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Abstract: In this study, the Jacobi elliptic function method (JEFM) and modified auxiliary equation
method (MAEM) are used to investigate the solitary wave solutions of the nonlinear coupled Riemann
wave (RW) equation. Nonlinear coupled partial differential equations (NLPDEs) can be transformed
into a collection of algebraic equations by utilising a travelling wave transformation. This study’s
objective is to learn more about the non-linear coupled RW equation, which accounts for tidal waves,
tsunamis, and static uniform media. The variance in the governing model’s travelling wave behavior
is investigated using the conformable, beta, and M-truncated derivatives (M-TD). The aforementioned
methods can be used to derive solitary wave solutions for trigonometric, hyperbolic, and jacobi
functions. We may produce periodic solutions, bell-form soliton, anti-bell-shape soliton, M-shaped,
and W-shaped solitons by altering specific parameter values. The mathematical form of each pair
of travelling wave solutions is symmetric. Lastly, in order to emphasise the impact of conformable,
beta, and M-TD on the behaviour and symmetric solutions for the presented problem, the 2D and 3D
representations of the analytical soliton solutions can be produced using Mathematica 10.

Keywords: coupled Riemann wave equation; modified auxiliary equation method; Jacobi elliptic
function method; beta-derivative (β-D); M-truncated derivative; conformable derivative

MSC: 39A12; 39B62; 33B10; 26A48; 26A51

1. Introduction

The nonlinear evolution equation [1,2] ia a particular class of partial differential
equations (PDEs) [3]. In several branches of physical sciences, such as mathematics, notably
pure and applied mathematics, biology, physics, microbiology, biochemistry, and many
other subjects, these equations are widely employed as models to explain their physical
significance. Nonlinear differential equations (NLDEs) are used in a wide variety of
fields to describe the motion of isolated waves that are localised in a small area of space,
such as physics, where they are used to study the dynamics of magneto fluids, water
surface gravity waves [4], electromagnetic radiation reactions, and ion acoustic waves
in plasmas [5], among many other fields. The investigation of solitary wave solutions
to NLEEs [1] has become the most interesting topic for investigators as a result of the
complicated behavior of NLEEs.
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Similar to how fractional exponents are an extension of exponents with integer value,
fractional calculus (FC) [6,7] is a branch of mathematics that developed from the usual
definitions of integral and derivative operators in calculus. It is demonstrated that the
physical interpretation of fractional integration is “Shadows of the past” and the geometric
meaning of fractional integration is “Shadows on the walls”. The initial concept of fractional
differential equations (FDEs) [8] was presented in 1695 by Leibniz and L’Hopital. Appli-
cations of differential equations [9] in daily life include calculating the flow of electricity,
the pendulum-like motion of an object, and deriving the principles of thermodynam-
ics. Additionally, they are employed in medicine to graphically monitor the progression
of illnesses.

Numerous definitions of the fractional-order derivative, such as the Caputo derivative
(CD) [10], Grunwald–Letnikov (G-LD) [11], truncated M-fractional derivative (M-FD) [12],
and an Atangana–Baleanu derivative (A-BD) [13] in the framework of Caputo, have been
explored for their importance. This research considered three major fractional derivatives,
namely the β-D [14], M-TD [15], and C-D [16], in order to examine the efficient solutions of
the RW equation.

Models of NLPDEs from physics and mathematics serve as essentials in theoretical sci-
ences. Numerous practical fields, including meteorology, oceanography, and the aerospace
industry, depend on a grasp of these nonlinear partial differential equations. The most fun-
damental frameworks for analyzing nonlinear processes are nonlinear partial differential
equations. A nonlinear equation known as the RW equation [17–20] is employed in the
analysis of tsunami and tidal waves in oceans and rivers, stationary and uniform media,
coastal and marine engineering, and in many other fields. Solitons are a prevalent class of
weakly nonlinear dispersive PDEs that describe physical systems. Solitons are the solutions
to these PDEs. Solitons are solitary waves with elastic dispersion characteristics; even when
they collide, they maintain their shape and speed. Waves are the primary source of energy
in the geographical fields involving the ecological processes brought on by transportation
systems on floating or synthetic structure fields. Using the precise solutions provided
by the trigonometry solution, mixed hyperbolic solution, singular solution, and periodic
solution [21], the solitary patterns of the RW equation were adequately depicted. In order to
investigate the effects of fractional parameters on the dynamic response of soliton waves in
a non-linear coupled time-fractional RW equation, the RW equation was transformed into
an ordinary differential equation using complex wave transformations for three different
fractional operators, each of which provides a nonlinear algebraic equation system when
the technique is applied. This leads to the presentation of certain analytically precise soliton
solutions [22] derived from these equations.

In this study, the nonlinear coupled RW equation was used for analytical solutions as:

Rt + hRyyz + qREy + rERy = 0,

Rz = Ey,
(1)

where the parameters h, q, and r are non-zero. Equation (1) describes the (2 + 1)-dimensional
interaction between a long wave propagating and a Riemann moving wave. These fully
integrable equations have numerous applications in the propagation of tidal waves and
ocean tsunamis. Equation (1) also includes a significant feature that combines whistling
wave packets with random phases and small amplitudes to characterise the turbulent
state. The magnetic sound wave faces interference caused by Whistler turbulence, which
dampens it and, as a result, the electrostatic wave in the plasma.

In β-D, the proposed model takes the following form.

Dδ
β,t R + hRyyz + qREy + rERy = 0,

Rz = Ey,
(2)

where Dδ
β,t is β-D with δ is a fractional parameter.
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In M-TD, the proposed model takes the following form

Dδ
M,t R + hRyyz + qREy + rERy = 0,

Rz = Ey,
(3)

where Dδ
M,t is M-TD with δ is a fractional parameter.

In C-D, the proposed model takes the following form

Dδ
c,t R + hRyyz + qREy + rERy = 0,

Rz = Ey,
(4)

where Dδ
c,t and δ are called C-D and fractional parameter, respectively.

Within the computational modelling community, the idea of memory effect has long
been challenging. Naturally, this memory cannot be incorporated into the traditional
models [23–25]. Numerous researchers believe that fractional derivatives [26–28] can
adequately explain the memory phenomenon. Khalil, et al. developed a novel concept
of a derivative termed a ”conformable derivative” [29]; this modified version met several
established criteria, such as the chain rule. Some new properties of conformable derivative
have been studied in [30,31]. The β-D is a modified conformable fractional derivative.
The fractional ”β-derivative” [32] was initially introduced by Atangana, et al. [33]. It also
satisfies the product rule, power rule, and mean value theorem (MVT) [34]. The proposed
version satisfies a number of criteria that served as restrictions on fractional derivatives
and has been applied to the modelling of a number of physical issues. These derivatives
can be thought of as a natural extension of the classical derivative rather than fractional
derivatives. By changing the value of the fractional parameter we can observe the change
in the wave profile.

A single-parameter Mittag–Leffler function [35] that also fulfills the criteria of integer-
order calculus is used in an M-FD that Sousa and Oliveira introduced in 2017. This is
why we are going to provide a truncated M-FD type that combines the various fractional
derivative types already in existence and also meets the classical properties of integer-order
calculus. Finding soliton solutions [36] for the given model with local derivatives is the
aim of the research. The conformable fractional derivative (CF-D), which tries to increase
the conventional derivative while meeting some natural features, provides a novel solution
for different FDEs. Although exact methods are quite helpful for creating different kinds of
travelling wave solutions, numerical and analytical approximate methods are more useful
when finding a specific solution in cases where the initial condition can be estimated to
correspond to a physical system, although many of the NLEEs still cannot be solved using
the current exact solution techniques. The NLEEs have stable solutions, known as soliton
solutions, in which nonlinearity and dispersion are perfectly balanced.

For the purpose of creating the doubly periodic wave solutions for special-type non-
linear equations, JEFM [37–40] with symbolic computing was developed. The effective
and powerful JEFM was used to create a periodic solution for the given model. By sub-
stituting various Jacobi elliptic functions (JEF) for the tanh function, the basic notion of
this technique is comparable to the tanh method. The elliptic jacobi snoidal and cnoidal
functions [41], sn and cn, respectively, are used to define the sn- and cn-function approaches
to finding nonsingular periodic-wave solutions to NLEEs [42] in a manner that can be auto-
mated. The solitary wave solutions of the coupled KdV equations were discovered in [43]
using the homogeneous balancing approach. Lie symmetry analysis, specific solutions,
and conservation laws have all been demonstrated for several partial differential equations
in [44,45].

The MAEM [46–49] is a novel method for precisely solving differential equations.
In this way, the auxiliary equation technique was broadened. It provides a straightfor-
ward approach to dealing with NLE solutions. This excellent strategy has been utilized
to generate discoveries that are appealing and assist in the exploration of solutions to
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several challenges that are developing in applied mathematics and physics. Since one
may receive explicit solutions without integrating them, the approaches are appealing
and effective. When using the current techniques, finding precise unique solutions is
frequently challenging and, at times, impossible. Therefore, analytical approximations of
solutions are obtained with the appropriate precision. These solutions could reveal addi-
tional information about the physical components of the problems as they might explain a
variety of physics and other science-based phenomena, such as solitons and propagation
at a finite speed. The fractional-order model [50] provide smore accurate outcomes when
compared to the classical approach. Soliton solutions of fractional-order equations such as
the thin-film ferroelectric material equation [50], the Fokas equation [51], and many more
can also be found using MAEM.

The paper is organised as follows: Some derivative definitions and their characteristics
are explained in Section 2. The mathematical analysis of the RW equation is shown in
Section 3. The JEFM and MAEM analytical steps are carried out and applied to the
proposed model in the Section 4. In Section 5, graphs are used in addition to computations
to demonstrate how the results can be explained physically. A few closing remarks are
provided in Section 6 to wrap up the study.

2. Preliminaries

Some definitions of derivatives and their basic characteristics are listed in this section.

2.1. Beta-Derivative

Definition 1. The β-D is another kind of C-D that can be stated as [14]

Dδ
β,t f (t) = lim

ε→0

f (t + ε(t + 1
Γ(δ) )

1−δ
)− f (t)

ε
, 0 < δ ≤ 1.

The β-D possesses the following characteristics.

1. The β-D is a linear operator; that is,

Dδ
β,w(hj(w) + kl(w)) = hDδ

β,w j(w) + kDδ
β,wl(w), ∀h, k ∈ <.

2. This satisfies the product rule; that is,

Dδ
β,w(j(w) ∗ l(w)) = l(w)Dδ

β,w j(w) + j(w)Dδ
β,wl(w).

3. This obeys the quotient rule; that is,

Dδ
β,w

{
j(w)

l(w)

}
=

l(w)Dδ
β,w j(w)− j(w)Dδ

β,wl(w)

l2(w)
.

4. The β-D of a constant is zero; that is,

Dδ
β,w(c) = 0,

for any constant c.

2.2. M-Truncated Derivative

Definition 2. The M-TD for the function f : [0, ∞)→ R of the order δ ∈ (0, 1) is defined, as [15]

Dδ
M,t f (t) = lim

ε→0

f (t jEχ(εt−δ))− f (t)
ε

, (5)
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for t > 0, where jEχ(.), χ > 0 is a truncated Mittag–Leffler function of one parameter, defined as:

jEχ(t) =
j

∑
m=0

tm

Γ(χm + 1)
. (6)

Theorem 1. Let 0 < δ ≤ 1, χ > 0, h, k ∈ R and j, l be δ-differentiable at a point w > 0.
Then, [52],

1. Dδ
M,w(hj(w) + kl(w)) = hDδ

M,w j(w) + kDδ
M,wl(w), ∀h, k ∈ <.

2. Dδ
M,w(j(w) ∗ l(w)) = l(w) Dδ

M,w j(w) + j(w) Dδ
M,wl(w).

3. Dδ
M,w

{
j(w)
l(w)

}
=

l(w)Dδ
M,w j(w)−j(w) Dδ

M,w l(w)

l2(w)
.

4. The M-TD for a differentiable function j(w) is defined as:

Dδ
M,w j(w) = w1−δ

Γ(χ+1)
dj
dw .

2.3. Conformable Derivative

Definition 3. The C-D of order δ of a function f (t) for a function f : [0, ∞) → < is written
as [53]:

Dδ
c,t f (t) = lim

ε→0

f (t + ε(t)1−δ)− f (t)
ε

, ∀t > 0.

If e has δ-differentiability in any interval (0, g) with g > 0, then

Dδ
c,t( f (0)) = lim

t→0+
Dδ

c,t( f (t)),

whenever the limit of the right hand side exists.

Moreover, C-D-related properties and theorems are covered in [54].

3. Mathematical Analyses of the Procedure

The following transformations can be utilized to obtain soliton solutions of Equation (1)

R(y, z, t) = R(v), E(y, z, t) = E(v). (7)

The travelling wave parameter v is defined in three ways.
For β-D, v has the following form

v = µy + σz− v
δ

(
t +

1
Γ(δ)

)δ

. (8)

For M-TD, v has the following form

v = µy + σz− v
Γ(χ + 1)

δ
tδ. (9)

For C-D, v has the following form

v = µy + σz− v
δ

tδ, (10)

where µ, σ and, v are arbitrary constants with µ, σ and, v 6= 0. Utilizing the transformations
of Equation (7), together with Equations (8)–(10), we have

−vR′ + hµ2σR′′′ + qRµE′ + rEµR′ = 0,

σR′ = µE′.
(11)
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Using the zero integration constant to integrate the second equation of system (11), we have

E =
σ

µ
R. (12)

Substituting Equation (12) into the first equation of system (11) after integration, we
can obtain

−2vR + 2hµ2σR′′ + R2σ(q + r) = 0, (13)

where R′ = dR
dv .

4. Application of Analytical Methods
4.1. Jacobi Elliptic Function Method

Using the JEFM, R(v) can be expressed as a finite series of Jacobi elliptical function [51],
K(v) = sn(v, m) for 0 < m < 1, i.e.,

R(v) =
k

∑
i=0

Psni(v, m), (14)

the traveling wave solution for balancing principal k = 2 can be written as

R(v) = P0 + P1K(v) + P2(K(v))2, (15)

where the constants P0, P1, P2 will be found later.
Substituting Equation (15) into Equation (13) yields

−2v(P0 + K(v)(P1 + K(v)P2)) + (q + r)σ(P0 + K(v)(P1 + K(v)P2))
2

+2hµ2σ
(

2P2 + 6m2K(v)4P2 + K(v)P1

(
−1−m2 + 2m2K(v)2 − 4

(
1 + m2

)
K(v)P2

))
= 0.

Equating each coefficient of K(v)h(h = 0, 1, 2, 3, 4) to zero, we have

−2vP0 + qσP2
0 + rσP2

0 + 4hµ2σP2 = 0,

−2
(

v + h
(

1 + m2
)

µ2σ− (q + r)σP0

)
P1 = 0,

(q + r)σP2
1 − 2vP2 + 2σ

(
(q + r)P0 − 4h

(
1 + m2

)
µ2P1

)
P2 = 0,

2σP1

(
2hm2µ2 + (q + r)P2

)
= 0,

σP2

(
12hm2µ2 + (q + r)P2

)
= 0.

(16)

When Equation (16) is solved, the following outcomes are obtained.
Set 1.

P0 =
v

(q + r)σ
, P1 = 0, P2 = −12hm2µ2

q + r
.

R1,1(y, z, t) =
v

(q + r)σ
− 12hm2µ2sn2(v, m)

q + r
. (17)

E1,1(y, z, t) =
σ
(

v
(q+r)σ −

12hm2µ2sn2(v,m)
q+r

)
µ

. (18)

If m→ 1, then Equations (17) and (18) become

R1,1(y, z, t) =
v

(q + r)σ
− 12hµ2 tanh2 (v)

q + r
,
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E1,1(y, z, t) =
σ

(
v

(q+r)σ −
12hµ2 tanh2 (v)

q+r

)
µ

.

Set 2.

P0 =
−2qv− 2rv +

√
(2qv + 2rv)2 − 192h2m2µ4σ(−q2σ− 2qrσ− r2σ)

2(−q2σ− 2qrσ− r2σ)
, P1 = 0, P2 = −12hm2µ2

q + r
.

R2,1(y, z, t) =
−2qv− 2rv +

√
(2qv + 2rv)2 − 192h2m2µ4σ(−q2σ− 2qrσ− r2σ)

2(−q2σ− 2qrσ− r2σ)

−12hm2µ2sn2(v, m)

q + r
.

(19)

E2,1(y, z, t) =

σ

(
−2qv−2rv+

√
(2qv+2rv)2−192h2m2µ4σ(−q2σ−2qrσ−r2σ)

2(−q2σ−2qrσ−r2σ)
− 12hm2µ2sn2(v,m)

q+r

)
µ

. (20)

If m→ 1, then Equation (19) and Equation (20) become

R2,1(y, z, t) =
−2qv− 2rv +

√
(2qv + 2rv)2 − 192h2µ4σ(−q2σ− 2qrσ− r2σ)

2(−q2σ− 2qrσ− r2σ)
− 12hµ2 tanh2 (v)

q + r
,

E2,1(y, z, t) =

σ

(
−2qv−2rv+

√
(2qv+2rv)2−192h2µ4σ(−q2σ−2qrσ−r2σ)

2(−q2σ−2qrσ−r2σ)
− 12hµ2 tanh2 (v)

q+r

)
µ

.

Set 3.

P0 =
2qv + 2rv +

√
(2qv + 2rv)2 − 192h2m2µ4σ(−q2σ− 2qrσ− r2σ)

2(q2σ + 2qrσ + r2σ)
, P1 = 0, P2 = −12hm2µ2

q + r
.

R3,1(y, z, t) =
2qv + 2rv +

√
(2qv + 2rv)2 − 192h2m2µ4σ(−q2σ− 2qrσ− r2σ)

2(q2σ + 2qrσ + r2σ)

−12hm2µ2sn2(v, m)

q + r
.

(21)

E3,1(y, z, t) =

σ

(
2qv+2rv+

√
(2qv+2rv)2−192h2m2µ4σ(−q2σ−2qrσ−r2σ)

2(q2σ+2qrσ+r2σ)
− 12hm2µ2sn2(v,m)

q+r

)
µ

. (22)

If m→ 1, then Equation (21) and Equation (22) become

R3,1(y, z, t) =
2qv + 2rv +

√
(2qv + 2rv)2 − 192h2µ4σ(−q2σ− 2qrσ− r2σ)

2(q2σ + 2qrσ + r2σ)
− 12hµ2 tanh2 (v)

q + r
,

E3,1(y, z, t) =

σ

(
2qv+2rv+

√
(2qv+2rv)2−192h2µ4σ(−q2σ−2qrσ−r2σ)

2(q2σ+2qrσ+r2σ)
− 12hµ2 tanh2 (v)

q+r

)
µ

.
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Analogously, we can replace sn(v, m) with cn(v, m) and dn(v, m) to obtain solutions
to Equation (13).

4.2. Modified Auxiliary Equation Method

In order to obtain the traveling wave solutions, the MAEM [46] offers the general
solution in the form

R(v) = P0 +
j

∑
h=1

[
Ph(ζ

u)h + Qh(ζ
u)−h

]
, (23)

where P0, Ph’s and Qh’s are unknown constants. In the auxiliary equation, the function is
stated u(v).

ln(ζ) ∗ u′(v) = d + xζ−u + wζu, (24)

for arbitrary constant values of d, x and w (ζ > 0, ζ 6= 1).
Here, cases for Equation (24) are discussed.

1. If d2 − 4xw < 0 and w 6= 0, then

2w ∗ ζu(v) = −d +
√

4xw− d2 tan

(√
4xw− d2v

2

)
, (25)

or

2w ∗ ζu(v) = −(d +
√

4xw− d2cot

(√
4xw− d2v

2

)
). (26)

2. If d2 − 4xw > 0 and w 6= 0, then

2w ∗ ζu(v) = −(d +
√

d2 − 4xw tanh

(√
d2 − 4xwv

2

)
), (27)

or

2w ∗ ζu(v) = −(d +
√

d2 − 4xw coth

(√
d2 − 4xwv

2

)
). (28)

3. If d2 − 4xw = 0 and w 6= 0, then

ζu(v) = −2 + dv

2wv
. (29)

In Equation (13), the highest order derivative R′′ and highest order nonlinear term R2 are
balanced in accordance with the homogeneous balancing principle, resulting in j = 2.

R(v) = P0 + P1ζu + Q1ζ−u + P2ζ2u + Q2ζ−2u. (30)

The set of algebraic equations produced when each coefficient of ζu(v) is made equal to
zero is as follows:
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ζu(v)−4
: σQ2

(
12hx2µ2 + (q + r)Q2

)
= 0,

ζu(v)−3
: 2σ

(
10dhxµ2Q2 + Q1

(
2hx2µ2 + (q + r)Q2

))
= 0,

ζu(v)−2
: 6dhxµ2σQ1 + (q + r)σQ2

1 + 2
(
−v + 4h

(
d2 + 2wx

)
µ2σ + (q + r)σP0

)
Q2 = 0,

ζu(v)−1
: 2
((
−v + h

(
d2 + 2wx

)
µ2σ + (q + r)σP0

)
Q1 + σ

(
6dhwµ2 + (q + r)P1

)
Q2

)
= 0,

ζu(v)0
: −2vP0 + qσP2

0 + rσP2
0 + 2dhxµ2σP1 + 4hx2µ2σP2 + 2dhwµ2σQ1+

2qσP1Q1 + 2rσP1Q1 + 2qσP2Q2 + 2rσP2Q2 = 0,

ζu(v)1
: 2
((
−v + h

(
d2 + 2wx

)
µ2σ + (q + r)σP0

)
P1 + σP2

(
6dhxµ2 + (q + r)Q1

))
= 0,

ζu(v)2
: 6dhwµ2σP1 + (q + r)σP2

1 + 2
(
−v + 4h

(
d2 + 2wx

)
µ2σ + (q + r)σP0

)
P2 = 0,

ζu(v)3
: 2σ

(
10dhwµ2P2 + P1

(
2hw2µ2 + (q + r)P2

))
= 0,

ζu(v)4
: σP2

(
12hw2µ2 + (q + r)P2

)
= 0.

The following families are produced by solving the aforementioned equations.
Family 1: When

P0 =
v− d2hµ2σ− 8hwxµ2σ

(q + r)σ
, P1 = −12dhwµ2

q + r
, P2 = −12hw2µ2

q + r
, Q1 = 0, Q2 = 0.

The following cases will occur:

• For d2 − 4xw < 0 and w 6= 0, the trigonometric solution is:

R1,1(y, z, t) =

vw2 − h
(
d2(3r2 − 6rw + w2)+ 8rw2x

)
µ2σ + 3hrµ2σ tan

(
1
2

√
−d2 + 4wxv

)(
2d(r− w)

√
−d2 + 4wx + r

(
d2 − 4wx

)
tan
(

1
2

√
−d2 + 4wxv

))
(q + r)w2σ

,

E1,1(y, z, t) =

σ

 v−d2hµ2σ−8hrxµ2σ
(q+r)σ − 6dhrµ2(−d+

√
−d2+4wx tan( 1

2

√
−d2+4wxv))

(q+r)w

− 3hr2µ2(−d+
√
−d2+4wx tan( 1

2

√
−d2+4wxv))

2

(q+r)w2


µ

,

or

R1,2(y, z, t) =

vw2 − h
(
d2(3r2 − 6rw + w2)+ 8rw2x

)
µ2σ + 3hrµ2σ cot

(
1
2

√
−d2 + 4wxv

)(
2d(−r + w)

√
−d2 + 4wx + r

(
d2 − 4wx

)
cot
(

1
2

√
−d2 + 4wxv

))
(q + r)w2σ

,

E1,2(y, z, t) =

σ

 v−d2hµ2σ−8hrxµ2σ
(q+r)σ +

6dhrµ2(d+
√
−d2+4wx cot( 1

2

√
−d2+4wxv))

(q+r)w

− 3hr2µ2(d+
√
−d2+4wx cot( 1

2

√
−d2+4wxv))

2

(q+r)w2


µ

.

• For d2 − 4xw > 0 and w 6= 0, the hyperbolic solution is:

R1,3(y, z, t) =

vw2 − h
(
d2(3r2 − 6rw + w2)+ 8rw2x

)
µ2σ− 3hrµ2σ tanh

(
1
2

√
d2 − 4wxv

)(
2d(r− w)

√
d2 − 4wx + r

(
d2 − 4wx

)
tanh

(
1
2

√
d2 − 4wxv

))
(q + r)w2σ

,
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E1,3(y, z, t) =

σ

 v−d2hµ2σ−8hrxµ2σ
(q+r)σ +

6dhrµ2(d+
√

d2−4wx tanh( 1
2

√
d2−4wxv))

(q+r)w

− 3hr2µ2(d+
√

d2−4wx tanh( 1
2

√
d2−4wxv))

2

(q+r)w2


µ

,

or

R1,4(y, z, t) =

vw2 − h
(
d2(3r2 − 6rw + w2)+ 8rw2x

)
µ2σ− 3hrµ2σ coth

[
1
2

√
d2 − 4wxv

](
2d(r− w)

√
d2 − 4wx + r

(
d2 − 4wx

)
coth

[
1
2

√
d2 − 4wxv

])
(q + r)w2σ

,

E1,4(y, z, t) =

σ

 v−d2hµ2σ−8hrxµ2σ
(q+r)σ +

6dhrµ2(d+
√

d2−4wx coth[ 1
2

√
d2−4wxv])

(q+r)w

− 3hr2µ2(d+
√

d2−4wx coth[ 1
2

√
d2−4wxv])

2

(q+r)w2


µ

.

Family 2: When

P0 =
v− d2hµ2σ− 8hwxµ2σ

(q + r)σ
, P1 = 0, P2 = 0, Q1 = −12dhxµ2

q + r
, Q2 = −12hx2µ2

q + r
.

The following cases will occur:

• For d2 − 4xw < 0 and w 6= 0, the trigonometric solution is:

R2,1(y, z, t) =

v
σ + hµ2

 −d2 + 24dwx
d−
√
−d2+4wx tan( 1

2

√
−d2+4wxv)

+8x
(
−r− 6w2x

(d−
√
−d2+4wx tan( 1

2

√
−d2+4wxv))

2

) 
q + r

,

E2,1(y, z, t) =

σ

 v−d2hµ2σ−8hrxµ2σ
(q+r)σ − 48hw2x2µ2

(q+r)(−d+
√
−d2+4wx tan( 1

2

√
−d2+4wxv))

2

− 24dhwxµ2

(q+r)(−d+
√
−d2+4wx tan( 1

2

√
−d2+4wxv))


µ

,

or

R2,2(y, z, t) =

v
σ + hµ2

 −d2 + 24dwx
d+
√
−d2+4wx cot( 1

2

√
−d2+4wxv)

+8x
(
−r− 6w2x

(d+
√
−d2+4wx cot( 1

2

√
−d2+4wxv))

2

) 
q + r

,

E2,2(y, z, t) =

σ

 v−d2hµ2σ−8hrxµ2σ
(q+r)σ − 48hw2x2µ2

(q+r)(d+
√
−d2+4wx cot( 1

2

√
−d2+4wxv))

2

+ 24dhwxµ2

(q+r)(d+
√
−d2+4wx cot( 1

2

√
−d2+4wxv))


µ

.
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• For d2 − 4xw > 0 and w 6= 0, the hyperbolic solution is:

R2,3(y, z, t) =

v
σ + hµ2

 −d2 + 24dwx
d+
√

d2−4wx tanh( 1
2

√
d2−4wxv)

+8x
(
−r− 6w2x

(d+
√

d2−4wx tanh( 1
2

√
d2−4wxv))

2

) 
q + r

,

E2,3(y, z, t) =

σ

 v−d2hµ2σ−8hrxµ2σ
(q+r)σ − 48hw2x2µ2

(q+r)(d+
√

d2−4wx tanh( 1
2

√
d2−4wxv))

2

+ 24dhwxµ2

(q+r)(d+
√

d2−4wx tanh( 1
2

√
d2−4wxv))


µ

,

or

R2,4(y, z, t) =

v
σ + hµ2

 −d2 + 24dwx
d+
√

d2−4wx coth( 1
2

√
d2−4wxv)

+8x
(
−r− 6w2x

(d+
√

d2−4wx coth( 1
2

√
d2−4wxv))

2

) 
q + r

,

E2,4(y, z, t) =

σ

 v−d2hµ2σ−8hrxµ2σ
(q+r)σ − 48hw2x2µ2

(q+r)(d+
√

d2−4wx coth( 1
2

√
d2−4wxv))

2

+ 24dhwxµ2

(q+r)(d+
√

d2−4wx coth( 1
2

√
d2−4wxv))


µ

.

Family 3: When

P0 =
v− d2hµ2σ− 8hwxµ2σ

(q + r)σ
, P1 = −12dhwµ2

q + r
, P2 = −12hw2µ2

q + r
,

Q1 = −12dhxµ2

q + r
, Q2 = −12hx2µ2

q + r
.

The following cases will occur:

• For d2 − 4xw < 0 and w 6= 0, the trigonometric solution is:

ψ =
√
−d2 + 4wx

R3,1(y, z, t) =


8w3x(d2−2wx−dψ tan( 1

2 ψv))

(d−ψ tan( 1
2 ψv))

2

q+r +
3hµ2(2dr(r−w)ψ tan( 1

2 ψv)+r2(d2−4wx) tan ( 1
2 ψv)

2

w2 )

+
−

d2h(3r2−6rw+w2)µ2

w2 −8hrxµ2+ v
σ

q+r

,

E3,1(y, z, t) =
σ

µ


v−d2hµ2σ−8hrxµ2σ

(q+r)σ − 48hw2x2µ2

(q+r)(−d+ψ tan( 1
2 ψv))

2 −
24dhwxµ2

(q+r)(−d+ψ tan( 1
2 ψv))

− 6dhrµ2(−d+ψ tan( 1
2 ψv))

(q+r)w − 3hr2µ2(−d+ψ tan( 1
2 ψv))

2

(q+r)w2

,

or

R3,2(y, z, t) =


−

d2h(3r2−6rw+w2)µ2

w2 −8hrxµ2+ v
σ

q+r +
3hµ2(2dr(r−w)ψ cot( 1

2 ψv)+r2(d2−4wx) cot ( 1
2 ψv)

2

w2 )

+
8w3x(d2−2wx−dψ cot( 1

2 ψv))

(d−ψ cot( 1
2 ψv))

2

q+r

,
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E3,2(y, z, t) =
σ

µ


v−d2hµ2σ−8hrxµ2σ

(q+r)σ − 48hw2x2µ2

(q+r)(−d+ψ cot( 1
2 ψv))

2 −
24dhwxµ2

(q+r)(−d+ψ cot( 1
2 ψv))

− 6dhrµ2(−d+ψ cot( 1
2 ψv))

(q+r)w − 3hr2µ2(−d+ψ cot( 1
2 ψv))

2

(q+r)w2

.

• For d2 − 4xw > 0 and w 6= 0, the hyperbolic solution is:

ψ =
√

d2 − 4wx

R3,3(y, z, t) =
1

q + r

 −h
(
d2 + 8rx

)
µ2 + v

σ −
48hw2x2µ2

(d+ψ tanh( 1
2 ψv))

2 +
24dhwxµ2

d+ψ tanh( 1
2 ψv)

+
6dhrµ2(d+ψ tanh( 1

2 ψv))
w − 3hr2µ2(d+ψ tanh( 1

2 ψv))
2

w2

,

E3,3(y, z, t) =
σ

µ


v−d2hµ2σ−8hrxµ2σ

(q+r)σ − 48hw2x2µ2

(q+r)(d+ψ tanh( 1
2 ψv))

2 +
24dhwxµ2

(q+r)(d+ψ tanh( 1
2 ψv))

+
6dhrµ2(d+v tanh( 1

2 ψv))
(q+r)w − 3hr2µ2(d+ψ tanh( 1

2 ψv))
2

(q+r)w2

,

or

R3,4(y, z, t) =
1

q + r

 −h
(
d2 + 8rx

)
µ2 + v

σ −
48hw2x2µ2

(d+ψ coth( 1
2 ψv))

2 +
24dhwxµ2

d+ψ coth( 1
2 ψv)

+
6dhrµ2(d+ψ coth( 1

2 ψv))
w − 3hr2µ2(d+ψ coth( 1

2 ψv))
2

w2

,

E3,4(y, z, t) =
σ

µ


v−d2hµ2σ−8hrxµ2σ

(q+r)σ − 48hw2x2µ2

(q+r)(d+ψ coth( 1
2 ψv))

2 +
24dhwxµ2

(q+r)(d+ψ coth( 1
2 ψv))

+
6dhrµ2(d+v coth( 1

2 ψv))
(q+r)w − 3hr2µ2(d+ψ coth( 1

2 ψv))
2

(q+r)w2

.

Family 4: When

P0 =
v− d2hµ2σ− 8hrwxµ2σ

(q + r)σ
, P1 = −12dhwµ2

q + r
, P2 = −12hw2µ2

q + r
,

Q1 = −4dhxµ2

q + r
, Q2 =

4hx2µ2

3(q + r)
.

The following cases will occur:

• For d2 − 4xw < 0 and w 6= 0, the trigonometric solution is:

ψ =
√
−d2 + 4wx

R4,1(y, z, t) =
1

3(q + r)


− 3h(d2(3r2−6rw+w2)+8rw2x)µ2

w2

+ hµ2(18dr(r−w)ψ
w2

tan( 1
2 ψv)+9r2(d2−4wx) tan ( 1

2 ψv)
2

w2

+

8w3x(3d2+2wx−3dψ tan( 1
2 ψv))

(d−ψ tan( 1
2 ψv))

2

w2 + 3v
σ

,

E4,1(y, z, t) =
σ

µ


v−d2hµ2σ−8hrxµ2σ

(q+r)σ + 16hw2x2µ2

3(q+r)(−d+ψ tan( 1
2 ψv))

2 −
8dhwxµ2

(q+r)(−d+ψ tan( 1
2 ψv))

− 6dhrµ2(−d+ψ tan( 1
2 ψv))

(q+r)w − 3hr2µ2(−d+ψ tan( 1
2 ψv))

2

(q+r)w2

,
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or

R4,2(y, z, t) =
1

3(q + r)


− 3h(d2(3r2−6rw+w2)+8rw2x)µ2

w2

+ hµ2(18dr(r−w)ψ
w2

cot( 1
2 ψv)+9r2(d2−4wx) cot ( 1

2 ψv)
2

w2

+

8w3x(3d2+2wx−3dψ cot( 1
2 ψv))

(d−ψ cot( 1
2 ψv))

2

w2 + 3v
σ

,

E4,2(y, z, t) =
σ

µ


v−d2hµ2σ−8hrxµ2σ

(q+r)σ + 16hw2x2µ2

3(q+r)(−d+ψ cot( 1
2 ψv))

2 −
8dhwxµ2

(q+r)(−d+ψ cot( 1
2 ψv))

− 6dhrµ2(−d+ψ cot( 1
2 ψv))

(q+r)w − 3hr2µ2(−d+ψ cot( 1
2 ψv))

2

(q+r)w2

.

• For d2 − 4xw > 0 and w 6= 0, the hyperbolic solution is:

ψ =
√

d2 − 4wx

R4,3(y, z, t) =
1

3(q + r)

 −3h
(
d2 + 8rx

)
µ2 + 3v

σ + 16hw2x2µ2

(d+ψ tanh( 1
2 ψv))

2 +
24dhwxµ2

d+ψ tanh( 1
2 ψv)

− 9hr2µ2(d+ψ tanh( 1
2 ψv))

2

w2 +
18dhrµ2(d+ψ tanh( 1

2 ψv))
w

,

E4,3(y, z, t) =
σ

µ


v−d2hµ2σ−8hrxµ2σ

(q+r)σ + 16hw2x2µ2

3(q+r)(d+ψ tanh( 1
2 ψv))

2 +
8dhwxµ2

(q+r)(d+ψ tanh( 1
2 ψv))

+
6dhrµ2(d+ψ tanh( 1

2 ψv))
(q+r)w − 3hr2µ2(d+ψ tanh( 1

2 ψv))
2

(q+r)w2

,

or

R4,4(y, z, t) =
1

3(q + r)

 −3h
(
d2 + 8rx

)
µ2 + 3v

σ + 16hw2x2µ2

(d+ψ coth( 1
2 ψv))

2 +
24dhwxµ2

d+ψ coth( 1
2 ψv)

− 9hr2µ2(d+ψ coth( 1
2 ψv))

2

w2 +
18dhrµ2(d+ψ coth( 1

2 ψv))
w

,

E4,4(y, z, t) =
σ

µ


v−d2hµ2σ−8hrxµ2σ

(q+r)σ + 16hw2x2µ2

3(q+r)(d+ψ coth( 1
2 ψv))

2 +
8dhwxµ2

(q+r)(d+ψ coth( 1
2 ψv))

+
6dhrµ2(d+ψ coth( 1

2 ψv))
(q+r)w − 3hr2µ2(d+ψ coth( 1

2 ψv))
2

(q+r)w2

.

5. Results and Discussion

The nonlinear coupled RW equations were solved analytically using three distinct
types of derivative operator in this paper: conformable, beta, and M-truncated. These
solutions were obtained using the efficient techniques named JEFM and MAEM. The meth-
ods produced several solutions, and the resulting solutions for three distinct derivative
operators are contrasted in 2D graphs. The aforementioned techniques are used to produce
solitary waves in a variety of shapes, including bell and smooth bell solitons, anti-bell
solitons, periodic shape solitons, single kink solitons, and M- and W-shaped soliton so-
lutions. Two-dimensional line graphs provide a very helpful comparison of the different
fractional derivatives, such as β, conformable, and M-Truncated derivatives. It can be
observed that the solitary waves slightly change when the parameter’s value is varied
without changing their curve form, which shows that their travelling wave solutions are
symmetrical. The soliton solutions were obtained using the JEFM and MAEM. Using
Wolfram Mathematica 10, these travelling wave solutions were verified. Figures 1–11 were
produced by the same computer programme. They visually demonstrate how solitary
waves behave in terms of both space and time. We looked at the composition of the solution.
The graphs in the analytical solution clearly demonstrate that the JEFM and MAEM are
more trustworthy and efficient. We discovered a range of solutions with various parameters
when we solved the nonlinear coupled RW equation. These unnamed aspects affect the
findings’ character; if the parameters take on different specific values, several kinds of
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solutions can be produced from a single solution. The following shows the impact of
the solution-related factors. Regarding the 2D and 3D graphs of R1,1(y, 1, t), R2,1(y, 1, t),
R3,1(y, 1, t), E1,1(y, 1, t), E2,1(y, 1, t), and E3,1(y, 1, t), respectively, we obtained the periodic
wave solutions by considering the values m = 0.5, r = 1.5,−1.5, q = 0.9, σ = 0.1, h = 2,−5,
µ = 0.9, and v = 0.7 within the range 0 ≤ y ≤ 10, 0 ≤ t ≤ 6 for 3D graphs and t = 1 for
2D plots, as shown in Figures 1–3 by JEFM. Figures 4 and 5 represent the bell-shaped and
bright soliton 3D solutions of R1,1(y, 1, t), R1,3(y, 1, t), E1,1(y, 1, t), and E1,3(y, 1, t), and 2D
plots for the unknown constants at t= 1, h = 2.5, x = 0.1, d = 1.5, w = 1.7, r = 1.7,
σ = 0.5, µ = 0.7, v= 0.1, 0.5, q = 1, within the interval −10 ≤ y ≤ 10, 0 ≤ t ≤ 5 by MAEM.
The hyperbolic and trigonometric function solutions in R2,1(y, 1, t), R2,3(y, 1, t), E2,1(y, 1, t)
and E2,3(y, 1, t) were used to receive the corresponding anti-bell solitons and dark solitary
solutions by taking the values h = −2.5,−2.8, x = 0.1, d = 1.5, w = 1.7, r = 1.7, σ = 0.5,
µ = 0.7, v= 0.1, q = 1, within the range −10 ≤ y ≤ 10, 0 ≤ t ≤ 5 , and t = 1 for 2D plots
in Figures 6 and 7. For the trigonometric solution in R3,1(y, 1, t), R3,3(y, 1, t), E3,1(y, 1, t)
and E3,3(y, 1, t), we received the corresponding M-shape and W-shape solitary solutions
by choosing the values h = −2.5, x = 0.01, d = 1.5, w = 1.7, r = 1.7, σ = 0.5, µ = 0.9,
v= 0.1, q = 1, within the range −10 ≤ y ≤ 10, 0 ≤ t ≤ 5 , and t = 1 for 2D plots in
Figures 8 and 9. The hyperbolic function solution in R4,1(y, 1, t), R4,3(y, 1, t), E4,1(y, 1, t)
and E4,3(y, 1, t), serving as the kink-type wave soliton and single-wave solutions, respec-
tively, can be obtained by taking the values h = 2.5, x = 0.1, d = 1.5, w = 1.7, r = 1.7,
σ = 0.5, µ = 0.5, v = 0.1, q = 1, within the range −10 ≤ y ≤ 10, 0 ≤ t ≤ 6 , and t = 1 for
2D plots in Figures 10 and 11. Figures 1–11 show that each pair of travelling solutions have
a symmetrical mathematical form.
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Figure 1. Graphical presentation of the analytical solutions by JEFM: when m = 0.5, r = 1.5, q = 0.9,
σ = 0.1, h = 2, µ = 0.9, v = 0.7. (c–e): corresponding 2D plots at t = 1. (a) β-D 3D graph at δ = 0.5
for R1,1(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E1,1(y, 1, t). (c) 2D plot of M-TD at different values of
δ = 0.5, χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red) ,δ = 1,χ = 0.75 (green) for R1,1(y, 1, 1). (d) 2D plot of β-D
at different values of δ = 0.5 (blue),0.75 (red), 1 (green) for R1,1(y, 1, 1). (e) 2D plot of C-D at different
values of δ = 0.5 (blue), 0.75 (red), 1 (green) for R1,1(y, 1, 1). (f) A comparison between M-TD (blue),
β-D (green) and C-D (red) at δ = 0.5 for R1,1(y, 1, 1).
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Figure 2. Graphical presentation of the analytical solutions by JEFM: when m = 0.5, r = 1.5, q = 0.9,
σ = 0.1, h = 2, µ = 0.9, v = 0.7. (c–e): corresponding 2D plots at t = 1. (a) β-D 3D graph at δ = 0.5
for R2,1(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E2,1(y, 1, t). (c) 2D plot of M-TD at different values of
δ = 0.5, χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red) ,δ=1,χ = 0.75(green) for E2,1(y, 1, 1) . (d) 2D plot of β-D
at different values of δ = 0.5 (blue), 0.75 (red), 1 (green) for E2,1(y, 1, 1). (e) 2D plot of C-D at different
values of δ = 0.5 (blue), 0.75 (red), 1 (green) for E2,1(y, 1, 1). (f) A comparison between M-TD (blue),
β-D (green) and C-D (red) at δ = 0.5 for E2,1(y, 1, 1).
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Figure 3. Graphical presentation of the analytical solutions by JEFM: when m = 0.5, r = −1.5, q = 0.9,
σ = 0.1, h = −5, µ = 0.9, v = 0.7. (c–e): corresponding 2D plots at t = 1. (a) β-D 3D graph at δ = 0.5
for R3,1(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E3,1(y, 1, t). (c) 2D plot of M-TD at different values of
δ = 0.5,χ = 0.25 (blue),δ = 0.75, χ = 0.5 (red) ,δ=1, χ = 0.75 (green) for R3,1(y, 1, 1) . (d) 2D plot of β-D
at different values of δ = 0.5 (blue), 0.75 (red), 1 (green) for R3,1(y, 1, 1). (e) 2D plot of C-D at different
values of δ = 0.5 (blue), 0.75 (red), 1 (green) for R3,1(y, 1, 1). (f) A comparison between M-TD (blue),
β-D (green) and C-D (red) at δ = 0.5 for R3,1(y, 1, 1).
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Figure 4. Graphical presentation of the analytical solutions by MAEM: when h = 2.5, x = 0.1,
d = 1.5,w = 1.7, r = 1.7, σ = 0.5, µ = 0.7, v = 0.1, q = 1. (c–e): corresponding 2D plots at t = 1.
(a) β-D 3D graph at δ = 0.5 for R1,1(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E1,1(y, 1, t). (c) 2D plot
of M-TD at different values of δ = 0.5, χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red), δ=1, χ = 0.75 (pur-
ple) for R1,1(y, 1, 1). (d) 2D plot of β-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for
R1,1(y, 1, 1). (e) 2D plot of C-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for R1,1(y, 1, 1).
(f) A comparison between M-TD (blue), β-D (green) and C-D (red) at δ = 0.5 for R1,1(y, 1, 1).
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Figure 5. Graphical presentation of the analytical solutions by MAEM: when h = 2.5, x = 0.1,
d = 1.5,w = 1.7, r = 1.7, σ = 1.5, µ = 1, v = 0.5, q = 1. (c–e): corresponding 2D plots at t = 1.
(a) β-D 3D graph at δ = 0.5 for R1,3(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E1,3(y, 1, t). (c) 2D plot
of M-TD at different values of δ = 0.5, χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red), δ=1, χ = 0.75 (purple)
for E1,3(y, 1, 1). (d) 2D plot of β-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for
E1,3(y, 1, 1). (e) 2D plot of C-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for E1,3(y, 1, 1).
(f) A comparison between M-TD (blue), β-D (green) and C-D (red) at δ = 0.5 for E1,3(y, 1, 1).
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Figure 6. Graphical presentation of the analytical solutions by MAEM: when h = −2.5, x = 0.1,
d = 1.5,w = 1.7, r = 1.7, σ = 0.5, µ = 0.7, v = 0.1, q = 1. (c–e):corresponding 2D plots at t = 1.
(a) β-D 3D graph at δ = 0.5 for R2,1(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E2,1(y, 1, t). (c) 2D plot
of M-TD at different values of δ = 0.5, χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red), δ =1, χ = 0.75 (purple)
for R2,1(y, 1, 1). (d) 2D plot of β-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for
R2,1(y, 1, 1). (e) 2D plot of C-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for R2,1(y, 1, 1).
(f) A comparison between M-TD (blue), β-D (green) and C-D (red) at δ = 0.5 for R2,1(y, 1, 1).
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Figure 7. Graphical presentation of the analytical solutions by MAEM: when h = −2.8, x = 0.1,
d = 1.5,w = 1.7, r = 1.7, σ = 1.5, µ = 1, v = 0.5, q = 1. (c–e): corresponding 2D plots at t = 1.
(a) β-D 3D graph at δ = 0.5 for R2,3(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E2,3(y, 1, t). (c) 2D plot
of M-TD at different values of δ = 0.5,χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red) ,δ=1, χ = 0.75 (purple)
for E2,3(y, 1, 1). (d) 2D plot of β-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for
E2,3(y, 1, 1). (e) 2D plot of C-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for E2,3(y, 1, 1).
(f) A comparison between M-TD (blue), β-D (green) and C-D (red) at δ = 0.5 for E2,3(y, 1, 1).
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Figure 8. Graphical presentation of the analytical solutions by MAEM: when h = 2.5, x = 0.01,
d = 1.5,w = 1.7, r = 1.7, σ = 0.5, µ = 0.9, v = 0.1, q = 1. (c–e):corresponding 2D plots at t = 1.
(a) β-D 3D graph at δ = 0.5 for R3,1(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E3,1(y, 1, t). (c) 2D plot
of M-TD at different values of δ = 0.5, χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red), δ=1, χ = 0.75 (purple)
for R3,1(y, 1, 1). (d) 2D plot of β-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for
R3,1(y, 1, 1). (e) 2D plot of C-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for R3,1(y, 1, 1).
(f) A comparison between M-TD (blue), β-D (green) and C-D (red) at δ = 0.5 for R3,1(y, 1, 1).
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Figure 9. Graphical presentation of the analytical solutions by MAEM: when h = −2.5, x = 0.01,
d = 1.5,w = 1.7, r = 1.7, σ = 0.5, µ = 0.9, v = 0.1, q = 1. (c–e): corresponding 2D plots at t = 1.
(a) β-D 3D graph at δ = 0.5 for R3,3(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E3,3(y, 1, t). (c) 2D plot
of M-TD at different values of δ = 0.5,χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red), δ=1, χ = 0.75 (purple)
for E3,3(y, 1, 1). (d) 2D plot of β-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for
E3,3(y, 1, 1). (e) 2D plot of C-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for E3,3(y, 1, 1).
(f) A comparison between M-TD (blue), β-D (green) and C-D (red) at δ = 0.5 for E3,3(y, 1, 1).
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Figure 10. Graphical presentation of the analytical solutions by MAEM: when h = 2.5, x = 0.01,
d = 1.5,w = 1.5, r = 1.5, σ = 0.5, µ = 0.5, v = 0.1, q = 1. (c–e): corresponding 2D plots at t = 1.
(a) β-D 3D graph at δ = 0.5 for R4,1(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E4,1(y, 1, t). (c) 2D plot
of M-TD at different values of δ = 0.5, χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red), δ=1, χ = 0.75 (purple)
for R4,1(y, 1, 1). (d) 2D plot of β-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for
R4,1(y, 1, 1). (e) 2D plot of C-D at different values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for R4,1(y, 1, 1).
(f) A comparison between M-TD (blue), β-D (green) and C-D (red) at δ = 0.5 for R4,1(y, 1, 1).
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Figure 11. Analytical solutions by MAEM: when h = 2.5, x = 0.01, d = 1.1, w = 1.7, r = 1.7, σ = 0.1,
µ = −1.5, v = −0.1, q = 1.5. (c–e): corresponding 2D plots at t = 1. (a) β-D 3D graph at δ = 0.5 for
R4,3(y, 1, t). (b) β-D 3D graph at δ = 0.5 for E4,3(y, 1, t). (c) 2D plot of M-TD at different values of
δ = 0.5, χ = 0.25 (blue), δ = 0.75, χ = 0.5 (red), δ=1, χ = 0.75 (purple) for E4,3(y, 1, 1). (d) 2D plot of β-D
at different values of δ = 0.5 (blue),0.75 (red), 1 (purple) for E4,3(y, 1, 1). (e) 2D plot of C-D at different
values of δ = 0.5 (blue), 0.75 (red), 1 (purple) for E4,3(y, 1, 1). (f) A comparison between M-TD(blue),
β-D (green) and C-D (red) at δ = 0.5 for E4,3(y, 1, 1).

6. Conclusions

In this paper, analytical solutions to the nonlinear coupled Riemann wave (RW) equa-
tions were found using the modified auxiliary equation and Jacobi elliptic function tech-
niques. We developed solitary wave solutions for each of the examined equations that
contain certain unknown parameters. The periodic wave solution, bright, dark, or anti-
bell-shaped soliton solutions, M-shaped, W-shaped soliton solutions, and kink-type soliton
solutions were obtained using the concepts of fractional derivatives, i.e., β, conformable,
and M-truncated derivatives. This paper analyses the derivatives on a comparative basis.
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According to the results, all the derivatives are satisfactory, but β-D has a better form.
The discovered solutions will help in the study of problems related to engineering, me-
chanical theory, tsunamis, and tidal waves. The fractional derivative’s impact on the
analytical solution of the RW equation was finally illustrated using the Mathematica tools
in Figures 1–11.
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