R
p̃
m

+ 〈x〉+ i
( 1
C
)

I
p̃
m

. (37)

Next, it will be analyzed how this complex hydrodynamic description can be extended
to also include environmental effects, leading to irreversible time-evolution and dissipation
of energy in position as well as in momentum space.

3. Complex Quantum Hydrodynamics for Open Systems in Position Space

When talking about an open system, we mean a system of interest that interacts with
some environment, also called a reservoir or heatbath. In principle, this is an isolated system
if system plus reservoir and their corresponding degrees of freedom are all considered
explicitly. Usually, the number of degrees of freedom is, due to the environmental ones, too
large to be treated in detail (on the order of 1024) and generally one is not even interested
in the details of the environmental ones (as usually they are averaged out in the end).
Therefore, it appears reasonable to look for alternative descriptions of the dynamics of the
system of interest, where only the effect of the environment on the system enters, but no
details of the interaction with the environmental degrees of freedom. This is already so in
the classical case and leads in the trajectory picture to the Langevin equation that can be
written in the form

η̈ + γη̇ + ω2η = f (t), (38)

where here a harmonic force is considered, but any other conservative force is also possible.
The term−γη̇, which does not occur in the Newtonian equation of motion (14), represents a
damping friction force proportional to velocity η̇ with friction coefficient γ and determines
the long-term evolution of the system. Furthermore, f (t) is proportional to a stochastic
fluctuating force without analytic time-dependence, but with statistical properties, such as a
vanishing mean value of f (t). A physically equivalent description of this situation can also
be given in terms of a one-body distribution function, leading to Fokker–Planck-type equa-
tions, in position space particularly called the Smoluchowski equation, where an additional
diffusion term −D ∂2

∂x2 ρx breaks the time-symmetry of the continuity Equation (3).
Corresponding quantum mechanical models use modifications of the (one-body)

Schrödinger equation. There are different ways to reach this goal, but not all of them
are successful. One group of approaches uses modifications of the classical Lagrange
and Hamilton formalism that supply an equation of motion including the linear velocity
dependent friction force contained in the Langevin equation. This goes beyond the usual
classical formalism by involving non-canonical transformations of position and momentum
variables. Subsequent canonical quantization leads to Hamiltonian operators that are
still linear, but can be explicitly time-dependent. The most popular is the approach by
Caldirola [20] and Kanai [21]. The classical non-canonical transformation, however, requires
a quantum mechanical analogue, influencing the meaning of the wave function. If this
aspect is not taken into account consistently, unphysical results such as the violation
of the uncertainty principle arise. A proper treatment of these approaches is discussed
in [23]. In the following, we want to avoid possible complications due to non-canonical
transformations from the beginning and consider only approaches where physical variables
correspond to canonical ones.

Approaches of this kind usually lead to modifications of the Schrödinger equation
with additional nonlinear terms, W(x, t; ψx). Often these terms are chosen in a way that
their mean value vanishes, which can be achievedf by changing to W̃ = W− 〈W〉. This has
two effects: (1) The mean value of the nonlinear Hamiltonian is still the mean value of the
linear one, HL, i.e., the mean value of kinetic and potential energies, only now calculated
with the solution ψNL of the nonlinear equation. (2) If W is complex or imaginary, the
subtraction of the mean value 〈W〉 still formally allows normalization of the solution ψNL,
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and, thus, the conventional probabilistic interpretation. Therefore, the general form of these
modified Schrödinger equations is

ih̄
∂

∂t
ψNL =

(
HL + W̃

)
ψNL (39)

with 〈W̃〉 = 0 and hence 〈E〉NL = 〈HL〉NL, where the subscript NL indicates that the
mean values are calculated with ψNL, not ψL. The additional term W̃ in the Schrödinger
equation leads to additional contributions to the hydrodynamic equations. The continuity
Equation (3) turns into

∂

∂t
ρx +

∂

∂x

[
ρx

1
m

∂

∂x
Sx

]
− 2

h̄
W̃I = 0, (40)

the modified Hamilton–Jacobi Equation (4) into

∂

∂t
Sx +

1
2m

( ∂

∂x
Sx

)2
+ V(x) + Vqu, x + W̃R = 0, (41)

where W̃ = W̃R + iW̃I.
There are different strategies to find a suitable “friction term” W̃. One of them is based

on the trajectory picture and the corresponding Langevin equation, requesting, according
to Ehrenfest, that the mean values fulfill the classical equation of motion including the
friction force, i.e.,

d
dt
〈p〉+ mω2〈x〉+ γ〈p〉 = 0 (42)

with
γ〈p〉 = 〈 ∂

∂x
W̃〉 (43)

(assuming that the fluctuating force also vanishes when the quantum mechanical mean
value is taken).

However, the requirements (43) that have to be fulfilled by W̃ are so vague that many
approaches can achieve this goal, but most of them show unphysical results in other
respects. Amongst the most frequently used or cited ones are those of Kostin [29] with

W̃Kos =
γ

2
h̄
i

(
ln

ψ

ψ∗
−
〈

ln ln
ψ

ψ∗
〉)

(44)

and Albrecht [30] with
W̃Al = γ〈p〉(x− 〈x〉), (45)

but both provide the wrong frequency for the damped harmonic oscillator, even worse,
since they are real terms, the hydrodynamic equation for the density of this irreversible
process is still the reversible continuity equation.

An improvement concerning the latter criticism had been achieved by Süssmann [31]
using

W̃Sü =
γ

2

[
(x− 〈x〉), p

]
+

(46)

in terms of the anti-commutator [ , ]+.
This term provides a symmetry-breaking contribution to the continuity equation but

still has the wrong frequency for the damped oscillator.
This problem was solved by Hasse [22], combining the approaches of Albrecht and

Süssmann to

W̃Has =
γ

4

[
(x− 〈x〉), (p + 〈p〉)

]
+
=

γ

4
[
x̃, p̃
]
+
+

γ

2
〈p〉x̃ =

1
2

(
W̃Al + W̃Sü

)
. (47)
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The only remaining problem is that 〈WHas〉 6= 0 is possible, but since 〈WHas〉 does not
affect the equations of motion for the maximum and width of the wave packet solutions,
this problem can be resolved, as will be shown below.

A different kind of approach is based on the distribution function picture, here par-
ticularly on breaking the time-reversal symmetry of the continuity equation by adding a
diffusion term. This guarantees irreversibility for this aspect, but does not yet provide the
dissipative friction term in the Ehrenfest equation that is related to the phase of the wave
function. In order to obtain this information, the equation for the density ρx(x, t) has to be
separated into two conjugate complex equations, one for ψNL(x, t), the other for ψ∗NL(x, t).
Without the diffusion term, this separation is possible, as has been shown by Madelung [32]
and Mrowka [33] in their method to derive the Schrödinger equation without making use
of the Lagrange/Hamilton formalism. An attempt to follow their method is not successful
in general, as the diffusion term does not allow this separation. However, one can analyze
if there are particular conditions, especially having Gaussian solutions in mind, where such
a separation is still possible.

It was shown in [34] that such a separation condition for the Smoluchowski equation
is given by

−Dx

∂2

∂x2 ρx

ρx
= γ

(
ln ρx − 〈ln ρx〉

)
, (48)

leading to a nonlinear Schrödinger equation with complex logarithmic nonlinearity (the
logarithmic expression on the right-hand side of Equation (48) shows similarities with
definitions used for quantum entropy, a point that needs further investigation),

ih̄
∂

∂t
ψx(x, t) =

{
− h̄2

2m
∂2

∂x2 + V(x) + γ
( h̄

i
ln ψx − 〈

h̄
i

ln ψx〉
)}

ψx(x, t). (49)

The complex nonlinear term can be written in terms of real and imaginary parts as

W̃SCH =
γ

2
h̄
i

(
ln

ψ

ψ∗
−
〈

ln
ψ

ψ∗
〉)

+
γ

2
h̄
i

(
ln(ψψ∗)− 〈ln(ψψ∗)〉

)
= W̃SCH, R + iW̃SCH, I, (50)

where the real part W̃SCH, R is identical with Kostin’s term (44), the imaginary part iW̃SCH, I, cor-
responding to the diffusion term according to (48), solves all the problems of Kostin’s approach.

The connection between the imaginary part and the equation for the density is clear,
the contribution to the modified Hamilton–Jacobi equation results from the real part,
W̃SCH, R, according to (41). Using the polar form of the wave function, this leads to

∂

∂t
Sx +

1
2m
( ∂

∂x
Sx
)2

+ V(x) + Vqu, x + γ
(
Sx − 〈Sx〉

)
= 0 (51)

Taking the spatial derivative ∂
∂x of Equation (51) and using our complex hydrodynamic

notation with ∂
∂x Sx = PR, one obtains( ∂

∂t
+

1
m

PR
∂

∂x

)
PR =

D
Dt

PR = − ∂

∂x
(
V(x) + Vqu, x

)
+ γPR (52)

with − ∂
∂x W̃R = −γPR and 〈− ∂

∂x W̃R〉 = −γ〈p〉.
The requirement according to Ehrenfest is also fulfilled for the wave packet, which

can be shown by inserting ansatz (13) into the nonlinear Schrödinger Equation (49), leading
for the evolution of the maximum to a Newtonian equation including the friction term,

η̈ + γη̇ + ω2η = 0. (53)

The complex Riccati equation for C(t), determining the evolution of the wave packet
width, is modified by an additional linear term according to

d
dt
C + γC + C2 + ω2 = 0. (54)
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Using again a logarithmic derivative, i.e., C =
˙̃λ
λ̃

with λ̃ = λ exp( λ
2 t), (54) can be

linearized to
d2

dt2 λ̃ + γ
d
dt

λ̃ + ω2λ̃ = 0, (55)

i.e., the same Newtonian equation as (53), but now for a complex quantity.
The connection between CR, CI, and the uncertainties (see Equations (17) and (18))

remains unchanged.
The only known analytical solutions of the time-dependent Schrödinger equation are

Gaussian wave packets. These solutions exist for potentials that are at most quadratic
in the position variable. (An exception is the motion in a magnetic field, where the ap-
pearing terms can also be restricted to fulfill this requirement.) The same also applies to
the nonlinear modifications of the time-dependent Schrödinger equation. Although all
the modifications discussed so far possess this type of solutions, not all of them provide
physically sound results. Our approach, leading to a complex logarithmic nonlinearity
starting from a Fokker–Planck-type equation for the density, shows none of the shortcom-
ings of other approaches. It not only breaks the time-reversal symmetry of the density
equation via introduction of a diffusion term, but it also leads via our separation condition
to an averaged Langevin-type equation with a time-symmetry-breaking friction force and

the correct reduced frequency Ω =
√

ω2
0 −

γ2

4 for the damped harmonic oscillator. In
addition, the (complex) Riccati equation determining the evolution of the wave packet
width is modified by a linear term which, after linearization of the Riccati equation, leads
to a (complex) friction term.

Starting from the Langevin picture, the only approach leading to the same results is the
one of Hasse, however, with the (small) disadvantage that its mean value does not always
vanish. This shortcoming can be cured by subtracting the mean value of Hasse’s friction
term WHas, which does not affect the other above-mentioned results, i.e., one obtains

W̃Has = WHas − 〈WHas〉. (56)

For Gaussian wave packets, this leads to identical results with W̃SCH, i.e.,

W̃HasψWP, x(x, t) = W̃SCHψWP, x(x, t). (57)

In the classical case, the rate of energy dissipation due to the friction force only depends
on the kinetic energy T of the system, i.e.,

d
dt

E =
d
dt

(T + V) = −2γT, (58)

therefore, it seems reasonable that the form of “the friction term should not explicitly
depend on the potential of the problem but somehow be connected with the kinetic energy
of the system” [23].

While “in the derivation of the friction term in position space” in our approach
“the comparison of the diffusion term proportional to ∂2

∂x2 ρx with the logarithm ln ρx was
essential, now the procedure on the level of the complex function ψx can be reversed” [23].
That means, ln ψx(x, t) has to be expressed in terms of ∂2

∂x2 ψx(x, t), “or, more precisely,
W̃SCH in terms of the kinetic energy term, which shall be written as W̃D. Requiring that
the condition

W̃SCHψWP, x = W̃DψWP, x (59)

must be fulfilled, it is possible to express W̃SCH”, [23] with the help of C, in terms of the
kinetic energy (and its mean value) as

W̃D =
γ

C
1

2m
(

p2
op − 〈p2

op〉
)
=

γ

C

( p̃2
op

2m
−
〈 p̃2

op

2m

〉)
+

γ

C 〈p〉
p̃op

m
, (60)



Symmetry 2023, 15, 1347 12 of 17

p̃op = pop − 〈p〉.
This form of the friction term turned out to be valid in position and momentum

space [35] and will, therefore, also be useful in the next section. In position space it can be
written in the form

W̃D =
γ

C

(
− h̄2

2m
∂2

∂x2 −
〈
− h̄2

2m
∂2

∂x2

〉)
. (61)

Since all three versions of the friction term lead to the same results for the Gaus-
sian wave packet solutions, we want to check if a unified formulation in terms of our
complex hydrodynamic quantities is possible, i.e., is there a common way to formulate

W̃c, x =
W̃xψWP, x

ψWP,x
in terms of the relevant complex variable, in position space Pc = P̃c + 〈p〉 =

mC x̃ + 〈p〉 (the subscript “c” will be skipped in the following, only “x” remains to indi-
cate that we consider position space). From the logarithm of the wave packet ψWP, x(x, t),
Equation (13), follows

W̃SCH, x = γCm
2
(

x̃2 − 〈x̃2〉
)
+ γ〈p〉x̃ (62)

which can be rewritten, using x̃ = 1
mC P̃c, in terms of P̃c as

W̃SCH, x =
γ

C

[ 1
2m
(
P̃2

c − 〈P̃2
c〉
)]

+ γ〈p〉x̃. (63)

Looking at the modified Hasse term and replacing p by pop, the complex formulation
leads to

W̃Has, x =
γ

4

([
x̃, P̃c

]
+
−
〈[

x̃, P̃c
]
+

〉)
+ γ〈Pc〉x̂ (64)

=
γ

C

[ 1
2m
(
P̃2

c − 〈P̃2
c〉
)]

+ γ〈p〉x̃,

where 〈Pc〉 = 〈p〉 was used.
Finally, using pop = p̃op + 〈p〉, W̃D, x attains the form

W̃D, x =
γ

C
1

2m

[(
P̃2

c −
〈
P̃2

c
〉)

+ 2〈p〉P̃c

]
(65)

which again turns into (63) for P̃c = mC x̃.
Therefore, all three formulations can be expressed in the same form (63), using our

complex quantity Pc, or P̃c = Pc − 〈p〉, respectively.
The friction force, obtained by taking the negative spatial derivative of W̃c then turns

out to be
− ∂

∂x
W̃c = −

(
γmC x̃ + γ〈p〉

)
= −γPc (66)

where the first term is related to the uncertainties via C and vanishes on average, just like
the stochastic fluctuating force in the Langevin equation. The second term yields via

−γ〈Pc〉 = −γ〈p〉 (67)

the linear velocity or momentum dependent friction force.
In the next section, how far this description of dissipative systems also holds in

momentum space will be analyzed.

4. Complex Quantum Hydrodynamics for Open Systems in Momentum Space

In position space, a conservative force can be derived from a potential V(x) by taking
its negative derivative with respect to space, − ∂

∂x V(x). In certain approaches it was
assumed that the friction force proportional to velocity or momentum can be obtained in a
similar way by taking the spatial derivative of a kind of “friction potential” W̃. In classical
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Hamilton–Jacobi theory, the momentum is the spatial derivative of the action function S.
In Schrödinger’s wave mechanics, he introduced his wave function ψ(x, t) via the action
according to [1]

S =
h̄
i

ln ψ(x, t) (68)

(his first assumption, the coefficient of the logarithm would be h̄, he later on corrected to h̄
i

when he had to accept that ψ is complex.). Therefore, our friction term in Equation (49),
together with Schrödinger’s definition (68), leads to the desired result for the friction force.
In momentum space, the situation is different. Since now momentum is the independent
variable, a derivative with respect to the position x of an action depending on p in the
quantum mechanical case would make no sense (a derivative with respect to p would
provide a positive “force” proportional to x).

One could still think about a derivative with respect to XR, as in the case of the
conservative potential force in momentum space, but looking at the definition (31) of
ψWP, p(p, t) already shows that a resulting force would have the wrong, positive sign.
Therefore, definitions of the friction term using the action via ln ψp seem to be problematic
in momentum space.

There still remain the two other formulations in terms of x and p and the corresponding
operators and mean values, that are in position space equivalent to the formulation using
the action, and to each other.

In momentum space, the position is represented by the differential operator Xop = − h̄
i

∂
∂p .

Considering the modification (56) of Hasse’s friction term, one replaces x by this differential
operator and uses the definition of our complex hydrodynamic quantities, then x̃ can be
replaced by X̃c, leading to the modified Hasse friction term in the form

W̃Has, p =
γ

2
(

p̃X̃c − 〈 p̃X̃c〉
)
+ γ〈p〉X̃c (69)

=
γ

2
(

p̃X̃R − 〈 p̃X̃R〉
)
+ γ〈p〉X̃R

+ i
γ

2
(

p̃XI − 〈 p̃XI〉
)
+ iγ〈p〉XI

where XI = X̃I, as 〈XI〉 = 0 due to its definition (see Equation (26)). Furthermore, in this
form, a derivative ∂

∂x does not make sense, however, as in the case of the conservative
potential, a derivative ∂

∂XR
= ∂

∂X̃R
is possible, leading to

− ∂

∂XR
W̃Has, p = −γ

2
p̃− γ〈p〉 with

〈
− ∂

∂XR
W̃Has, p

〉
= −γ〈p〉. (70)

The mean value of the first term of the force vanishes, like the stochastic fluctuating
force in the Langevin equation, the second term is identical with the mean value of the
force and represents the classical friction force linear in momentum.

The friction term (69) causes additional terms in the hydrodynamic equations. For the
modified Hamilton–Jacobi equation, this leads to

∂

∂t
Sp +

p2

2m
+

m
2

ω2X2
R + Vqu, p + γ

(1
2
[
p̃X̃R − 〈 p̃X̃R〉

]
+ 〈p〉X̃R

)
(71)

with a conservative potential term V(XR) =
m
2 ω2X2

R, depending on the real part XR of Xc.
A negative derivative with respect to XR provides

− ∂

∂XR

(
V(XR) + W̃Has, p, R

)
= −mω2XR − γ

(1
2

p̃ + 〈p〉
)

(72)
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which supplies on average the correct expressions for the classical conservative and dissi-
pative forces, 〈

− ∂

∂XR

(
V(XR) + W̃Has, p, R

)〉
= −mω2〈x〉 − γ〈p〉. (73)

The continuity equation for ρp gains, according to (40), an additional term − 2
h̄ W̃Iρp,

where W̃I can be obtained from W̃Has, p in our complex formulation as

W̃Has, p, I =
γ

2
h̄
2

[
p̃

∂
∂p ρp

ρp
−
〈

p̃
∂

∂p ρp

ρp

〉]
+

h̄
2

1
ρp

(
γ〈p〉 ∂

∂p
ρp
)

(74)

leading to

−2
h̄

W̃Has, p, Iρp = −γ〈p〉 ∂

∂p
ρp −

γ

2
ρp

(
p̃

∂
∂p ρp

ρp
−
〈

p̃
∂

∂p ρp

ρp

〉)
. (75)

The first term on the right-hand side supplies an additional friction contribution to the
drift term, i.e., it changes the conservative contribution Ṗ = −mω2XR (see Equation (30)) into

Ṗ = −mω2XR − γ〈p〉. (76)

For the Gaussian wave packets that we consider, the second term in (75) can be related

to a diffusion term, using p̃
∂

∂p ρp

ρp
= − p̃2

〈 p̃2〉 and
〈

p̃
∂

∂p ρp

ρp

〉
= −1, leading to the modified

(Fokker–Planck-type) equation for the density ρp(p, t),

∂

∂t
ρp +

∂

∂p

[
ρp
(
−mω2XR − γ〈p〉

)]
+

γ

2
〈 p̃2〉 ∂2

∂p2 ρp = 0. (77)

The drift term contains (at least on average) the correct contribution from the force,
the diffusion term is analogous to the one in position space, only the diffusion coefficient
Dx = γ

2 〈x̃2〉 is replaced by Dp = γ
2 〈 p̃2〉; however, the sign of the diffusion term is different

from the expected one. The reason for this needs further investigation.
In position space, for Gaussian wave packets the friction term using the modified

kinetic energy operator provides the same results as the modified Hasse term W̃Has. The
connection between these two approaches in momentum space can be shown, using again
our complex hydrodynamic quantities.

In momentum space, pop is just the c-number p and 1
mC p̃op turns into 1

mC p̃ = X̃c.
Therefore, the friction term (60) can be written as

W̃D, p =
γ

C

[ 1
2m
(

p̃2 − 〈 p̃2〉
)]

+ γ〈p〉 1
mC p̃ (78)

=
γ

2
(

p̃X̃c − 〈 p̃X̃c〉
)
+ γ〈p〉X̃c = W̃Has, p = W̃c, p.

Therefore, these two formulations of the friction term are equivalent in momen-
tum space, at least for Gaussian wave packets. Using these terms in the modified time-
dependent Schrödinger equation in momentum space leads to the correct equations of
motion for the maximum and width of the Gaussian wave packet. The resulting equations
of motion for the maximum and width are then

d
dt
〈p〉+ γ〈p〉+ mω2〈x〉 = m

(
η̈ + γη̇ + ω2η

)
= 0 (79)

and
− d

dt

( 1
C

)
+ γ

( 1
C

)
+ ω2

( 1
C

)2
+ 1 = 0. (80)
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The equation for the maximum is obviously correct. Equation (80), determining the
time-evolution of the uncertainties, can be linearized to the same equation as in position

space using
(

1
C

)
= λ̃

˙̃λ
, i.e.,

¨̃λ + γ ˙̃λ + ω2λ̃ = 0. (81)

As the time-evolution of the uncertainties is independent of the representation in
which it is formulated, and both Riccati equations can be linearized to the same complex
Newtonian equation (81), the time-evolution of the uncertainties in momentum space
derived from W̃Has, p and W̃D, p should be correct.

5. Conclusions

In Madelung’s hydrodynamic formulation of quantum mechanics, one complex equa-
tion, Schrödinger’s wave equation, is replaced by two real ones with formal similarity to
hydrodynamic equations, a continuity equation and a modified Hamilton–Jacobi equation
with an additional term depending on the amplitude of the wave function. Taking the
spatial derivative of this equation provides an Euler-type equation, i.e., a Newton-type
equation with a substantial time-derivative, describing the evolution for a co-moving
observer, including a contribution from the additional (quantum potential) term.

An extension to momentum space is possible in terms of complex quantities, obtained
by application of the quantum operators on the complex wave function in momentum
space. Furthermore, also in momentum space, the complex wave equation can be replaced
by two hydrodynamic equations, again a continuity equation and a modified Hamilton–
Jacobi equation.

The continuity equations in both spaces contain a drift term represented by the applica-
tion of the derivative of a flux term with respect to the corresponding independent variable.
The flux term is given by the product of the time-derivative of the relevant variable and
the probability density in the respective space. In position space, this time-derivative is
expressed in terms of PR, the real part of the complex hydrodynamic momentum variable
Pc in position space; in momentum space in terms of XR, the corresponding real part of the
complex variable Xc in momentum space. The mean values of the expressions representing
the time-derivatives correspond to the classical expressions in the respective flux terms in
classical phase space.

The interaction with an environment causes irreversibility of the dynamics, which
can be taken into account via an additional diffusion term in the continuity equation, and
dissipation of energy, which can be taken into account via a friction force proportional to
the velocity or momentum, which can be taken into account by an additional term in the
modified Hamilton–Jacobi equation that leads to this friction force in the corresponding
Euler equation.

In position space, three possible formulations for (nonlinear) friction terms were
discussed, all providing the same equations of motion for the mean values (including the
friction force) and, thus, for the maximum of the analytic Gaussian wave packet solution,
as well as a modified complex Riccati equation that determines the time-evolution of the
wave packet width. These terms not only provide the same (correct) equations of motion
for the maximum and width of the wave packet solutions, but even more generally, can be
expressed in equivalent form in terms of the complex hydrodynamic quantities in position
as well as (partially) in momentum space.

This can be shown in position space by replacing x̃ with the complex conjugate variable
via x̃ = 1

mC P̃c, leading to



Symmetry 2023, 15, 1347 16 of 17

W̃c, x = γCm
2
(

x̃2 − 〈x̃2〉
)
+ γ〈p〉x̃ (82)

=
γ

4

([
x̃, P̃c

]
+
−
〈[

x̃, P̃c
]
+

〉)
+ γ〈Pc〉

1
C

P̃c

m

=
γ

C

( P̃2
c

2m
−
〈 P̃2

c
2m
〉)

+
γ

C 〈Pc〉
P̃c

m

=
γ

C

( P2
c

2m
−
〈 P2

c
2m
〉)

showing the connection between the three different approaches.
In momentum space, the logarithmic ansatz appears not to be sufficient, but the other

two approaches again provide the desired equations of motion for the maximum and
width of the wave packet solution in momentum space. That the equation of motion for
the maximum is correct is obvious. That the Riccati equation for the wave packet width
is correct follows from the fact that it can be linearized to the same complex Newtonian
Equation (55) including the friction force as in position space. Since the time-evolution of
the uncertainties should not depend on the representation in which it is described, this
proves that the momentum space version of the Riccati equation is as correct as the one in
position space.

From the friction term W̃c, p in momentum space follow two additional contributions
to the continuity equation. One is a friction force in the convection term, leading, in analogy
to the classical case, to a term correctly representing the time-derivative of momentum
including friction. The other contribution is an additional diffusion term with diffusion
coefficient Dp = γ

2 〈 p̃2〉.
In the modified Hamilton–Jacobi equation, additional terms depending on XR are

provided by W̃c,p. Treating them in the same way as the contribution from the conservative
potential in momentum space allows us to define a force via negative derivative with
respect to XR, ∂

∂XR
, supplying a force that on average is identical with the sum of classical

potential and friction forces.
Again, the two friction terms W̃Has, p and W̃D, p not only supply the correct equations

of motion for the wave packet maximum and width, but also can be expressed in the same
form in terms of our complex hydrodynamic quantities in momentum space. For this
purpose, p̃ is replaced by p̃ = mCX̃c, showing that the two approaches are related via

W̃c, p =
γ

C

( p2

2m
−
〈 p2

2m
〉)

(83)

=
γ

C

( p̃2

2m
−
〈 p̃2

2m
〉)

+ γ〈p〉X̃c

=
γ

4

([
X̃c, p̃

]
+
−
〈[

X̃c, p̃
]
+

〉)
+ γ〈p〉X̃c

= γCm
2

(
X̃2

c −
〈
X̃2

c
〉)

+ γ〈p〉X̃c

Therefore, to transition from position to momentum space means to replace x̃ or p̃
by the complex hydrodynamic variable in the canonical conjugate space, i.e., x̃ ←→ P̃c

m in
position space, p̃

m ←→ X̃c in momentum space.
There still remain a few open questions: (1) Why is the logarithmic ansatz connected

with the action not providing the desired result in momentum space? (2) Why does the
diffusion term in momentum space have the wrong sign? Answers to these questions are
probably not trivial, but may supply further insight into the problem. Therefore, this will
be a topic of our future investigations.
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