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1. Introduction

Many systems exhibit natural symmetry, such as chemical, physical, and biological
systems. It is well known that stochastic differential equations play an important role in
explaining some symmetry phenomena (see [1-3]). Additionally, we know that stochastic
differential equations are mathematical tools widely used to simulate and model stochastic
processes. Recently, more in-depth research has been conducted on the theory and applica-
tion aspects of these equations to adapt to more complex systems, such as chemical reaction
networks, atmospheric environments, and financial markets; readers can refer to the papers
[4-7] for more information.

In 1968, Khasminskii [8] extended the averaging principles for ODEs to the case of
stochastic differential equations (SDEs). Since then, the averaging principles for SDEs have
found applications in many areas of science and engineering, including fluid dynamics,
control theory, and climate modeling. Many people have devoted their efforts to the study
of averaging principles for SDEs, for example, see [9-11].

As we all know, compared with integer-order derivatives, fractional-order derivatives
provide a magnificent approach to describe the memory and hereditary properties of
various processes. Thus, fractional differential equations are more accurate and convenient
than integer-order ones. The numerical solution of fractional-order nonlinear systems is
an active research area with ongoing developments and improvements in the different
numerical algorithms and techniques used [12-14].

With the development of fractional calculus, the averaging principles for fractional
stochastic differential equations (FSDEs) have become a widespread concern [15-17]. One
notable approach of research is the fractional averaging principle, which extends the
classical averaging principle to FSDEs. Another approach of research is the stochastic
averaging principle, which combines averaging methods with stochastic calculus. Overall,
research into averaging principles for FSDEs is still ongoing, and there is much to be
explored in terms of developing new methods and exploring their applications.
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Recently, Wang and Lin [18] extended the averaging principle of the following frac-
tional stochastic differential equations (FSDEs)

{ Cgﬁ;[w) —h(t,x(t)] = f(t,x(t) + g (£, x(t)) 4G, te]=[0,T], )
X = Xo,

in the sense of mean square (L2 convergence) to L¥ convergence (p > 2), which generated
some works on the averaging principle for FSDES [19-21].

The periodic averaging method for impulsive conformable fractional stochastic dif-
ferential equations with Poisson jumps are discussed in [22] by Ahmed. For some recent
works on Hilfer fractional order stochastic differential systems, we refer to [23-26]. In [27],
Ahmed and Zhu investigated the averaging principle for the following Hilfer fractional
stochastic delay differential equation with Poisson jumps in the sense of mean square

Dp™x(t) = R(t, x (1), x(t = 7)) + ot x(8), x(t - 7)) %,
+ [, h(t, x(t), x(t — T),0)N(dt,dv), te]=(0,T],

x(t) = ¢(t), —-T<t<0, 2)

15V 2 (0) = 9(0).

In [28], Almeida generalized the definition of the Caputo fractional derivative by
considering the Caputo fractional derivative of a function with respect to another function
1. Since then, there have been so many papers involving the 1-Caputo fractional derivative,
see [29-32]. Recently, there have been many works on SDEs with Poisson jumps, see, for
example, [33-35] and the references therein. However, to the best of our knowledge, the
averaging principle for the {-Capuo fractional stochastic delay differential equation with
Poisson jumps in the sense of L¥ convergence has not yet been researched in the literature.
In the present paper, motivated by the above-mentioned works, we study the following
y-Caputo fractional stochastic delay differential equation with Poisson jumps

CDYY[x(t) — h(t, x(8)] = f(t,x(t), x(t —1))+o(t, x( ), x(t— 1)),
+ [y &(t,x(t), x(t — 7),0)N(dt,dv), te]=(0,T], @)
x(t) = ¢(t), —Tt<t<0,

where CDg'lp is the left -Caputo fractional derivative with 0 < a < 1and ¢ € C!(]a, b))
is an increasing function with ¢/(t) # 0 forall t € [0, T], | = (0, T|, x € R" is a stochastic
process, i1, f : [ x R" xR" - R", 0 : [ x R* xR" = R"™" and g: ] x R" x R" x V. — R".
Let (Q), F, P) be a complete probability space equipped with a filtration (F);>0 satisfying
the usual condition. Here, B; is an m-dimensional Brownian motion on the probability
space (Q), F, P) adapted to the filtration (F¢);>0. Let (V,®, A(dv)) be a o-finite measurable
space, given the stationary Poisson point process (p;)>o, which is defined on (Q, F, P)
with values in V and with the characteristic measure A. We denote by N(t,dv) the counting
measure of p; such that N(t,0) := E(N(t,0)) = tA(O) for @ € ®. Define N(t,dv) :=
N(t,dv) — tA(dv), and the Poisson martingale measure is generated by p; .

In this paper, we prove that the solution of the averaged neutral SFDDEs with Poisson
random measure converges to that of the standard one in L” sense. The main contributions
and advantages of this paper are as follows:

(i) For the first time in the literature, the averaging principle for ¢-Capuo fractional
stochastic delay differential equations with Poisson jumps is investigated.

(if) The fractional calculus, stochastic inequality, and Holder inequality are effectively
used to establish our result.

(iii) Our work in this paper is novel and more technical. Our result has greatly
promoted and extended the main result of [18].

This paper will be organized as follows. In Section 2, we will briefly recall some
definitions and preliminaries. Section 3 is devoted to obtaining an averaging principle for
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the solution of the considered system (3). Additionally, a numerical simulation example is
provided to illustrate our main result. Finally, the paper is concluded in Section 4.

2. Preliminaries

In this section, we recall some basic definitions and lemmas, which are used in the
sequel.

Definition 1 ([36]). Let a > 0, f be an integrable function defined on [a, b] and € C*([a, b]) be
an increasing function with ¢’ (t) # 0 for all t € [a, b]. The left y-Riemann-Liouville fractional
integral operator of order « of a function f is defined by

VA0 = r(la) [ @0 -y f(s)as. ®

Definition 2 ([28,36]). Letn —1 < a < n, f € C"([a,b]) and p € C"([a, b]) be an increasing
function with ¢'(t) # 0 for all t € [a,b]. The left Y-Caputo fractional derivative of order o of a
function f is defined by
SO = () )
_ 1 f o n—a—1 ¢[n] !
= Forma L, WO e (s ©)

where n = [&] + 1 and f"(t) := (ﬁ%)nf(t) on [a, b].

In the following, we will give some properties of the combinations of the fractional
integral and the fractional derivatives of a function with respect to another function.

Lemma 1 ([28]). Let f € C"([a,b]) and n — 1 < a < n. Then, we have
W EDFYal () = (1)
n—1 rlk](,+
e ey — £(r) = Y L) o) — p(an)t
@ YDA = 10 - T T (@)

In particular, given « € (0,1), one has
;YD = £(t) - f(a),

To study the averaging method of Equation (3), we impose the following conditions
on data of the problem.
(H1) If |h(0,¢(0))| < oo, t € [0, T] and for all x,y € R", a constant C; € (0,1) exists
such that
Ih(t,x) — h(t,y)| < Cilx — 1.

(H2) For any x1, x2,¥1,¥2 € R" and t € |, two constants Cy, C3 > 0 exist such that
|f(t x1,y1) = f(Ex2,y2) |7V |o(t, x1,y1) — o (8, x2,y2) [P

V/V 1g(t, x1,1,0) — §(t, x2,12,0)[PA(dv) < C§(|x1 — x2|” + |y1 — y2|),
and
Lf(t x1,y1)IP Vo (t, x1,y1)|P Vv /V (£, x1,y1,0)[PA(dv) < CL(1+ [x1]P + [y1]P).

According to Lemma 1 and [37], an R"-value stochastic process {x(t), —t < t < T} is
called a unique solution of Equation (3) if x(t) satisfies the following :
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Po — (0, o) + h(t, x(t)) + rla) /Ot(tp(t) — p(s)) 1 () (s, x(s), (s — T))ds
x() = i @) — () Y (5)ols, x(s),x(s — 7))dBs ©)
7 Jo (1) = 9())* 19/ (s) [, (5, x(s), x(s — 7),0)N(ds,dv), te€],

¢(t), te[-r0],
where ¢o = ¢(0).

For each t € |, we consider the standard form of Equation (6)

t
e(t) = g0~ h(0,90) + h(txe(6) + 3 [ 0(0) = (e 9/ (F 5, xe(e) xels )
t
e [0 = 9o Y ol xe(s), mels = )
F2E 0 9 6) [ 805, 3e(s),xels =), 0)N (s, o), te ] 7)
F(“)OIP P(s P (s Vgs,xes,xes T),0 s,dv), ,
where € € (0, €] is a positive small parameter with €y being a fixed number.
Consider the averaged form, which corresponds to the standard form (7) as follows:
t -

Belt) = 9o — (0, ¢0) + it Yet) + 5 [ 0(E) 9l (5)F(9e(s),yels — )

+r\(f) /Ot(ll](f) — ()" ()2 (ye(s), ye(s — 7))dBs

S [ WO -9 V6 [ §els)vels 1), 0N s o), te o

where f: R" x R" — R", 5 : R" x R" — R"™"™, and § : R" x R" x V — R" satisfying the
following averaging condition :

(H3) Forany T; € [0, T], x,y € R" and p > 2, a positive bounded function S(-) exists
such that

1 /1 - 1 /1
_ _ p _ 0 p
= [ ey~ Fylary o [Fottxy) - o)

v [ () letexwo) - gl olPatao) Yat < BT+ 117 + b7,
and limr, o B(T1) = 0.
Lemma 2. Suppose that (H2) and (H3) hold. Then, for T; € (0, T] we have
0(x, )" < C4(1+[x|P + [y|P) and /V 18(x,y,0)[PA(do) < Co(1+ [x|7 +[y]7),
where C; = 2P~1(B(Ty) + CY).

Proof. Using (H2), (H3) and Jensen’s inequality, we obtain

— 2p71 Tl _ 277*1 Tl
o)l < S [ty —otbxy)Par+ S [Tlottxy)lar

<2PIB(T) (1 + x| + [y]P) + 2P CE (1 + [xfP + [ylP)
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=21 (B(Ty) + C) (1 + |x[” + [ylP).
Similarly, we can prove that
], 18e,y, ) PA(do) <277 (B(Ty) + CE) (1 + [x]” + lyl?).
O

Lemma 3 ([38]). If p > 2 and a,b € R", then for any k € (0,1), one has

s
1=kt

P
la+bJr < 14

S o1 +

Lemma 4 ([39,40]). Let ¢ : R4+ x V — R" and assume that

t
/ / |p(s,0)|PA(dv)ds < oo, p > 2.
o Jv
Then, Dp > ( exists such that

14
E( sup >
0<t<u
gl%{E(AuAJM&MFAMw%)g+E%TAJMawVAMMh}.

Lemma 5 ([41]). Let u, v be two integrable functions and g be continuous defined on domain [a, b].
Let ¢ € Cl[a, b] be an increasing function such that ' (t) # 0, Vt € [a, b]. Moreover, assume that

/Ot/vq)(s,v)N(ds,dv)

(1) u and v are nonnegative, and v is nondecreasing;

(2) g is nonnegative and nondecreasing.
If
u(t) < o(t) +g(f)/a (D) () — ()" u(r)dr,
then
u(t) < o(t) Ea(g(OT (@) (p(t) —p(a))®), vt € [a,b],
where Ey is the Mittag—Leffler function.

3. Main Results
Theorem 1. Assume that (H1)-(H3) are satisfied. Then, for a given arbitrary small number 6 > 0,

p=21<a<lorp >2andmax{p—;1,%72} <a<1l,M>0¢€ €(0eandy e (0,1)
exist such that
E( sup  |xe(t) —]/e(f)\”> <9, )
te[—t,Me™]

forall e € (0,€1].

Proof. If p = 2, it is easy to prove that (9) holds by using the similar method as in [27]. In
the following, we will only consider the case p > 2. From Equations (7) and (8), we obtain

Xe(t) = ye(t) = h(t,xe(t)) — h(t, ye(t))
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*ﬁ ./ot(‘”” = ()" () [F (s, xe(s), xe (s = 7)) = F(ve(s), ye(s — 1)]ds
+rf) @0 =960 Y Ol xe(5) x5 — 1)) — 0w, el — ),
S [0 =906 [ gl 3e(0)xels - 0),0)

—3(xe(s), xe(s — 1),v))|N(ds, dv).
Choosing k = C; in Lemma 3, using (H1) and the following elementary inequalities:
ja+b” <2771 (jalP +[b]7), |a+b+clP <3P (|al” +[b]" +|c|P), (10)
we obtain
[xe(t) —ye(t)P < Calxe(t) —ye(t)[”

3p—lep
+ -1
i Cy Ty

p

/Ot(llf(f) = ()" Y (5)[f (5, %e(5), xe (s = 7)) = F(ye(s), ye(s — 7))]ds

3r-leh p

ooy Tar

/Ot(lp(f) = ()" (5)[o(s, xe(s), xe(s = 7)) = 0(ye(s), ye(s — 7))]dBs

3r-leh t 1
Fa e o WO O ) [ I8 xels)xels — 1),0)

P

—g(xe(s), xe(s — 1),0))|N(ds,dv)| . (11)

For any t € [0, u] C [0, T], taking the expectation on both sides Equation (11), we have

IE( sup [xe(t) — ye(f)|p>

0<t<u

)
)

3]0—16;7 g a—1 ./ r
S A-aym@p o 2P /O(l/)(f) — ()" P (s)[f (s, xe(s), xe(s = 1)) = f(ye(s), ye(s — 7))]ds

0<t<u

3p_1€% ! a—1_./ _
tazeymap | 2P /0 ((t) = ()" (s)o (s, xe(s), Xe(s — 7)) — T (Ye(s), ye(s — T))]dBs

0<t<u

-1 g . .
e (é‘f& [0~ 9 6) [ a6 xe(5), (s - ), 0)
)
=hL+DL+ 1. (12)
)
)

—g(xe(s),xe(s — 7),0))]N(ds,dv)

Applying Jensen inequality, we obtain

6P—ler
L < VE( sup

Tt s | [0 =90 Y O xe(5), 5els = 7)) = Fls,ve(s) vels — )l

@0 = ) P L) vels = 00) = Flyels) wels = 7))

6P*1€P ]E
+—— su
(1= C)PT (@) \oork,
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=111 + L. (13)

Thanks to the Holder inequality and (H2), we obtain

eP—lep u p-1
<
In < (1= C)T ()7 (/0 1ds)

‘E< sup /Ot(ll)(u) = ()PP (5)P|f (s, % (5), xe(s = T)) = F(5,ye(s), ye(s —T))Ipd5>

0<t<u

6P—1ep

< - = yup-lgp-1cP
= (1—C1)P1"(rx)Pu KPT2C,

E <OS<1;§ /Ot(lP(u) = ()PP (5 Ixe(5) = ye(s) [P + [xe(s — 7)) = yels — T))I”]d5>

E( sup |xe() y€(9)|p>

0<0<s

< anerur ["(p(u) —p(s)" Ny o)

ds, (14)

+E< sup |xe(0 —7) —ye(0 — T)|p>

0<6<s

6P—1cPgr-1
where A1 = W and K = sup;c(y P/ (t).

Applying the Ho6lder inequality, we obtain

6P—lep u iy o NPT
ha < e U 000 = 9(e) Ty )

(sup / |f(s,ye(s ye(s—f))—f(ye(S),ye(s—T))l”ds) (15)

0<t<u
Since
u ( n L 1)10 1
| = w7 d YY) (e ds
SN 4/ (5)ds
_kiP™ ap-l
= k7 Ly~ plo) (16)
we have by (15), (16), and (H3) that
Iy < Avpe? (p(u) — 9(0)) ', (17)
where,
6K p—1\'"
o 35 (58 ) (-0

here, ||| .(j0,u)) = SuPsepo,u) IB(E)]-
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For the second term I, we have

/Ot(llf(t) = ()" () [0 (s, xe(s), xe(s = 7)) — (s, ye(s), ye (s — 7)) ]dBs

p)
n 6P lea - p
—_— Ssu
(1= CPT(@)? il

= I + Ip. (18)

In view of the Burkholder-Davis-Gundy’s inequality, Holder’s inequality, and Doob’s
martingale inequality, a constant C,, > 0 exists such that

< O o
ey — su
(T—CPT(@)P  \ ot

[0 = 9 (s, el vels = 1)) — 0w, vels — )

14

b1 < G EyT ey Cfﬁf” (/ (9 e Zw>2|a<s,xe<s>,xe<s—r>>—a<s,ye<s>,ye<s—r>>\2ds)2

—1 "
< u_%)ﬁf’we?ug-%(/o (p() = 9(9) Py (5)7

Jols 7(s), xe(s = 7)) = 015, ve(s)wels = )P )
-1 u
< ettt B ([ - o) e
[(s) = Yo 6) P+ (s = ) = el = )Pl

< Aperus! /O C(p(u) — ()@ VP (s) |[E <OS<‘?Z |xe(6) — ye<e>|P>

+E| sup |xe(0—7T) —ye(0—1)|F | |ds, (19)
0<6<s
-1 1P
where Ay = o GRG

(1=C)PT(a)?

Since « > ijl, we haveap — p+1 > 0. Applying Lemma 2 and an estimation method
similar to Equation (19), we obtain

12P71C, kP~ " a=1)p 1
I < we”‘z 1'E(/O ($(u) = p(s) Py (s)

(o (s, ye(s), ye(s = )P + [0 (ye(s), ye(s — T))I”)d5>

P
2

< Aperur ™ ((u) — p(0) @D, (20)

[SAS]

where

12P71C,KP~1(C + Cy)

A2 = TP lap — p+1)

1 +E< sup |y€(t)|’”> —i—IE( sup |ye(t— T)")]-
0<t<u 0<t<u

Next, we deal with the third term. Similar to the method used in (18), we have

| @0 =9 1) [ 8l xe(s), xels =), 0)

Lo O o
3 e Su
(1= C)PT(@)? | oorbs
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)
[ @) =96 [ 8654, vels = 1),0)
)

= I31 + I5. (21)

—8(5,Ye(s), Ye(s — 7),0)|N(ds, dv)

4 6/t E
— su
(T—CPT(@)P  \ gore,

—8(Ye(s), ye(s — 7),0)IN(ds, dv)

From Lemma 4, one has

= O_QW;DP{E(/O (p(u) —(s))* 2y / 18(5, xe(8), xe(s — 7),0)
—g(5,e(s), ye(s — r»v)FA(dv)ds) ’

([ 00 =9Iy [ gl mels) vl - ),0)

g5, ¥e(s), yels — r>,v>|m<dv>ds) } @)

By using the Holder inequality and (H2), we obtain

N

E(./(;”w(u)w(s))” 2 / 125, xe(s), xe (s — 1), 0) — g(s,ye@,ye(sT),Z,)zA(dz,)ds)

P

< (uA(V) T E (/ /(i ¥ (5)71(s,x(5), xe(s — ), 0)
—3(s,ye(s),ye(s — T),0) |PA(dv)ds)

< (V)" KL [0 = 96Dy (6 e(6) = eI + (s = ) = yels = Pl

u

< K””Cé’/\(v)#u%z/ () = ()" Dy (s)

0

E( sup |xe(6) —ye(9)|’7>

0<60<s

—HEJ( sup |xe(6 — 1) —ye(0—7)|p)]ds, (23)

0<60<s

and

B[00 = 9D I 6P [ 306 xe(5) (s = 7),0) = 805, ve(s) s = 7)) PA (o)
< LB ( [0~ )PP P [e(6) e )P+ s = 7) = els = )Pl

< bk [ gw) = 967y ()

0

E( sup |xe(6) —ye(9)”)

0<6<s

—HE( sup |xe(60 — 1) —y€(9—7)|”>]ds. (24)

0<0<s
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Plugging (23) and (24) into (22), we obtain

u

It < Asef (1+A(V)'7u'7) [“000) = () (s)

0

E( sup |xe(0) — ye(")l”)

0<6<s

HE( sup |xe(9r)ye(er)|p>]ds, (25)

0<6<s

where A3 = D, C KP~1, We also have

(1- C) ()

6777167

e < ey O {E ([ 0 = e 2y (o2
] 1806091 = 00,0) = 805, vels — 0),0) Pa(ao)s

14
2

+E</()u(¢(u) —y(s))Pe Dy / 18(5,Ye(s), Ye(s = 7),0) = &(ye(s), ye(s — ), 0)["A(dv) ds)} -

Since a > pz—;z, we have 2pa — p — 2 > 0. By using the Holder inequality, (10), (H2),
and (H3), we obtain

E(/O”ww) Y)Y ()7 [ Igls,e(s),vels = o), >—g(ye<s>,ye<s—r)mnwdv)ds)
< 2”11@( | )~ p)re Dy ) [ ] (865, ve(s),ve(s = 0,001
+|g(ye(s),ye(s — 1),0)) p)/\(d?))ds])

<24+ Gk B [0 = 96" D) 1+ e + lels = )i

2r=1(CP + C)KP1
(G +C) L+E( sup lye(t)” | +E( sup [ye(t =) | |, (27)
0<t<u 0<t<u

- pla —1)+1

((u) — p(0))P~ D+

and
P
2

B[ (00) = 9061229/ (6 [ lg(s,ve(6), el = 7),0) = e(s)vels = ), ) Ao )

p—2

[ ) =) 5=y o) = Aoy )

SE[(/Ou

\%
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P2
<KTAT (Gl 5) T Pt ()"
. 1+E< sup |y€(t)|p> —|—]E< sup |ye(t—‘r)p>]. (28)
0<t<u 0<t<u

Substituting (27) and (28) into (26), we obtain

B2 < Asne? (p(u) = 9(0))P VM 4 Asppe Buyu(p() — p(0) "2, (29)
where
127D, (Ch 4+ Cy)KPE
Asn = (1—-C)PT(w)? pla—1)+1 Lk osgligu pe®I" | + B osgljgu et =" |1
_ 6r—1 pi2 p;2 p—2 2
Ay = WDPK A(V) (szx—p—z)
: 1+E< sup Iye(t)l”> +E< sup Iye(t—T)I”N-
0<t<u 0<t<u
Combining (13), (14), (17)—(21), (25), with (29), for u € (0, T] we obtain
E( sup [xe(t) — ye(ﬂl”)
0<t<u
< A(w)+ B(w) [ (9(u) = ()" V(s
. ]E< sup |xe(0) — ye(9)|p> + E( sup |xe(60 —7) —ye(6 — T)|p]>]ds, (30)
0<0<s 0<60<s
where

A(u) = Apze? (p(u) — (0))* tu + Azzegu%*1(¢(u) —1p(0)) @ Dpt

2pa—p—2
+ Aszre () = p(0))" D+ Asmaet Bluu(p(u) = p(0)) 7
and
B(u) = Anelub ™' + Ayeut ! + Agel (1 + )\(V)}%Zup%z).
Set

X(u) = E( sup |x(0) —y€(9)|p>.

0<6<u

Noting that E( sup |xe(0) — y€(9)|”> =0, then

—1<0<0

E( sup |xe(6 — 1) —y€(0—7)|p> =X(s —1).

0<0<s
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Hence, it follows from (30) that
Z(u) < Au) + B(u) /OM(IP(M) — ()P TV (5)(2(s) + (s — 7)) ds.
For each u € [0, T], denote ®(u) = sup_,;, Z(t). Then,
X(s) <P(s) and XZ(s—71) < P(s).

Thus, one has

D) = sup T(u) < A(w)+2B(u) [ ($(u) = 9(£))* Vg (5)2(s)ds.

—1<t<u

By using Lemma 5, we obtain
®(u) < A(U)Ey(u )41 (2B (pla— 1) + 1) ((u) — 9(0))"*D41).
Moreover, we have
E <Os<1?£> |xe(t) — ye(t)lp> < A(U)Ey(a—1)11 (ZB(u)T(p(ac — 1) + 1) (p(u) — w(o))pm_ml)

Choose M > 0 and B € (0,1) such that for all t € (0, Me~#] C (0, T]

E( sup ﬁrxe<t>—y€<t>|’7> < Ay (1)1 (2BT(p(x = 1) + 1) (9(T) — (07~ ) e,
0<t<Me™

where

A= ApMeP ™ (P(T) = $(0)* ™" + AppM = 1e5=DA=PIHA(y(T) — (0)) (@~ DP*!

2pa—p—2
2

+Azne? P (p(T) — p(0)P D1 4 AgyMmez 1 (p(T) — $(0)) " 2,

here, m is a positive bounded of function §(+), and
B=AMPlep~(P=DB 4 Ay ME-1eE(1-P)FB 4 Ay el +A3l)\(v)’%2M’%2€§(l—ﬁ)+ﬂ,

are two constants. Thus, for any given number § > 0, €1 € (0, €] exists such that for each
e € (0,e;1]and t € [—T, Me™F],

te[—t,MeF)

E( sup |xe<t>—ye<t>|r’)s5.

O

Remark 1. If ¢(t) = t, ¢ = 0, and T = 0, then FSDDEs (3) reduces to FSDEs (1) in [18].
Therefore, Theorem 1 generalizes the main result of [18].

Example 1. Consider the following -Caputo fractional stochastic delay differential equation
(FSDDEs) with Poisson jumps :

CDg'g'\ﬂ {xg(t) - (%t% + %sin(xg(t))) (t—1) + 3 /esin® txg(t)%

= %sx8
++/¢ [, 3N(dt,dv), te[0,25], 31)
xe(t) =05, —025<t<0,

where x = 0.9, P(t) = Vi T =25 1=0.25,and
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h(t, xe()) = %t% + ésin(xg(t)), £t xe(8), xe(t— 7)) = %xg(t _ ),

ot xe(t), xe(t — 1)) = %T sint-xe(t), gt xe(t), xe(t — 7),0) = 3.

Then,

Fe®, et =0) = = [* Fpelt) et = o)t = Jyete =),
Twe0) vt =) = = [ o yelt) et = )t = yelo),

2(ye(t), ye(t — 7),0) = % /0 " ot ye(t), ye(t — 7), 0)dt = 3.

Thus, we have the corresponding averaged FSDDEs with Poisson jumps :

cpooni [ye(t) _ (%t% +3 sin(yg(t)))] = Jeve(t — T) + Veye(t) 3t

++/¢e [, 3N(dt,dv), te[0,25],
ye(t) =05, —025<t<0.

(32)

It is easy to check that the conditions of Theorem 1 are satisfied. So, as ¢ — 0, the original
solution x, and the average solution y. are equivalent in the sense of L? (p =2 orp > 2

p—1 p+2

with max{ = L= } < 0.9). To test this, Equations (31) and (32) are calculated numerically

P2y
and error Err = |x,(t) — ye(t)
the 1-Capuo FSDDE with Poisson jumps is successfully established.

| 3

0.4

0.2

Figure 1. Comparison of x, and y, for Equations (31) and (32) with « = 0.9 and ¢ = 0.1.

0.7

: :
i —:
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051

0.4

03[

0.2

X

o1y * v |]
Err
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Figure 2. Comparison of x, and y, for Equations (31) and (32) with « = 0.9 and ¢ = 0.01.

are given in Figures 1 and 2. So, the averaging principle for
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4. Conclusions

In this article, the averaging principle for FSDDEs in the sense of L has been proved.
Holders inequality, Jensen’s inequality, Burkholder-Davis-Gundys inequality, Doobs mar-
tingale inequality, and fractional Gronwall’s inequality are applied in the estimation. To
the best of our knowledge, this is the first work dealing with the averaging principle for ¢-
Capuo fractional stochastic delay differential equations with Poisson jumps. The obtained
results generalize the two cases of p = 2 and the classical Caputo fractional derivative.
For future research, the averaging principle for fractional stochastic neutral functional
differential equations driven by the Rosenblatt process with delay and Poisson jumps is
both interesting and important. It is worth further investigation in the future.
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