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Abstract: Granger causality (GC) is a popular method in causal linkage recovery and has been
applied to various fields, such as economics and neuroscience. While the conventional Granger
causality model is capable of identifying symmetrical causal relationships among variables, it is the
asymmetric Granger causality that provides a more comprehensive perspective of the short- and long-
term interactions between variables, which is of greater value for empirical study. Traditional vector
autoregressive models lack the ability to explore multiscale information flow and are affected by the
moving average component. Therefore, by combining the wavelet-based approach and state space
model, we propose a new Granger causality analysis method to overcome the inherent limitation
of vector autoregressive models and extend to multiscale causality exploration. Two simulations
were conducted to compare the proposed approach to an existing wavelet-based method, and five
evaluation indicators were utilized. The results indicate that the proposed method efficiently identifies
the accurate asymmetric causalities at varying scales, while improving accuracy and reducing bias
as compared to the current wavelet-based method. In conclusion, the combination of the wavelet
approach and state space method enhances the multiscale causality detecting capability and can
potentially contribute to multiscale Granger causality research.

Keywords: Granger causality; state space model; wavelet transform; multiscale analysis

1. Introduction

Granger causality, which was proposed and refined by Norbert Wiener and Clive
Granger, is primarily used to establish the presence of causal linkages across variables in
econometric research [1].

In 1956, Norbert Wiener [2] first suggested that Y could be called the cause of X if
adding the information of Y would improve the prediction of X. However, it was not until
1969 that Clive Granger provided a concrete implementation of a linear autoregressive
model based on the stochastic process [3].

In the simplest bivariate case, Granger causality is calculated by first dividing the
variables X and Y into two sets: one set contains all the variables and the other only contains
the target variable X, which are used to constructed two separate vector autoregressive
(VAR) models—the full VAR models and the restricted VAR models. These give the
residual covariance matrices of the two models, and the Granger causality from Y to X can
be defined as the likelihood ratio of residual covariance between the restricted and full
models.

Since Granger causality is related to the flow of information across variables, it has
been used in a growing number of studies in various fields, including the inference of
information flow in the human brain as well as the analysis of economic and engineering
data [4–8]. With the growing number of potential applications, Granger causality analysis
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is increasingly being employed to investigate multivariate and multiscale data scenarios.
Moreover, recent research has explored the potential to extend Granger causality analysis
to the compression domain, highlighting the versatility and adaptability of this technique
to various applications and fields [9].

However, the traditional VAR models only consider the bivariate case, which may
be affected by confounding factors or joint distributions in the multivariate case. Further-
more, traditional VAR models are unable to take into account the dynamic complexity of
individual processes at various time scales and therefore need to be modified to apply to
multiscale data, or we can consider investigating other models that are more suitable for
multivariate or multiscale analysis.

Geweke [10] originally introduced the concept of symmetric Granger causality, which
refers to a dual causality relationship between two variables, whereby X Granger causes Y,
and Y Granger causes X simultaneously, and generalized Granger causality to a multivari-
ate approach that has been developed and well proven throughout time [11].

Although there are several restrictions, using VAR models for Granger causality
analysis typically necessitates that the data adhere to the smoothness and linearity criteria.
If there is a co-dependent third variable for both variables, it may lead to a spurious causal
relationship, which can be eliminated by considering co-dependencies. When dealing with
exogenous or latent variables, it may be challenging to entirely eliminate their confounding
effects. Nonetheless, in such situations, the application of conditional Granger causality
can help reduce their impact on the analysis to a certain extent [12].

A Matlab toolbox named Granger causal connectivity analysis (GCCA) developed by
Seth A. K. et al. [13] in 2010 can be used to conduct Granger causal linkage analysis on
various neuroscience data, including functional magnetic resonance imaging (fMRI). The
updated multivariate Granger causality (MVGC) toolbox applied to multivariate variables
was proposed in 2014. It contains computations for conditional and unconditional, time
and frequency domains, and pairwise Granger causality based on the VAR model [14],
helping to discover symmetric and asymmetric Granger causality.

Even though the VAR model is straightforward and simple to estimate, it has a
significant limitation, in that moving average components can lead to an infinite number
of model orders or require a larger number of model orders to model a finite number of
small samples. This not only reduces the statistical effectiveness but also enhances biases,
weakening the ability to obtain accurate estimates of Granger causality. Moving average
components are common in time series modeling, whether they are inherent to the time
series itself, or generated during data sampling and processing.

Numerous research studies have sought to minimize estimation bias when applying
Granger causality analysis. One of the proposed solutions involves utilizing a combination
of lasso regression and genetic algorithm, facilitated by initialization, selection, feature
cross over, and mutation, to overcome coefficient overfitting [15]. Similarly, a new unified
Granger causality method has been proposed, addressing the inconsistency between model
order selection criteria and hypothesis testing procedures [16]. This method utilizes the
minimum description length principle to reconcile the two stages, offering a promising
approach for future multiscale research.

The state space model has been applied to overcome moving average components and
demonstrated that it can achieve better statistical power and less bias than the traditional
AR model as well as a strong Granger causality maintained with noise and downsam-
pling [17,18]. These are due to the fact that the state space model has the equivalence
to the auto regression moving average (ARMA) model and is independent of noise and
downsampling [19]. Additionally, the state space model was integrated with recurrent
neural networks by the researchers in order to increase prediction accuracy by accounting
for background information that might have an impact on the target time series [20].

Complex system time series with multiscale features are very common in practical
applications, such as heartbeat signals, rainfall time series, and electroencephalogram
data [21–23]. Time series with multiscale characteristics usually fluctuate at different time
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scales, implying that system transformations have a multi-level time scale structure and
time domain localization characteristics. This is the aspect that traditional time domain
Granger causality analysis cannot investigate. It is crucial to consider approaches to
overcome the limitations of the VAR model, better accommodate the multiscale features of
the data, and improve the precision of Granger causality analysis.

Costa et al. [24] presented a multiscale entropy approach and used it to analyze
the multiscale properties of the cardiovascular signals data. Faes et al. [25] proposed a
multivariate stochastic process analysis framework based on the state space model. This
framework explored a weighted average rescaling operation, which equals to the effects of
averaging and downsampling. The authors successfully applied this method to explore
multiscale Granger relationships using carbon dioxide (CO2) and global temperature data.

Reducing CO2 emissions is a crucial aspect of sustainable development. Recent studies
have analyzed the factors that influence CO2 emissions from various perspectives such
as technology and innovation, financial development, and human development. Policy
advice is provided based on these analyses.

A panel causality analysis using the cross-sectional autoregressive distributed lag
(CS-ARDL) method was conducted to investigate the factors affecting CO2 emissions in a
panel of BRICS (i.e., Brazil, Russia, India, China, and South Africa) countries [26]. Similarly,
the impact of greenhouse gas emissions on the Group of Seven economy was studied
from the viewpoint of environment-related information and communication technologies
innovations [27]. Adebayo et al. adopt the Fourier quantile causality test to examine
the causal impact of environmental quality in China [28]. The study explores the causal
relationships between CO2 emissions, ecological footprint, and load capacity factor.

However, as society develops, CO2 emissions display diverse patterns over time.
Therefore, a multiscale analysis can better assist researchers in identifying causal relation-
ships at various time scales.

The multiscale analysis is generally used to evaluate the intrinsic structure of a single
time series and the multiscale representation of the interaction of information from two
time series. It assesses the multiscale dynamic nature of a sequence by resampling the
original time series of a complex process at different time scales, thus revealing the structure
at multiple time scales and better reflecting information about the dynamics of the complex
system [29].

In order to better analyze multiscale data, Lungarella M et al. proposed multiscale
transfer entropy based on wavelet transform [30]. This method projects the time series into
wavelet space to obtain a new set of variables from which causal linkages can be extracted
at many scales.

The wavelet transform is a signal processing technique that represents instantaneous or
non-stationary signals in terms of time and scale distributions, and it has good localization
capabilities for localizing time series [31].

Stramaglia et al. introduced a wavelet-based multiscale Granger analysis technique
that overcomes the computational complexity associated with filtering and downsampling
at multiple scales [32]. The method employs the á trous wavelets that maintain translation
invariance in the processing of time series, with decomposition coefficients at every level
equating to the original time series length. The wavelet-transformed data are then utilized
as a substitute for the driving variable data for Granger causality analysis. It is worth noting,
however, that this approach depends on the VAR model’s inherent weaknesses previously
mentioned, which may potentially increase the likelihood of producing inaccurate results.

Although multiscale Granger causality has been subjected to extensive research, the
majority of these studies have employed the VAR model without addressing its limitations.

To improve the limitations mentioned in this section, the state space model with the
advantage of downsamplng independence and the equality to ARMA model is considered
in this paper, and a multiscale wavelet analysis framework based on the state space model is
proposed, which can improve the accuracy and robustness of Granger causality compared
to the VAR model.
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The paper is structured into the following sections. Section 2 provides definitions of
multiscale Granger causality and state space models and introduces the proposed approach
in detail. Section 3 outlines the evaluation indicators adopted in this research and presents a
comparative experiment between the methods of this paper and the wavelet-based method.
The experimental results are then illustrated and discussed. Lastly, Section 4 concludes the
study and offers suggestions for future work.

2. Materials and Methods
2.1. Granger Causality

Start with n smooth complex processes Yn = [y1,n, . . . , yM,n]
T , which are composed of

M zero-mean scalar processes, respectively. Suppose yj is the target variable and yi is the
driver variable, then the remaining M− 2 processes of Yn make up Yk, where k denotes
the difference set of {1, 2, . . . , M} and {i, j}. Let Y−n denotes the past information of Yn, y−n
denotes the past information of yn. Then, the Granger causality from yi to yj means the
extent of predicted improvement that based on the use of y−j,n and Y−k,n to predict yj,n, the

addition of y−i,n makes.
Use all past processes to predict the present of target variable, which is named full

regression. The prediction error for this method can be determined using the follow-
ing equation:

εn = yj,n −E[yj,n|Y−n ] (1)

where E is the expectation operator.
The prediction error of the restricted regression is obtained by using the past of all

variables, except the driving variable to predict the present of the target variable as follows:

εR
n = yj,n −E[yj,n|y−j,n, Y−k ] (2)

where the superscript R represents reduced regression.
By calculating the log-likelihood values of the two regression prediction errors which

are λ = E[εnεT
n ] and λR = E[εR

n (ε
R
n )

T ], where the superscript T represents the transpose.
The Granger causality values from yi to yj can be obtained as follows:

Fi→j = ln
λR

λ

2.2. State Space Model

Consider a general constant state space (SS) model,

Xt+1 = AXt + Wt

Yt = CXt + Vt
(3)

where Wt and Vt are noisy variables with semi-positive definite covariance, which means

var
(

Wt
Vt

)
=

(
Q S
ST R

)
. The parameters for model (3) is (A, C, Q, R, S).

After projecting the state variable onto the space tensed by the past of the observed
variable, that is Zt = E

{
Xt|Y−t−1

}
, where Y−t−1 =

[
YT

t−1, YT
t−2 . . .

]T is an infinite column
vector. Zt can also be considered the new state variable as well as the residuals of a linear
regression on the variable yt, using infinite past.

In this way, the innovations of state space model (ISS) for Zt which is equal to SS
model can be described as follows:

Zt+1 = AZt + KEt,

Yt = CZt + Et
(4)
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where the innovation is defined as Et ≡ Yt − E
{

Yt|Y−t−1
}

, with covariance matrix Σ ≡
E
{

EtET
t
}

. The parameters for model (4) are (A, C, K, Σ).
According to the ISS model, the error of the full regression can be obtained as λ f ull =

Σ(j, j). In order to obtain the error of the restricted regression, we consider the state space
model (4) with the submodel, removing the driving variable. In this regard, the first
equation retains the same form as in (4), while the second equation is formulated as follows:

Zt+1 = AZt + Kεt,

Y(jk)
t = C(jk)Zt + ε

(jk)
t

(5)

where the superscript (jk) denotes the selection of the j, k rows in the matrix. At this point,
the parameters of the state space model (5) are (A, C(jk), KΣKT , Σ(jk, jk), KΣ(:, jk)). It is
notable that the ISS model and the SS model are mutually interchangeable as reported by
Barnett and Takahashi in 2015 [17]. Specifically, the parameters of the SS model can be
transformed into corresponding parameters of the ISS model by resolving the DARE equa-
tion. By implementing this transformation, the error λrestricted = ΣR(j, j) of the constrained
model can be deduced.

Finally, the Granger causality can be calculated as follows:

Fi→j = ln
ΣR(j, j)
Σ(j, j)

2.3. Wavelet Transform

The approach of the wavelet transform, which is grounded on the short-time Fourier
transform, provides a possibility for local analysis of time–frequency through examination
of the fluctuation of each moment or spatial position across multiple time scales. Distinct
from the Fourier transform, the wavelet transform exhibits tight support and, therefore,
proves to be advantageous for investigating well-defined signals confined within a specific
temporal window.

Let ψ(t) be the mother wavelet, and a stretching translation yields the subwavelet
ψa,b(t) = 1√

a ψ( t−b
a ), where a 6= 0 is called the scale factor for stretching, and 1√

a ensures
that ψa,b(t) has a norm value of 1; b is called the translation factor and is used to translate.
Then the discrete wavelet transform of the signal f (t) is defined as the function about a
and b, which obtains the projection of the original signal f (t) onto the mother wavelet. The
∗ in the following equation means complex conjugation:

Wψ f (a, b) = ∑
t

f (t)ψ∗a,b(t)

Several mother wavelets are frequently utilized in signal analysis, such as Haar
wavelets, Mexican cap wavelets, and Morlet wavelets. However, not all wavelets are
appropriate for this purpose. For instance, while Mallat wavelets utilize orthogonal bases,
they lack translation invariance. As such, to acquire a translation-invariant wavelet decom-
position, the discrete wavelet transform of the á trous algorithm is implemented for signal
decomposition.

The á trous algorithm separates the high-frequency and low-frequency information in
the signal f (t) by repeatedly using low-pass filtering h(n). In this paper, h = 1

16 [1, 4, 6, 4, 1]
is chosen as the low-pass filter. The high-frequency information corresponds to the coeffi-
cient terms of the wavelet transform and the low-frequency information corresponds to the
approximation terms of the wavelet coefficients. The approximation of the signal at each
scale is first obtained:

as(t) = ∑
n

h(n)as−1(t + 2s−1n) (s = 1, . . . , N)
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where a0(t) is the original discrete signal f (t), n = 1, 2, . . . , 5, s is the scale index, and
N is the maximum number of scales. Then the wavelet coefficients are defined as
cs(t) = as−1(t)− as(t). The reconstruction of the signal is completed by adding the last
smoothed signal aN(t) and the wavelet coefficients at all scales as follows:

f (t) = aN(t) +
N

∑
s=1

cs(t)

It is worth noting that the á trous algorithm has the same length at each scale as the
original signal, which allows the signal to be decomposed without bias, as well as better
detection of detailed signals.

2.4. The Analysis Framework Proposed in This Paper

Building on the theories explained earlier, this paper introduces a novel method called
Granger causality with wavelet transform and state space model (GTSS), which considers
replacing the driving variable yi with the wavelet coefficients at the corresponding scale
and using state space model for Granger causality analysis. Since the restricted regression
does not use the data of the driving variable yi, the error of the restricted regression is not
affected by the wavelet transform and remains as shown in Equation (2). Meanwhile, the
prediction error of the full regression is εs = yj − E[yj|y−j , Y−k , c−s ], then we can gain the

variance by ΣR
s (j, j) = E[εsεT

s ].
Therefore, under the scale s, the Granger causality values from yi to yj can be obtained

as follows:

Fs
i→j = ln

ΣR
s (j, j)

Σ(j, j)

The proposed analytical framework of GTSS involves the following steps:
Step 1: Employ the á trous wavelets as the mother wavelet to perform wavelet decom-

position on the original time series, and obtain the wavelet coefficients Cn = [c1,n, . . . , cN,n]
at each scale.

Step 2: Replace the data of driving variable yi with the wavelet coefficients cs for scale
s, resulting in Ys = [y1,n, . . . , yi−1,n, cs,i, yi+1,n, . . . , yM,n]

T .
Step 3: Estimate the model parameters using the modified Ys and calculate the Granger

causality values at scale s.
Step 4: Repeat Step 2 to 3 by varying the scale value s.
Step 5: Save the Granger causality values across multiple scales.
The flow of empirical analysis is presented in Figure 1 which adopts a multi-step

methodology.
The process begins with conducting the augmented Dickey–Fuller (ADF) stationary

test. If the data are observed to be stationary, Granger causality analysis follows. Alterna-
tively, if the data are non-stationary, differential transform is performed until stationarity is
obtained before proceeding with the GTSS method. The GTSS method involves wavelet
transform, including wavelet decomposition and wavelet coefficient replacement, followed
by Granger causality estimation at each scale s. The process iterates by changing the scale
value s and repeating wavelet transform and causality estimation. Upon obtaining the
hypothesis test results through the GTSS method, evaluation indicators, such as the reject
rate and mean square error, are calculated to confirm the presence of a causal relationship.
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Yes

No Differential 
Transform

Wavelet Transform

Model Parameters Estimation

Granger Causality Estimation

Hypothesis Test

Results

Stationary
Test

Scale

Change

Figure 1. Flow of analysis. The green dashed part in this figure is the steps of the GTSS method.

3. Simulation Study and Results

This section presents experiments on Granger causality with the wavelet transform
method (GT) proposed by Stramaglia S. et al. [32] and the GTSS method proposed in
this paper, analyzing the results for the bivariate and multivariate cases, respectively, and
comparing the advantages and disadvantages of the two methods.

3.1. Evaluation Indicator

The following experiments incorporate several evaluation indices that assist in the
analysis. The calculation of each is explained below.

First, the coefficient bias [8] between the estimated and defined values of the VAR
models is calculated to investigate the validity of the model estimation method in this
paper. The coefficient bias (CB) is defined as follows:

CB =
‖A− AT‖1
‖A‖1

where ‖•‖1 is the L1 norm, A is the estimated value of the model coefficient matrix, and
AT is a pre-defined model coefficient matrix.

However, due to the absence of prior knowledge of the actual causal flow in reality, it
is difficult to determine the accuracy of the utilized model, which is typically evaluated by
comparing to the real causality. To address this challenge, we developed the reject rate and
overall reject rate as evaluation metrics for assessing causal outcomes.

The reject rate (RR), which is calculated according to the significance tests’ results, is
defined as follows:

RR =
NRS
TNS

where NRS represents the number of rejections for significance tests, and TNS represents
the total number for significance tests.

This evaluation index measures the innate detection capability of the algorithm. A
low rejection rate in instances of actual causality suggests that the algorithm is proficient in
generating accurate estimates without resorting to hypothesis testing, thereby reducing
reliance on such methods. Conversely, a high rejection rate in situations where no actual
causality exists demonstrates that the accuracy of the estimate can be improved through
the application of hypothesis testing techniques.
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To better see the overall effect, in this paper, the reject rates in both cases are combined
into one indicator named overall reject rate (ORR) as follows:

ORR = RRE + 1− RRN

where RRE is the reject rate where Granger causality exists, and RRN represents the reject
rate for when it does not exist.

The mean square error (MSE) from i to j and accuracy are used in the simulation study
and calculated as follows:

MSEi→j =
1

ntrial
Σntrial

n=1 (GCn − GCt)
2

where ntrialis the number of trials, GCn is the estimated Granger causality value from i to j
in the nth trial, and GCt is the theoretical value.

The final indicator used in this paper is accuracy, a commonly utilized measure to
evaluate the degree of concordance between predicted outcomes and actual outcomes. It is
defined as follows:

Accuracy =
TP

TP + FP
where TP means the number of consistent results between the estimated and predefined
models, while FP denotes the number of instances where the predicted results differ from
the predefined causality.

3.2. Example 1: Multivariate Series System

In this section, a VAR(3) model is used to conduct simulations and preform theoretical
analysis. The VAR model equation is presented below,x1

x2
x3

 =

2r1cos(θ1) 0 0
−0.356 2r2cos(θ2) 0

0 −0.3098 2r3cos(θ3)

x1,t−1
x2,t−1
x3,t−1

+

 −r2
1 0 0

0.7136 −r2
2 0

0 0.5 r2
3

x1,t−2
x2,t−2
x3,t−2


+

 0 0 0
−0.356 0 0

0 −0.3098 0

x1,t−3
x2,t−3
x3,t−3

+

ω1,t
ω2,t
ω3,t


where ri = {0.9, 0.7, 0.8}, θi = fi∆t2π, i = {1, 2, 3}, and suppose the sample rate is
1
∆ = 120 Hz and let fi = {40, 10, 50} Hz. Thus, a model which has the causality from
x1 to x2 and from x2 to x3 can be obtained.

Multiple sets of observations were generated based on the model coefficients, us-
ing three different numbers of trials denoted as ntrial = {1, 10, 100}. Each time series
observation within the sets is of length N = 500.

Initially, the impact of varying model order on model estimation is explored. The
value of the trial and model order are set to {10, 100} and {3, 4, 5, 10, 20}, respectively. The
following experiments are all executed with the maximum scale 4 and the significant value
α = 0.05.

Table 1 displays the outcomes obtained by GT and GTSS. To accurately estimate the
coefficients of the VAR model for the time series data, a suitable estimation technique is
necessary since the coefficients serve as the basis for defining and computing Granger
causality. The accuracy of the coefficient estimation method plays a pivotal role in the
effectiveness of the Granger causality model estimation. In this paper, the VAR coefficients
utilized are estimated using the locally weighted regression (LWR) algorithm, which
recursively computes the coefficient matrix of the inferred regression model. This algorithm
possesses the merits of stability and swift computation, in comparison to the ordinary
least square (OLS) algorithm. Moreover, it proves to be more appropriate for selecting
models based on likelihood procedures, such as the Akaike information criterion (AIC) and
Bayesian information criterion (BIC) [14].
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Table 1. The results of GT and GTSS.

GTSS GT

Trial Order CB RR Accuracy ORR RR Accuracy ORR

10

3 0.0322 0.7958 0.8542 0.1458 0.7958 0.6708 0.3097
4 0.0600 0.8083 0.8333 0.1667 0.8438 0.6208 0.3313
5 0.0747 0.8417 0.8083 0.1917 0.8523 0.6458 0.3223
10 0.0773 0.8000 0.8417 0.1583 0.8951 0.6792 0.3126
20 0.0860 0.7750 0.8750 0.1250 0.9416 0.7208 0.3234

100

3 0.0101 0.8075 0.8525 0.1475 0.8076 0.6767 0.3079
4 0.0202 0.8404 0.8204 0.1796 0.8516 0.6600 0.3129
5 0.0250 0.8513 0.8113 0.1888 0.8635 0.6825 0.3143
10 0.0228 0.8171 0.8421 0.1579 0.8989 0.7292 0.3136
20 0.0275 0.7925 0.8700 0.1300 0.9421 0.7271 0.3229

Upon examining the experimental outcomes, we observe that for various trial and
order numbers, the variation of the VAR coefficients does not surpass 0.1, implying that the
LWR algorithm comparatively optimizes the VAR model. However, as the model order
heightens, bias occurs in the coefficient estimation procedure that grows expeditiously. This
phenomenon could be attributed to heightened computation noise with respect to larger
orders [8]. To minimize this bias, a solution might entail repeated experimentation.

By comparing the GTSS and GT methods, it can be found that under the same number
of trials and model orders, the rejection rate of the GTSS method is smaller than that of GT,
and the correct rate is much higher than that of GT. Under the same number of trials of
different orders, there is no obvious pattern in the change of the correct rate.

When the number of trials remains steady while model orders vary, the correct rate
tends to decrease and then rise again as the model order increases. Additionally, in the
GTSS approach, the rejection rate displays a similar pattern of initially increasing and
subsequently decreasing, while the GT rejection rate increases as the end of the model rises.
Regarding ORR, GTSS is generally inferior to GT in numerous instances.

Based on the above discussion, it is easy to see that the model order has a greater
impact on the Granger causality analysis, and in order to better fit the model corresponding
to the data, we use an order adaptive approach rather than a fixed order. The model order
was estimated according to the AIC criterion, and Granger causality of the model was
estimated using the GT and GTSS methods, respectively.

Table 2 displays the comparison of accuracy and ORR between GTSS and GT. In terms
of accuracy, GTSS generally outperforms GT, and GT increases with the number of trials.
On the other hand, GTSS achieves the maximum accuracy at trial number 1. This inders
that the GTSS method achieves better results for single trial, which is in line with the
practical application. Since single sets of experimental data are typical in practical scenarios,
additional methods such as the Amplitude Adjusted Fourier–Transformed (AAFT) or
improved AAFT (IAAFT) algorithm become necessary to generate test data with matching
distribution and autocorrelation for multiple trial analyses [33]. In comparison, both
techniques perform consistently in terms of ORR, as their accurate rates indicate.

Table 2. The accuracy and ORR value for different trials.

Trial
Accuracy ORR

GTSS GT GTSS GT

1 0.875 0.542 0.125 0.334
10 0.842 0.654 0.158 0.309
100 0.848 0.723 0.152 0.298
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The results of 100 trials are shown in Figure 2 as an example. The GTSS method only
generated GC values on x1 → x2 and x2 → x3 where Granger causality are truly present,
whereas the GT method generated Granger causality under all combinations of variables,
some of which are spurious.

The dispersion in this picture reflects the 90 percent confidence interval, while the
median represents the median Granger causality value of 100 trials.

      

    
 

   

 
      

    
 

   

      

    
 

    

    
      

    
 

   

   

      

    
 

    

    
      

    
 

    

    
             

         

               

           

Figure 2. This is the results of VAR(3) with 100 trials. The y−axis is the Granger causality value and
the x−axis is the scale. The orange and gray dispersion area contain the 100 trials’ results of GTSS
and GT respectively.

3.3. Example 2: Bivariate Series System

Next, a VAR(1) model is analysis which has the following structure,[
xt
yt

]
= A

[
xt−1
yt−1

]
+

[
ω1,t
ω2,t

]

where A =

[
0.4 0.8
0 0.5

]
, hence the model has the Granger causality from y to x.

According to Equation (6) [34], the theoretical Granger causality value in scale = 1
is 0.5578.

Fy→x = ln

1 + A2
22 + A2

12 +
√
(1 + A2

22 + A2
12)− 4A2

22

2

 (6)

Then 100 realization with 104 nobs are generated according to VAR(1) model. The
Granger causality of the model is estimated using the GT and GTSS methods respectively
and the results are shown in Table 3, where MSE is the mean square error at scale = 1.
Based on the results in Table 3, it is clear that the GTSS method outperforms the GT method
for all three indicators.

Table 3. Comparison between GT and GTSS with the results of 100 trials.

Method Accuracy ORR MSE

GT 0.869 0.284 0.252
GTSS 0.998 0.003 0.002



Symmetry 2023, 15, 1286 11 of 14

The scale−GC plots were plotted before and after hypothesis testing in Figure 3. From
Figure 3a, the estimates of both methods were small in the direction of no causality, which
is the 1 to 2 direction in the picture. After the hypothesis testing shown in Figure 3b, GTSS
could obtain the correct causality relationship, but GT still had individual spurious causality.
In addition, GTSS yields GC estimates that are close to the theoretical values, while GT
estimates are considerably smaller than GTSS and the theoretical values on several scales.

(a) Before Test

(b) After Test

Figure 3. The results of VAR(1) before and after hypothesis test. (a) The result before hypothesis test;
(b) the result after hypothesis test. The orange and gray parts represent GTSS and GT as described in
Figure 2.

We plotted scale−GC plots in Figure 4 in order to explore the relationship between
causal strength and the GC value by varying the A(2, 1) term in the coefficient matrix A,
which is the causal strength of y→ x. The GC value displayed in the figure corresponds
to the mean value obtained after 100 trials. The results demonstrated that the GC val-
ues obtained using both methods increased as the value of causality strength increased,
eventually reaching a maximum value at the lag of 1.

The MSE of the GC values for both methods at scale = 1 is compared in Table 4. At
minimal levels of causal strength, the MSE of both techniques is negligible in part due to
comparatively low GC estimates and the absence of significant outliers in their estimations.
Nevertheless, as causal strength heightens, the MSE concurrently escalates. In comparison
to GT, the MSE remains consistently lower in GTSS, indicating its superior ability to restore
Granger causality values.
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Figure 4. The plot displays the scale−GC for various causal strengths, where the y−axis represents
the Granger causality value, and the x−axis represents the scale. The corresponding line colors for
different causality strengths are indicated in the legend located on the right-hand side of the plot.
(a) the results of GTSS; (b) the results of GT.

Table 4. The MSE with different causal strength. MSEGTSS means the MSE using GTSS method, and
MSEGT means the MSE using GT method.

Strength MSEGTSS MSEGT

0.05 0.0000 0.0000
0.1 0.0000 0.0001
0.2 0.0001 0.0018
0.3 0.0003 0.0081
0.4 0.0006 0.0236
0.5 0.0011 0.0527
0.8 0.0025 0.2519

4. Conclusions

System transformations exhibit a multi-timescale structure and possess localization
properties in the time domain, resulting in fluctuations that transpire across multiple time
scales. These attributes cannot be sufficiently scrutinized with conventional time domain
Granger causality analyses. Such analyses rely on VAR models, which are vulnerable to
noise and downsampling challenges, and lack the ability for multiscale analyses.

In this study, the GTSS approach, which analyzes Granger causality between multi-
variate time series on multiple time scales by combining the state space model with wavelet
transform, is suggested. To be more precise, we first substitute the driving variable with
the result of the wavelet transform before incorporating the transform data into the state
space model. The hypothesis test is carried out by calculating the residuals of the models.
Finally, the Granger causality value and the relationship between the various factors may
be determined.

The experimental results show that GTSS has better capability for multiscale Granger
causality analysis than the GT method based on the VAR model. The comparative analysis
between the two methods highlights the superior performance of GTSS in accurately iden-
tifying causal relationships, especially in situations where they are asymmetric in nature.

The relationship between model order, number of trials and strength of causality and
Granger causality is investigated. Our results reveal that the causality value decreases at
higher time scales, while the accuracy improves with an increase in the number of trials,
providing valuable insights for future studies to select appropriate parameter settings for
these parameters, thereby enhancing the accuracy of Granger causality analyses.
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Furthermore, the multiscale analysis using empirical model methods provides a better
view of the underlying driving variables according to He K. et al. [35]. Deep learning has
been effectively applied to the study of Granger causality to determine causal linkages
in complicated systems [36]. Therefore, future study could examine data processing in
conjunction with empirical modal decomposition or employ different deep learning models
for modeling time series.
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