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Abstract: In this paper, we compile the fractional power series method and the Laplace transform
to design a new algorithm for solving the fractional Volterra integro-differential equation. For that,
we assume the Laplace power series (LPS) solution in terms of power q = 1

m , m ∈ Z+, where the
fractional derivative of order α = qγ, for which γ ∈ Z+. This assumption will help us to write the
integral, the kernel, and the nonhomogeneous terms as a LPS with the same power. The recurrence
relations for finding the series coefficients can be constructed using this form. To demonstrate
the algorithm’s accuracy, the residual error is defined and calculated for several values of the
fractional derivative. Two strongly nonlinear examples are discussed to provide the efficiency of the
algorithm. The algorithm gains powerful results for this kind of fractional problem. Under Caputo
meaning of the symmetry order, the obtained results are illustrated numerically and graphically.
Geometrically, the behavior of the obtained solutions declares that the changing of the fractional
derivative parameter values in their domain alters the style of these solutions in a symmetric meaning,
as well as indicates harmony and symmetry, which leads them to fully coincide at the value of the
ordinary derivative. From these simulations, the results report that the recommended novel algorithm
is a straightforward, accurate, and superb tool to generate analytic-approximate solutions for integral
and integro-differential equations of fractional order.

Keywords: fractional Volterra integro-differential equation; Laplace fractional power series; Caputo
fractional derivative; Laplace transform

1. Introduction

Fractional calculus (FC) is a mathematical discipline that dates back 300 years, defined
in the 19th century by Rieman and Liouville as “the generalization of the ordinary derivative
to non-integer values”, and was later developed by Euler, Liouville, and Abel (1823). For
more details, see [1–3]. In recent decades, FC has started to attract much more attention from
researchers. It was found that different, particularly interdisciplinary applications can be
modeled superbly with the help of fractional derivatives. For instance, robotics, nonlinear
oscillations of earthquakes, control theory, signal processing, and viscoelasticity [4–7]. For
more details and applications of FC, we refer the reader to [8–14]. Since the ordinary
differential is a local operator, but the fractional order differential operator is nonlocal, the
nonlocal property is considered the most significant aspect of using fractional differential
equations (FDEs), which indicates the following state of a phenomenon does not rely only
upon its current state but considers its historical states as well. For this reason, FDEs have
drawn great attention from researchers for their realism in the interpretation of real-world
phenomena and it has become a more popular mathematical discipline. For example, in
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circuit systems [15], electrochemistry of corrosion [16], heat conduction [17], optics and
signal processing [18], probability and statistics [19], inviscid fluid [20], fluid flow [21], and
so on. In the literature, eminent researchers have introduced and developed various ways
to define fractional derivatives (FD), such as Atangana–Baleanu, Riemann–Liouville, Abel,
Weyl, Riesz, Caputo–Fabrizio, and Caputo operators. The Riemann–Liouville and Caputo
FDs are the most popular, and they give a high degree of freedom in the description and
simulation of the physical phenomena compared with ordinary derivatives. To learn about
these FDs, see [22–28].

Various mathematical formulations of science and engineering phenomena involve
linear and nonlinear differential equations, integral equations, or integro-differential equa-
tions (DEs, IEs, IDEs) that play a vital role in simulating a wide range of both linear and
nonlinear phenomena in varied science and engineering fields. However, when converting
these phenomena to either DEs, IEs, or IDEs, some of them are complicated and cannot be
treated with the help of ordinary calculus. In this regard, many scientists have concentrated
on employing FDEs and fractional IDEs (FIDEs) as convenient tools in modeling the phe-
nomenon, and they play an important role in exploring solutions utilizing varied methods,
which is in line with the rapid growth in explaining the various phenomena originating
from the natural sciences more accurately than ordinary DEs. Notably, fractional integral
and integro-differential equations are qualified for elucidating natural processes adequately
in terms of symmetry characteristics. However, there remain challenges to solving the non-
linear models of such phenomena theoretically or numerically. Recently, many researchers
have devoted more effective methods to provide a solution, either approximate, analytical,
numerical, or exact, to such models. Exploring the analytic solution of FDEs and FIDEs
is difficult in most cases, even though abundant efforts have been introduced recently to
develop emerging numerical and approximate-analytical techniques for finding out the
solutions to linear and nonlinear fractional problems. Among these methods, the kernel
Hilbert space method [29], the Haar wavelet method [30], the Adomian decomposition
method [31], the homotopy analysis method [32], the finite difference method [33], the
Taylor series expansion method [34], the collocation method [35], the Aboodh transform
decomposition method [36], and the residual fractional power series (FPS) method [37,38]
have been reproduced. The FPS method is one of the semianalytical techniques which
befits both linear and nonlinear FDEs [39–41]. It has been proposed that the solution is
formulated on generalized Taylors series where the coefficients of the expansion could be
found by employing FD on the residual error function in each step. To avoid this step, a
novel and efficient technique for generating analytic-approximates of wide classes of FDEs
has been suggested and named the Laplace fractional power series (LFPS) method [42]. The
LFPS approach had been suggested as a modern algorithm which is a mixture of two strong
approaches, the fractional power series (FPS) and the Laplace transform (LT). The LFPS
algorithm is a considered to be appropriate for handling several linear and nonlinear frac-
tional models and investigating their solutions: such as time-fractional Swift-Hohenberg
equations [43], time-fractional Black–Scholes option pricing equations [44], time-fractional
Kolmogorov and Rosenau–Hyman models [45], temporal time-fractional gas dynamics
equations [46], time-fractional generalized biology population models [47], and fractional
reaction–diffusion for bacteria growth models [48].

Motivated by the aforementioned works, this article extends the application of the LFPS
method for solving nonlinear FIDEs in the Volterra sense, as shown in the underlying form.

Dα
t u(t) = f (t) +

∫ t

0
k(x− t)g(u(x))dx, α ∈ (0, 1], t ≥ 0, (1)

where α, is the parameter defining the Caputo-FD, the functions f (t) and k(x− t) are
continuous real-valued functions, and g(u(x)) is the nonlinear function of u(x). In the
Volterra sense, the solution of FIDEs is crucial for describing the pattern of linear and
nonlinear physical phenomena, particularly, the phenomena excited in harmony or to
evaluate the probabilistic response of randomly-excited analytical models, the dynamics
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of nuclear reactors, and so forth. A functional expansion of a dynamic, nonlinear, and
time-invariant functional is referred to as a Volterra series.

The main contribution of this work is to design a modern modified algorithm to
generate the analytic-approximate solutions of the nonlinear fractional Volterra integro–
differential equation (FVIDE) in the framework of employing Caputo-FD. This kind of FD
is chosen in the present analysis due to its simplicity in handling both linear and nonlinear
FIDEs and its compatibility with initial conditions, that is, when solving FDEs or FIDEs,
initial conditions are often involved. As well, the Caputo-FD handles initial conditions
naturally and allows for a direct and consistent incorporation of these conditions into
the formulation of the problem. Furthermore, it satisfies the causality property, which
means that the value of the FD at a particular time depends only on the values of the
function up to that time. This property aligns well with the physical interpretation of
FDs in many applications, where the current behavior of a system depends on its history.
The principle of exploring approximate solutions is discussed. The remaining sections of
this work are structured as follows: in Section 2, some elementary results of FC theory
and LT features are presented. Next, a modified LFPS algorithm to examine and establish
the approximate solution of the target model (1) is presented in Section 3. In Section 4,
the simplicity, potential, and accuracy of the recommended scheme are provided by two
nonlinear FVIDEs with appropriate initial conditions. Toward the end, some concluding
remarks are drawn in the Section 5.

2. Preliminaries and Basic Concepts

FC theory deals with generalizing the concepts of differentiation and integration to
noninteger orders. It introduces the notion of FDs and FIs, allowing for the analysis and
modeling of phenomena that exhibit fractal behavior, memory effects, and long-range
dependencies. The Caputo-FD is one of the widely used definitions in FC theory. In this
section, we retrieved the basic definitions and features of FC theory, as well as the LT
operator and FPS method within the framework of the Caputo-FD.

Definition 1 ([2]). The αth-FD in the Caputo sense of u ∈ Cµ, µ ≥ −1, denoted by Dα
t , and

given by

Dα
t u(t) =

{
u(n)(t), α = 0

J n−α
t

(
u(n)(t)

)
, α ∈ (n− 1, n), n ∈ N

. (2)

Theorem 1 ([49]). Assume that the transform function U(ξ) = L{u(t)} could be given in the
following fractional series expansion (FSE):

U(ξ) =
∞

∑
n=0

un

ξnα+1 , ξ > 0, α ∈ (0, 1], (3)

where the coefficients un = (Dnα
t u(t))(0).

Definition 2 ([49]). Suppose that u(t) is of exponential order γ, and piecewise continuous on
[0, ∞), then the LT of u(t) is defined as:

U(ξ) = L{u(t)} =
∞∫

0

u(t) e−ξtdt, ξ > γ, (4)

and the inverse LT of the transform function U(ξ) is defined as:

L−1{U(ξ)} = u(t) =
δ+i∞∫

δ−i∞

U(ξ) eξtdξ, δ = Re(ξ) > δ0. (5)
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Lemma 1. Letu1(t) and u2(t) be piecewise continuous on [0, ∞)and be of exponential order. Then,
the following are held for the constants c1, c2, and U1(ξ) = L{u1(t)}, U2(ξ) = L{u2(t)}:

i. L{c1u1(t) + c2u2(t)} = c1U1(ξ) + c2U2(ξ).
ii. L−1{c1U1(ξ) + c2U2(ξ)} = c1u1(t) + c2u2(t).
iii. lim

ξ→∞
ξU(ξ) = u(0).

iv. L{Dα
t u(t)} = ξαU(ξ)−

n−1
∑

k=0
ξα−k−1u(k)(0), α ∈ (n− 1, n], n ∈ N.

Theorem 2 ([49]). Assume that the transform function U(ξ) = L{u(t)} could be expanded in a
FSE (5). If

∣∣∣ξL[D(n+1)α
t u(t)

]∣∣∣ ≤ l on (0 , s] where 0 < α ≤ 1, then the remainder of the new
series form in Theorem 2, satisfies the following inequality:

|<n(ξ)| ≤
l

ξ1+(n+1)α
, 0 < ξ ≤ s. (6)

3. Principle of the LFPS Algorithm

The LFPS scheme is an analytic-numeric algorithm specifically extended to deal with
FDEs and partial differential equations of fractional order arising in diverse linear and
nonlinear dynamical phenomena. This algorithm depends on the investigation of the series
solution of the target problem in a new space called the Laplace space with the simulation
of the generalized arbitrary order Taylor series to find out the unknown components of
the suggested series solution. The proposed scheme has sensational merits and superb
capability to handle nonlinear terms profitably without inserting any physical hypotheses of
the studied models. In this segment, a modified algorithm of the LFPS scheme is developed
for determining accurate analytic-approximate solutions of a certain class of FIDEs. In this
context, let us consider the nonlinear FVIDE (1), subject to the initial condition u(0) = β.
It is necessary to start with the following theorem, which is required for this strategy of
solving the target Equation (1).

Theorem 3. Suppose that for ξ > 0, V(ξ) = ∑n
i=0

vi
ξ iq+1 , and W(ξ) = ∑m

i=0
ωi

ξ iq+1 , then

V(ξ)W(ξ) =
m+n

∑
z=0

ξ−qz−2
min[z,n]

∑
j=max[0,z−m]

vjωz−j

Proof. Define δ(0) = 1, δ(i) = 0 for i = 1, 2, 3, . . .. The product of the two series gives

n
∑

i=0

vi
ξ iq+1

m
∑

i=0

ωi
ξ iq+1 =

n
∑

i=0

m
∑

j=0
viωjξ

−q(i+j)−2

=
n+m
∑

z=0

n
∑

i=0

m
∑

j=0
viωjξ

−q(i+j)−2δ(z− (i + j))

=
n+m
∑

z=0

n
∑

i=0
vi

⌈
m
∑

j=0
ωjξ

−q(i+j)−2δ(j− (z− i))

⌉
,

Since δ(j− (z− i)) = 1 only if j− (z− i) = 0, which happened at j = z− i. Then

m

∑
j=0

ωjξ
−q(i+j)−2δ(j− (z− i)) = ωz−iξ

−qz−2.
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However, 0 ≤ z− i ≤ m⇒ z−m ≤ i ≤ z , and 0 ≤ i ≤ n. So that max[0, z−m] ≤ i ≤
min[z, n]. �

Now, to solve FVIDE (1), we should transform it into the Laplace space as follows:

U(ξ) =
u(0)

ξ
+ F(ξ) +

1
ξα

(L{k(x− t)}.L{g(u(t))}). (7)

Herein, let the order of Caputo-FD α = γq, where q = 1
m , m ∈ Z+, γ ∈ Z+ such that if

α = 0.9 = γ× q = 9× 1
10 .

The proposed solution of (7) has the FSE form:

U(ξ) =
∞

∑
i=0

ui

ξ iα+1 , (8)

provided that u(0) = lim
ξ→∞

ξU(ξ) = β. Thus, the J-th truncated FSE form Uj(ξ), could be

expressed as:

UJ(ξ) =
β

ξ
+

J

∑
i=1

ui

ξ iα+1 . (9)

Let f (t) and k(t) be analytic functions, then its LT can be written as F(ξ) = ∑J
i=0

fi
ξqi+1

and L{k(x− t)} = ∑J
i=0

ki
ξqi+1 . Then, by substitution these expansions series with FSE (9)

into Equation (7), we obtain

J

∑
i=1

ui

ξqi+1 =
1

ξγq

J

∑
i=0

fi

ξqi+1 +
1

ξγq

J

∑
i=0

ki

ξqi+1

N

∑
i=0

gi

ξqi+1 . (10)

Using Theorem 3, Equation (10) becomes as follows:

J
∑

i=1

ui
ξqi+1 = 1

ξγq

J
∑

i=0

fi
ξqi+1 +

1
ξγq

J+N
∑

i=0

1
ξqi+2

min[i,N]

∑
j=max[0,J]

kigi−j

=
J

∑
i=0

fi
ξq(i+γ)+1 +

J+N
∑

i=0

1

ξ
q(i+ 1

q +γ)+1

min[i,N]

∑
j=max[0,J]

kigi−j.
(11)

Multiply Equation (11) by ξmq+1 for m = 1, 2, . . . J, we have

J

∑
i=1

ui

ξq(i−m)
=

J

∑
i=0

fi

ξq(i+γ−m)
+

J+N

∑
i=0

1

ξ
q(i+ 1

q +γ−m)

min[i,N]

∑
j=max[0,J]

kigi−j. (12)

Next, take the limit of the obtained Equation (12) as ξ → . , such that

lim
ξ→∞

 J

∑
i=1

ui

ξq(i−m)
−

J

∑
i=0

fi

ξq(i+γ−m)
−

J+N

∑
i=0

1

ξ
q(i+ 1

q +γ−m)

min[i,N]

∑
j=max[0,J]

kigi−j

 = 0. (13)

Then, for the first, second, and third sums, respectively, let i = m, i = m− γ, and
i = m− 1

q − γ. We have

um = fm−γ +

min[m− 1
q−γ,N]

∑
j=max[0,J]

gjkm− 1
q−γ−j, m = 1, 2, 3, . . . (14)
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Thus, the proposed solution of (7) could be reformulated in the following FSE form:

Uj(ξ) =
β

ξ
+

J

∑
i=1

 fi−γ +

min[i− 1
q−γ,N]

∑
j=max[0,J]

gjki− 1
q−γ−j

 1
ξ iα+1 . (15)

Correspondingly, by performing the inverse LT operator on both sides of (15), one can
reach the following analytic-approximate series solution of FVIDE (1) along with the given
initial condition.

u(t) = L−1

 β
ξ +

J
∑

i=1

 fi−γ +
min[i− 1

q−γ,N]

∑
j=max[0,J]

gjkm− 1
q−γ−j

 1
ξ iα+1


= β +

J
∑

i=1

 fi−γ +
min[i− 1

q−γ,N]

∑
j=max[0,J]

gjkm− 1
q−γ−j

 tqi

Γ(qi+1) .

(16)

4. Illustrated Examples

In this section, the LFPS algorithm is implemented to investigate analytical-approximate
solutions of nonlinear FVIDEs using Caputo-FD. Some graphical and numerical simulations
are illustrated to show the performance and accuracy of our recommended algorithm. In
this portion, we utilize Mathematica package 12 to perform computations.

Example 1. Consider the following nonlinear FVIDE:

Dα
t u(t) =

3
2

et − 1
2

e3t +
∫ t

0
et−xu3(x)dx, 0 < α ≤ 1, (17)

subject to initial conditionu(0) = 1. The exact solution of the system of nonlinear FVIDE (17) at
α = 1 is u(t) = et [50].

Following the process of the proposed algorithm in the last, and running LT into (17),
we obtain

U(ξ) =
u(0)

ξ
+

3
2ξα
L
{

et}− 1
2ξα
L
{

e3t
}
+

1
ξα
L
{

et}×L{u3(t)
}

. (18)

Utilizing the following series expansions:

L
{

et} =
J

∑
i=0

1
ξqi+1 =

J

∑
i=0

fi

ξqi+1 , qi ∈ Z+,L
{

e3t
}
=

J

∑
i=0

(3)qi

ξqi+1 =
J

∑
i=0

ci

ξqi+1 , qi ∈ Z+, (19)

and

L
{

u3(t)
}
= L

{(
L−1U(ξ)

)3
}

= L


(

J

∑
i=0

ui
Γ(qi + 1)

tqi

)3
. (20)

where(
J

∑
i=0

uitqi

Γ(qi + 1)

)3

=
3J

∑
i=0

tqi
min[i,2J]

∑
j=max[0,J]

ui−j

Γ(q(i− j) + 1)

min[j,J]

∑
v=max[0,J]

uvuj−v

Γ(vq + 1)Γ(q(j− v) + 1)
. (21)

By performing the LT operator into both sides of (21), we obtain

L


(

J

∑
i=0

ui
Γ(qi + 1)

tqi

)3
 =

3J

∑
i=0

Γ(qi + 1)
ξqi+1

min[i,2J]

∑
j=max[0,J]

ui−j

Γ(q(i− j) + 1)

min[j,J]

∑
v=max[0,J]

uvuj−v

Γ(vq + 1)Γ(q(j− v) + 1)
. (22)
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Using Theorem 3, we have

L
{

et}×L{u3(t)
}
=

J
∑

i=0

fi
ξqi+1

3J
∑

i=0

Γ(qi+1)
ξqi+1

min[i,2J]
∑

j=max[0,J]

ui−j
Γ(q(i−j)+1)

min[j,J]
∑

v=max[0,J]

uvuj−v
Γ(vq+1)Γ(q(j−v)+1)

=
4J
∑

i=0

1
ξqi+2

min[i,3J]
∑

n=max[0,J]
fi−nΓ(nq + 1)

min[i,2J]
∑

j=max[0,J]

ui−j
Γ(q(i−j)+1)

min[j,J]
∑

v=max[0,J]

uvuj−v
Γ(vq+1)Γ(q(j−v)+1) .

(23)

By substituting ξα = ξγq, the j-th truncated Laplace residual error function (L-REF) of
the series form for the Laplace Equation (18) can be given as:

L
{

ResUJ (ξ)
}
=

J
∑

i=1

ui
ξqi+1 − 3

2

J
∑

i=0

fi
ξq(i+γ)+1 +

1
2

J
∑

i=0

ci
ξq(i+γ)+1

−
4J
∑

i=0

1

ξ
q(i+γ+ 1

q )+1

min[i,3J]
∑

n=max[0,J]
fi−nΓ(nq + 1)

min[i,2J]
∑

j=max[0,J]

ui−j
Γ(q(i−j)+1)

min[j,J]
∑

v=max[0,J]

uvuj−v
Γ(vq+1)Γ(q(j−v)+1) .

(24)

Multiplying both sides of Equation (24) by the factor ξmα+1, and taking the limit as
ξ → ∞ , we have

lim
ξ→∞

ξmα+1L
{

ResUJ (ξ)
}

= lim
ξ→∞

J
∑

i=1

ui
ξq(i−m) − 3

2

J
∑

i=0

fi
ξq(i+γ−m) +

1
2

J
∑

i=0

ci
ξq(i+γ−m)

−
4J
∑

i=0

1

ξ
q(i+γ+ 1

q−m)

min[i,3J]
∑

n=max[0,J]
fi−nΓ(nq + 1)

min[n,2J]
∑

j=max[0,J]

un−j
Γ(q(n−j)+1)

min[j,J]
∑

v=max[0,J]

uvuj−v
Γ(vq+1)Γ(q(j−v)+1) .

(25)

Then, by solving lim
ξ→∞

ξmα+1L
{

ResUJ (ξ)
}
= 0, we obtain the following recurrence formula:

um = 3
2 fm−γ − 1

2 cm−γ

+
min[m− 1

q−γ,3J]

∑
n=max[0,J]

fm− 1
q−γ−nΓ(nq + 1)

min[n,2J]
∑

j=max[0,J]

un−j
Γ(q(n−j)+1)

min[j,J]
∑

v=max[0,J]

uvuj−v
Γ(vq+1)Γ(q(j−v)+1) .

(26)

For m = γ, γ + 1, γ + 2, . . . M.
In case α = 0.9, we choose q = 1

10 , γ = 9, then u0 = 1, ui = 0; for i = 1, 2, . . . , 8. Then,
the recurrence Formula (26) gives the following first nonzero coefficients:

u9 = u19 = 1, u28 = 3, u29 = −2, u37 =
3Γ( 14

5 )
Γ( 19

10 )
2 .

Thus, the analytic-approximate series solution of FVIDE (17) becomes:

u(t) = L−1

[
M

∑
i=0

ui

ξqi+1

]
. (27)

Particularly for M = 40, we have:

uM(t) ≈ 1 +
t9/10

Γ
(

19
10

) +
t19/10

Γ
( 29

10
) + 3t14/5

Γ
(

19
5

) − 2t29/10

Γ
( 39

10
) +

3t37/10Γ
(

14
5

)
Γ
(

19
10

)2
Γ
(

47
10

) +
6t19/5

Γ
(

24
5

) − 11t39/10

Γ
(

49
10

) . (28)
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In a similar way, we calculate the solution while varying the fractional derivative α.
The residual error (R. E.) of the J-th LFPS approximate solution of FVIDE (17) is

defined as:

R. E.(t) =
∣∣∣∣Dα

t uJ(t)−
3
2

et +
1
2

e3t −
∫ t

0
et−xu3

J (x)dx
∣∣∣∣, (29)

To confirm the accuracy of the recommended approach, we calculated the R. E. of
the LFPS approximate solution at different numbers of iterations and varied values of the
fractional order derivative α, and summarized in Table 1. One can observe from Table 1
that the numerical comparisons simulation reflects the accuracy of the LFPS approach.
Graphically, the behavior of the attained analytic-approximate series solution of FVIDE
(17) is displayed in a 2D plot as in Figure 1. It is clear from the graphical representation
that the LFPS solutions in different cases of the fractional order derivative, α, simulate the
exact solution. Finally, we provided the residual error for Example 1 at different terms and
times when the fixed value of FD α = 0.8. It is clear that, from the mentioned simulation in
Table 2, the values of residual errors will further decrease with increasing terms. So, the
accuracy, efficiency, and convergences of the designed algorithm are confirmed.

Table 1. The residual errors of the LFPS solutions for Example 1.

ti α = 0.9 α = 0.8 α = 0.7 α = 0.6

0.1 3.05125× 10−8 2.76818× 10−8 1.25598× 10−7 3.32936× 10−7

0.2 5.44445× 10−6 2.4180× 10−6 2.70504× 10−5 7.78659× 10−5

0.3 1.15718× 10−4 1.38234× 10−6 6.74897× 10−4 2.07896× 10−3

0.4 1.03751× 10−3 4.43181× 10−4 7.01985× 10−3 2.28483× 10−2
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Table 2. The residual error of the LFPS solutions at different terms and times with α = 0.8 for
Example 1.

ti
J 20 40 60 80

0.1 2.23231× 10−2 6.03273× 10−4 5.48087× 10−6 2.76818× 10−8

0.2 8.31149× 10−2 7.32976× 10−3 2.58114× 10−4 2.4180× 10−6

0.3 1.85919× 10−1 3.28381× 10−2 2.64048× 10−3 1.38234× 10−6

0.4 3.35873× 10−1 9.8273× 10−2 1.45347× 10−2 4.43181× 10−4
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Example 2. Consider the following nonlinear FVIDE:

Dα
t u(t) = −2sin(t)− 1

3
cos(t)− 2

3
cos(2t) +

∫ t

0
cos(t− x)u2(x)dx, α ∈ (0, 1], (30)

Subject to the initial condition u(0) = 1. The exact solution of (29) at α = 1 is
u(t) = cos(t)− sin(t) [50].

As we do in Example 1, we should first transform (30) into the new Laplace space,
that is:

ξαU(ξ)− ξα−1u(0) = −2L[sin(t)]− 1
3
L[cos(t)]− 2

3
L[cos(2t)] + L[cos(t)]×L

[
u2(t)

]
. (31)

and the L-REF of (31) can be identified as:

L{ResU(ξ)} = U(ξ)− u(0)
ξ
− 1

ξγq

(
L[sin(t)]− 1

3
L[cos(t)]− 2

3
L[cos(2t)] + L[cos(t)]×L

[
u2(t)

])
. (32)

Write the LTs of (32) in the following FSE:

• If qi is odd, then

L[sin(t)] =
J

∑
i=0

ai

ξqi+1 =
J

∑
i=0

(−1)
qi−1

2

ξqi+1 , (33)

• If qi is even, then

L[cos(t)] =
J

∑
i=0

ci
ξqi+1 =

J
∑

i=0

(−1)
qi
2

ξqi+1 ,

L[cos(2t)] =
J

∑
i=0

bi
ξqi+1 =

J
∑

i=0

(−1)
qi
2 (2)qi

ξqi+1 ,
(34)

• The nonlinear term

L[cos(t)]×L
[
u2(t)

]
=

J
∑

i=0

ci
ξqi+1

2J
∑

i=0

Γ(qi+1)
ξqi+1

min[J,i]
∑

n=max[0,i−J]

unui−n
Γ(nq+1)Γ(q(i−n)+1)

=
3J
∑

i=0

1

ξ
q(i+ 1

q )+1

min[i,2J]
∑

n=max[0,i−J]
Γ(qn + 1)ci−n

min[J,i]
∑

j=max[0,i−J]

ujun−j
Γ(qj+1)Γ(q(n−j)+1) ,

(35)

Using the FSEs (9) and (33)–(35), the j-th L-REF of (32) can be written as:

L
{

ResUJ (ξ)
}
=

J
∑

i=1

ui
ξqi+1

+

(
2

J
∑

i=0

ai
ξq(i+γ)+1 +

1
3

J
∑

i=0

ci
ξq(i+γ)+1 +

2
3

J
∑

i=0

bi
ξq(i+γ)+1

−
3J
∑

i=0

1

ξ
q(i+ 1

q +γ)+1

min[i,2J]
∑

n=max[0,i−J]
Γ(qn + 1)ci−n

min[J,i]
∑

j=max[0,i−J]

ujun−j
Γ(qj+1)Γ(q(n−j)+1)

)
.

(36)
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By solving lim
ξ→∞

ξmα+1L
{

ResUJ (ξ)
}
= 0, we have

um = −(2am−γ + 1
3 cm−γ + 2

3 bm−γ

)
+

min[m− 1
q−γ,2J]

∑
n=max[0,i−J]

Γ(qn + 1)cm− 1
q−γ−n

min[J,i]
∑

j=max[0,i−J]

ujun−j
Γ(qj+1)Γ(q(n−j)+1) ,

(37)

for m = γ, γ + 1, . . . , J, and u0 = 1, ui = 0 for i = 1, 2, . . . , γ− 1.
In the case of α = 0.9, we can choose q = 1

10 , γ = 9. Setting u0 = 1, ui = 0, for
i = 1, 2, . . . , 8, then the nonzero terms for m from 9 to 40 are u9 = −1,

u19 = −1, u28 = −2, u29 = 3, u37 =
Γ( 14

5 )
Γ( 19

10 )
2 , u38 = −2, u39 = 1. So, the analytic-approximate

solution is given by

u(t) = 1− t
9

10

Γ
(

19
10

) − t
19
10

Γ
( 29

10
) − 2t

14
5

Γ
(

19
5

) +
3t

29
10

Γ
( 39

10
) + t

37
10 Γ
(

14
5

)
Γ
(

19
10

)2
Γ
(

47
10

) − 2t
19
5

Γ
(

24
5

) +
t

39
10

Γ
(

49
10

) . (38)

In the same manner, we gain γ = 8, 7 for α = 0.8, 0.7, respectively.
Table 3 compares the residual errors for gained LFPS approximate solutions to FVIDE

(29) at varied values of α. From Table 3, it is obvious that the effect of the FD parameter on
the values of residual errors will further decrease over the domain of interest of obtained
solutions and this confirms the accuracy of our proposed method. Figure 2 displays the 2D
plot of the exact and the LFPS solutions for Example 2 when α ∈ {0.7, 0.8, 0.9, 1.0} in the
domain t ∈ [0, 1]. This graphical representation indicates that the solutions attained via
the recommended algorithm converge to the exact solution when α tends to 1, and these
solutions overlap at α = 1. Finally, in Table 4 we provided the residual errors for the results
attained from Example 2 at different terms and times when the FD was fixed at α = 0.8 to
demonstrate the convergence of the proposed method. From this table, one notices that the
values of residual errors will further decrease with increasing terms of obtained solutions,
and this proves the accuracy, efficiency, and convergence of the LFPS scheme.

Table 3. The residual errors of the LFPS solutions for Example 2.

ti α = 0.9 α = 0.8 α = 0.7 α = 0.6 α = 0.5

0.1 4.01872× 10−12 1.14969× 10−10 3.51448× 10−11 1.2662× 10−10 7.2709× 10−11

0.2 8.73393× 10−10 3.65742× 10−8 1.19959× 10−8 3.75249× 10−8 2.55736× 10−8

0.3 1.60784× 10−8 1.06161× 10−6 3.56381× 10−7 9.78584× 10−7 6.88552× 10−7

0.4 8.94261× 10−8 1.15723× 10−5 3.91616× 10−6 9.47861× 10−6 6.18322× 10−6

0.5 9.02043× 10−8 7.37875× 10−5 2.49509× 10−5 5.35762× 10−5 2.78115× 10−5
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Table 4. The residual error of the LFPS solutions at different terms and times with α = 0.8 for
Example 2.

ti
J 20 40 60 80

0.1 3.23928× 10−3 4.56363× 10−5 3.98756× 10−7 2.06271× 10−9

0.2 1.81809× 10−3 5.3666× 10−4 1.43983× 10−5 3.32608× 10−7

0.3 1.00238× 10−2 2.20152× 10−3 1.13732× 10−4 6.45179× 10−6

0.4 3.55286× 10−2 5.84874× 10−3 4.83321× 10−4 5.2582× 10−5

5. Conclusions

In this article, a modified LFPS algorithm has been profitably implemented to explore
the analytic-approximate solution of nonlinear FVIDEs involving the Caputo-FD of order
α : 0 < α ≤ 1, with fitting ICs. The essence and procedure of our recommended algorithm
is the construction of the solutions via solving studied equations using the LT principle and
simulating the FPS approach in the Laplace space. In the stage of finding out the unknowns
of the suggested solution by performing minimal calculations, the recommended algorithm
needs an infinite limit concept and not a FD, as in FPS. In comparison, the procedure of
FPS needs (n− 1)-Caputo FD of the residual function, which may take time in the stages of
exploring the solution. The accuracy and effectiveness of the LFPS algorithm are clarified by
graphical and numerical simulations of the results. The impact of the Caputo-FD order can
be observed in the behaviors of LFPS-curves for various values of α. Analysis of acquired
results declares that the recommended algorithm is considered to be a convenient, reliable
computational algorithm to treat wide aspects of nonlinear fractional models with high
accuracy. Conclusively, providing analytic-approximate solutions for various fractional
IDEs and IDEs is a difficult undertaking. In future studies, we plan to investigate solutions
of these models via the modified LFPS method under Caputo-FD of the order of a positive
irrational number.
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