
Citation: Blanco Díaz, L.; Sardón, C.;

Jiménez Alburquerque, F.; de Lucas, J.

Geometric Numerical Methods for

Lie Systems and Their Application in

Optimal Control. Symmetry 2023, 15,

1285. https://doi.org/10.3390/

sym15061285

Academic Editor: Jean-Pierre Magnot

Received: 19 April 2023

Revised: 23 May 2023

Accepted: 24 May 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Geometric Numerical Methods for Lie Systems and Their
Application in Optimal Control
Luis Blanco Díaz 1, Cristina Sardón 1,*, Fernando Jiménez Alburquerque 1, Javier de Lucas 2

1 Department of Applied Mathematics, Universidad Politécnica de Madrid (UPM),
c. José Gutiérrez Abascal 2, 28006 Madrid, Spain; luis.blanco.diaz@alumnos.upm.es (L.B.D.);
fernando.jimenez.alburquerque@upm.es (F.J.A.)

2 Department of Mathematical Methods in Physics, University of Warsaw, ul. Pasteura 5,
02-093 Warsaw, Poland; javier.de.lucas@fuw.edu.pl

* Correspondence: mariacristina.sardon@upm.es

Abstract: A Lie system is a nonautonomous system of first-order ordinary differential equations whose
general solution can be written via an autonomous function, the so-called (nonlinear) superposition
rule of a finite number of particular solutions and some parameters to be related to initial conditions.
This superposition rule can be obtained using the geometric features of the Lie system, its symmetries,
and the symmetric properties of certain morphisms involved. Even if a superposition rule for a Lie
system is known, the explicit analytic expression of its solutions frequently is not. This is why this
article focuses on a novel geometric attempt to integrate Lie systems analytically and numerically. We
focus on two families of methods based on Magnus expansions and on Runge–Kutta–Munthe–Kaas
methods, which are here adapted, in a geometric manner, to Lie systems. To illustrate the accuracy
of our techniques we analyze Lie systems related to Lie groups of the form SL(n,R), which play a
very relevant role in mechanics. In particular, we depict an optimal control problem for a vehicle with
quadratic cost function. Particular numerical solutions of the studied examples are given.
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1. Introduction

The analytic integration of differential equations can be achieved in many relevant
occasions, but it is not the usual case. Sometimes the geometric and symmetry properties of
a Lie system are not enough to completely integrate the system, and this is why numerical
methods are so important to study solutions of differential equations. In particular, this
paper devises geometric numerical methods adapted to a particular class of nonautonomous
first-order systems of ordinary differential equations (ODEs): the so-called Lie systems [1–3].

A Lie system is a nonautonomous first-order system of ODEs that admits a general so-
lution in terms of an autonomous function, the so-called superposition rule, a family of generic
particular solutions and certain constants of integration related to the initial conditions [4–6].
It is worth noting that a superposition rule for a Lie system may be explicitly known even
when the explicit expression of its analytic solution is not [5]. Although obtaining a super-
position rule reduces the integration of Lie systems to obtaining some particular solutions,
such particular solutions are not easy to describe explicitly [3,5]. This is why we consider
that geometric numerical methods for Lie systems should be developed. One could find an
extensive list of works devoted to numerical algorithms in geometric mechanics [7–12] and
references therein, but, as far as we know, just a few methods have been specifically designed
for Lie systems [13,14]. This manuscript, therefore, provides a novel application of geometric
analytical and numerical methods to Lie systems, leading to some interesting consequences.
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Our interest in Lie systems is two-fold. On the one hand, it is rooted in their geometric
background. Long story short, the origin of Lie systems goes back to the XIX century,
when Sophus Lie proved that a nonautonomous system of ODEs of first order admits a
superposition rule if and only if it describes the integral curves of a t-dependent vector
field defined taking values in a finite dimensional Lie algebra of vector fields, known as
a Vessiot–Guldberg Lie algebra (VG henceforth) of the Lie system. The symmetries of a Lie
system are in direct correlation with the underlying VG Lie algebra. The theory of Lie
systems has been widely studied in the last two decades and its research involves projective
foliations, generalized distributions, Lie group theory, Poisson coalgebras, etc. (see [1,2,15]
and references therein). In particular, the coalgebra method is based in symmetric properties
of certain operators that allow us to obtain superposition rules with the aid of a finite-
dimensional Poisson algebra of functions. On the other hand, Lie systems have many
remarkable applications in many relevant scientific fields (see [2] and references therein).
For instance, Lie systems are used in the study of the integrability of Riccati equations [16],
quantum mechanics [17], stochastic mechanics [18], superequations [19], and in biology
and cosmology [2]. Recently, the theory of Lie systems has been generalized to higher-order
ordinary differential equations, such as higher-order Riccati equations [20], second- and
third-order Kummer–Schwarz equations [5], and Milne–Pinney equations [21], among
others. Additionally, the theory of Lie systems is also extensible to systems of partial
differential equations [15,22].

In the past few decades, discrete methods have made big progress in faithfully describ-
ing reality. For instance, the interest of numerical analysis in the research on Lie systems was
already stressed by Winternitz [3], who remarked that superposition rules allow us to study
all solutions of a Lie system from the knowledge of some of them, which can be derived
numerically. This is why the discretization of Lie systems and their numerical integration
has caught our attention. Since Lie systems are geometrically described in terms of an
underlying VG Lie algebra, this allowed for solving a Lie system by studying a Lie system
of a specific type, a so-called automorphic Lie system [2], on a Lie group associated to the VG
Lie algebra. Two automorphic Lie systems are two Lie systems that are equivalent under
automorphic transformations. In this way, automorphic Lie systems can be claimed to be
symmetric Lie systems. One can then propose a numerical method for the automorphic Lie
system, giving rise to numerical methods for a plethora of Lie systems that are related to
the initial through an automorphic map that preserves the properties of the Lie group, also
known as symmetry group transformation. Our perspective here on numerical methods
specifically designed for Lie systems proposes numerical schemes on the Lie group. There
already exist some numerical methods designed to work on Lie groups, but our aim is to
adapt them for Lie systems. In particular, we will focus on two classes of methods: the
so-called Magnus methods [8,23,24] and Runge–Kutta–Munthe–Kaas (RKMK) [25,26], the
latter being based on the classical Runge–Kutta (RK) schemes.

Summarizing, this manuscript presents a novel procedure for the integration of Lie
systems by applying geometric numerical methods on one of its associated automorphic
Lie systems, which is defined on a Lie group (we may refer to it as a VG Lie group). We
aim at providing a quantitative and qualitative analysis of our numerical methods on the
Lie group and compare them with the results obtained from numerical integration of the
system of ODEs that defines the Lie system. This would resolve at the same time all Lie
systems that are related to the same automorphic Lie system, i.e., those Lie systems that
have isomorphic VG Lie algebras and that are determined by an equivalent curve within
them (see [1] for details). We apply our numerical methods to automorphic Lie systems
defined on Lie groups SL(n,R), which appear in many physical applications (cf. [27]). We
are particularly interested in control theory, which involves matrix Riccati equations [28].
We depict an application of matrix Riccati equations in optimal control with quadratic cost
functions and solve it numerically with our adapted Magnus and RKMK methods.

The structure of the paper goes as follows. Section 2 surveys the basic theory of Lie
systems and develops their analytical resolution constructed upon the geometric structure
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they are built on; this analytical solution is enclosed in the procedure that is summarized in
Procedure in Section 2.3.1. Meanwhile, Section 3 is concerned with the novel discretization
we are proposing for Lie systems, enclosed in Definition 3. An application of our methods
to SL(2,R) and SL(3,R) is provided in Section 4. Meanwhile, an optimal control problem
for a vehicle with a quadratic cost function is presented in Section 5, and resolved using the
novel analytical techniques we are delivering.

2. Geometric Fundamentals and Lie Systems

This section establishes the notation and geometric fundamentals on Lie systems and
related concepts that we will be using throughout the manuscript. Unless otherwise stated,
we hereafter assume all structures to be smooth, real, and globally defined. This will
simplify the presentation, while stressing its main points. From now on, K stands for a
field to be R or C.

2.1. Geometric Fundamentals

A key concept in the theory of Lie systems is that of t-dependent vector fields. Let us
describe this geometric concept. Consider an n-dimensional manifold N and its natural
tangent bundle projection πN : TN → N. Let us define the projection π2 : (t, x) ∈
R× N 7→ x ∈ N, where t is the natural coordinate system on R. A t-dependent vector field
on N is a map X : (t, x) ∈ R× N 7→ X(t, x) ∈ TN so that the following diagram becomes
commutative:

R× N TN

N

X

π2 πN

That is, πN ◦ X = π2. In other words, a t-dependent vector field X on N amounts to a
t-parametrized family of standard vector fields {Xt : x ∈ N 7→ X(t, x) ∈ TN}t∈R on N
(see [5] for details). We write Xt(N) for the space of t-dependent vector fields on N, while
X(N) stands for the space of vector fields on N.

An integral curve of a t-dependent vector field X on N is a curve γ : R → N of the
form γ = π2 ◦ γ̂, where γ̂ : R→ R× N is an integral curve of the so-called autonomization
of X, namely the vector field X = ∂/∂t + X on R× N, which is also a section of the natural
projection π : (t, x) ∈ R× N 7→ t ∈ R. More precisely, if X = ∑n

i=1 ηi(t, x) ∂
∂xi

on a local
coordinate system {x1, . . . , xn} on N, then

X =
∂

∂t
+

n

∑
i=1

ηi(t, x)
∂

∂xi

and γ̂ : s ∈ R 7→ (s, γ(s)) ∈ R× N is a solution of the system of differential equations
dxi
ds

= ηi(t, x),

dt
ds

= 1,
i = 1, . . . , n.

The reparametrization t = t(s) shows that γ(t) is a solution to

dxi
dt

= ηi(t, x), i = 1, . . . , n. (1)

System (1) is the associated system with X. Furthermore, a first-order system of ODEs in
normal form (1) gives rise to a t-dependent vector field on N of the form

X(t, x) =
n

∑
i=1

ηi(t, x)
∂

∂xi
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whose integral curves are of the form t 7→ (t, γ(t)), where γ(t) is a particular solution to
(1). This fact justifies identifying X with the t-dependent first-order system of ordinary
differential equation (1).

For our purposes, it is important to relate t-dependent vector fields to Lie algebras.
A Lie algebra is a pair (V, [· , ·]), where V is a vector space and [· , ·] : V × V → V is a
bilinear and antisymmetric map that satisfies the Jacobi identity. The minimal Lie algebra,
Lie(B, V, [· , ·]), of a subset B ⊂ V of a Lie algebra (V, [· , ·]) is the smallest Lie subalgebra
(in the sense of inclusion) in V that contains B. If it does not lead to misunderstanding,
Lie(B, V, [· , ·]) will simply be denoted by Lie(B). Given a t-dependent vector field X on
N, we call minimal Lie algebra of X the smallest Lie algebra, VX , of vector fields on N that
contains all the vector fields {Xt}t∈R.

2.2. Lie Groups and Matrix Lie Groups

Let G be a Lie group and let e be its neutral element. Every g ∈ G defines a right-
translation Rg : h ∈ G 7→ hg ∈ G and a left-translation Lg : h ∈ G 7→ gh ∈ G on G. A
vector field, XR, on G is right-invariant if XR(hg) = Rg∗,hXR(h) for every h, g ∈ G, where
Rg∗,h is tangent map to Rg at h ∈ G. The value of a right-invariant vector field, XR, at
every point of G is determined by its value at e, since, by definition, XR(g) = Rg∗,eXR(e)
for every g ∈ G. Hence, each right-invariant vector field XR on G gives rise to a unique
XR(e) ∈ TeG and vice versa. Then, the space of right-invariant vector fields on G is a
finite-dimensional Lie algebra. Similarly, one may define left-invariant vector fields on
G, establish a Lie algebra structure on the space of left-invariant vector fields, and set an
isomorphism between the space g of left-invariant vector fields on G and TeG. The Lie
algebra of left-invariant vector fields on G, with Lie bracket [· , ·] : g× g → g, induces in
TeG a Lie algebra via the identification of left-invariant vector fields and their values at e.
Note that we will frequently identify g with TeG to simplify the terminology.

There is a natural mapping from g to G, the so-called exponential map, of the form
exp : a ∈ g 7→ γa(1) ∈ G, where γa : R → G is the integral curve of the right-invariant
vector field XR

a on G satisfying XR
a (e) = a and γ(0) = e. If g = gl(n,K), where gl(n,K) is

the Lie algebra of n× n square matrices with entries in a field K relative to the Lie bracket
given by the commutator of matrices, then gl(n,K) can be considered as the Lie algebra of
the Lie group GL(n,K) of n× n invertible matrices with entries in K. It can be proved that
in this case, exp : X ∈ gl(n,K) 7→ exp(X) ∈ GL(n,K) retrieves the standard expression of
the exponential of a matrix [29], namely

exp(X) = In + X +
X2

2
+

X3

6
+ · · · =

∞

∑
k=0

Xk

k!
,

where In stands for the n× n identity matrix.
From the definition of the exponential map exp : TeG → G, it follows that exp(sa) =

γa(s) for each s ∈ R and a ∈ TeG. Let us show this. Indeed, given the right-invariant vector
field XR

sa, where sa ∈ TeG, then

XR
sa(g) = Rg∗,eXR

sa(e) = Rg∗,e(sa) = sRg∗,e(a), ∀g ∈ G.

In particular for s = 1, it follows that XR
a (g) = Rg∗,e(a) and, for general s, it follows that

XR
sa = sXR

a . Hence, if γa, γsa : R → G are the integral curves of XR
a and XR

sa with initial
condition e, respectively, then it can be proved that, for u = ts, one has that

d
dt

γa(ts) = s
d

du
γa(u) = sXR

a (γa(ts)).

and t 7→ γa(st) is the integral curve of XR
sa with initial condition e. Hence, γa(st) = γsa(t).

Therefore, exp(sa) = γsa(1) = γa(s). It is worth stressing that Ado’s theorem [30] shows
that every Lie group admits a matrix representation close to its neutral element.
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The exponential map establishes a diffeomorphism from an open neighborhood Ug

of 0 in TeG and exp(Ug). More in detail, every basis V = {v1, . . . , vr} of TeG gives rise
to the so-called canonical coordinates of the second-kind related to V defined by the local
diffeomorphism

Ug ⊂ TeG −→ exp(Ug) ⊂ G
(λ1, . . . , λr) 7→ ∏r

α=1 exp(λαvα) ,

for an appropriate open neighborhood Ug of 0 in TeG ' g.
In matrix Lie groups right-invariant vector fields take a simple useful form . In fact, let

G be a matrix Lie group. It can be then considered as a Lie subgroup of GL(n,K). Moreover,
it can be proved that TAG, for any A ∈ G, can be identified with the space of n× n square
matricesMn(K).

Since RA : B ∈ G 7→ BA ∈ G, then RA∗,e(M) = MA ∈ TAG, for all M ∈ TeG, and
A ∈ GL(n,K). As a consequence, if XR(e) = M at the neutral element e, namely the
identity I, of the matrix Lie group G, then XR(A) = RA∗,I(XR(I)) = RA∗,I(M) = MA. It
follows that, at any A ∈ G, every tangent vector B ∈ TAG can be written as B = CA for a
unique C ∈ TI G [31,32].

Let us describe some basic facts on Lie group actions on manifolds induced by Lie
algebras of vector fields. It is known that every finite-dimensional Lie algebra, V, of vector
fields on a manifold N gives rise to a (local) Lie group action

ϕ : G× N → N, (2)

whose fundamental vector fields are given by the elements of V and G is a connected and
simply connected Lie group whose Lie algebra is isomorphic to V. If the vector fields of V
are complete, then the Lie group action (2) is globally defined on G× N. Let us show how
to obtain ϕ from V, which will be of crucial importance in this work.

Let us restrict ourselves to an open neighborhood UG of the neutral element of G,
where we can use canonical coordinates of the second-kind related to a basis {v1, . . . , vr} of
g. Then, each g ∈ UG can be expressed as

g =
r

∏
α=1

exp(λαvα), (3)

for certain uniquely defined parameters λ1, . . . , λr ∈ R. To determine ϕ, we determine the
curves

γα
x : R→ N : t 7→ ϕ(exp(tvα), x), α = 1, . . . , r, (4)

where γα
x must be the integral curve of Xα for α = 1, . . . , r. Indeed, for any element

g ∈ UG ⊂ G expressed as in (3), using the intrinsic properties of a Lie group action,

ϕ(g, x) = ϕ

(
r

∏
α=1

exp(λαvα), x

)
= (ϕ(exp(λ1v1)) · ϕ(exp(λ2v2)) · ϕ(exp(λrvr)), x),

the action is completely defined for any g ∈ UG ⊂ G.
In this work we will deal with some particular matrix Lie groups, starting from the

general linear matrix group GL(n,K), where we recall that K may be R or C. As is well-
known, any closed subgroup of GL(n,K) is also a matrix Lie group ([29], Theorem 15.29,
pg. 392). In the forthcoming pages we will work with some of those subgroups such as
SL(n,R), the Lie group formed by n× n real matrices with unit determinant. Moreover,
for future reference we recall that the Lie algebra of SL(n,R), i.e., sl(n,R), is the space of
traceless n× n real matrices [32,33].

2.3. Lie Systems

The Lie Theorem [15] states that a Lie system is a t-dependent system of (first-order)
ordinary differential equations that describes the integral curves of a t-dependent vector
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field that takes values in a finite-dimensional Lie algebra of vector fields, namely the
aforementioned Vessiot–Guldberg Lie algebra (VG) [1,5]. As we also mentioned previously,
one of the most important characteristics of Lie systems is that they admit (generally
nonlinear) superposition rules and a plethora of mathematical properties mediated by
the Lie theorem [15]. Furthermore, some Lie systems can be studied via a Hamiltonian
formulation [2,20].

In this section we introduce some of these fundamental concepts in the theory of
Lie systems. In this way, we start by introducing solutions of Lie systems in terms of
superposition rules.

On a first approximation, a Lie system is a first-order system of ODEs that admits a
superposition rule.

Definition 1. A superposition rule for a system X on N is a map Φ : Nm × N → N such
that the general solution x(t) of X can be written as x(t) = Φ(x(1)(t), . . . , x(m)(t); ρ), where
x(1)(t), . . . , x(m)(t) is a generic family of particular solutions and ρ is a point in N related to the
initial conditions of X.

A classic example of Lie system is the Riccati equation ([2], Example 3.3), that is,

dx
dt

= b1(t) + b2(t)x + b3(t)x2, x ∈ R, (5)

with b1(t), b2(t), b3(t) being arbitrary functions of t. It is known then that the general
solution, x(t), of the Riccati equation can be written as

x(t) =
x(2)(t)(x(3)(t)− x(1)(t)) + ρx(3)(t)(x(1)(t)− x(2)(t))

(x(3)(t)− x(1)(t)) + ρ(x(1)(t)− x(2)(t))
, (6)

where x(1)(t), x(2)(t), x(3)(t) are three different particular solutions of (5) and ρ ∈ R is
an arbitrary constant. This implies that the Riccati equation admits a superposition rule
Φ : R3 ×R→ R such that

Φ(x(1), x(2), x(3), ρ) =
x(2)(x(3) − x(1)) + ρx(3)(x(1) − x(2))

(x(3) − x(1)) + ρ(x(1) − x(2))
.

The conditions that guarantee the existence of a superposition rule are gathered in the
Lie theorem ([34], Theorem 44).

Theorem 1 (Lie theorem). A first-order system X on N,

dx
dt

= X(t, x), x ∈ N, X ∈ Xt(N), (7)

admits a superposition rule if and only if X can be written as

X(t, x) =
r

∑
α=1

bα(t)Xα(x), t ∈ R, x ∈ N, (8)

for a certain family b1(t), . . . , br(t) of t-dependent functions and a family of vector fields X1, . . . ,
Xr on N that generate an r-dimensional Lie algebra of vector fields.

The Lie theorem yields that every Lie system X is related to (at least) one VG Lie
algebra, V, that satisfies that Lie({Xt}t∈R) ⊂ V. This implies that the minimal Lie algebra
has to be finite-dimensional, and vice versa [5].

Example 1. The t-dependent vector field on the real line associated with (5) is X = b1(t)X1 +
b2(t)X2 + b3(t)X3, where X1, X2, X3 are vector fields on R given by
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X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = x2 ∂

∂x
.

Since the commutation relations are

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3, (9)

the vector fields X1, X2, X3 generate a VG Lie algebra isomorphic to sl(2,R). Then, the Lie theorem
guarantees that (5) admits a superposition rule, which is precisely the one shown in (6).

2.3.1. Automorphic Lie Systems

The general solution of a Lie system on N with a VG Lie algebra, V, can be obtained
from a single particular solution of a Lie system on a Lie group G whose Lie algebra is
isomorphic to V, a so-called automophic Lie system ([5], §1.4). As the automorphic Lie system
notion is going to be central in our paper, let us study it in some detail (see [5] for details).

Definition 2. An automorphic Lie system is a t-dependent system of first-order differential equa-
tions on a Lie group G of the form

dg
dt

=
r

∑
α=1

bα(t)XR
α (g), g ∈ G, t ∈ R, (10)

where {XR
1 , . . . , XR

r } is a basis of the space of right-invariant vector fields on G and b1(t), . . . , br(t)
are arbitrary t-dependent functions. Furthermore, we shall refer to the right-hand side of Equation (10)
as X̂G

R (t, g), i.e., X̂G
R (t, g) = ∑r

α=1 bα(t)XR
α (g).

Because of right-invariant vector fields, systems in the form of X̂ have the following
important property.

Proposition 1. (See [5], §1.3) Given a Lie group G and a particular solution g(t) of the Lie system
defined on G, as

dg
dt

=
r

∑
α=1

bα(t)XR
α (g) = X̂G

R (t, g), (11)

where b1(t), . . . , br(t) are arbitrary t-dependent functions and XR
1 , . . . , XR

r are right-invariant
vector fields, we have that g(t)h is also a solution of (11) for each h ∈ G.

An immediate consequence of Proposition 1 is that, once we know a particular solution
of X̂G

R , any other solution can be obtained simply by multiplying the known solution on
the right by any element in G. More concretely, if we know a solution g(t) of (11), then the
solution h(t) of (11) with initial condition h(0) = g(0)h0 can be expressed as h(t) = g(t)h0.
This justifies that henceforth we only worry about finding one particular solution g(t) of
X̂G

R , e.g., the one that fulfills g(0) = e. The previous result can be understood in terms of
the Lie theorem or via superposition rules. In fact, since (11) admits a superposition rule
Φ : (g, h) ∈ G× G 7→ gh ∈ G, the system (1) must be a Lie system. Alternatively, the same
result follows from the Lie Theorem and the fact that the right-invariant vector fields on G
span a finite-dimensional Lie algebra of vector fields.

There are several reasons to study automorphic Lie systems. One is that they can be
locally written around the neutral element of their Lie group in the form

dA
dt

= B(t)A, A ∈ GL(n,K), B(t) ∈ Mn(K),

whereMn(K) is the set of n× n matrices of coefficients in K, for every t ∈ R.
The main reason to study automorphic Lie systems is given by the following results,

which show how they can be used to solve any Lie system on a manifold. Let us start with
a Lie system X defined on N. Hence, X can be written as
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dx
dt

=
r

∑
α=1

bα(t)Xα, (12)

for certain t-dependent functions b1(t), . . . , br(t) and vector fields X1, . . . , Xr ∈ X(N) that
generate an r-dimensional dimensional VG Lie algebra. The VG Lie algebra V is always
isomorphic to the Lie algebra g of a certain Lie group G. The VG Lie algebra spanned by
X1, . . . , Xr gives rise to a (local) Lie group action ϕ : G×N → N whose fundamental vector
fields are those of V. In particular, there exists a basis {v1, . . . , vr} in g so that

d
dt

∣∣∣∣
t=0

ϕ(exp(tvα), x) = Xα(g), α = 1, . . . , r.

In other words, ϕα : (t, x) ∈ R × N 7→ ϕ(exp(tvα), x) ∈ N is the flow of the vector
field Xα for α = 1, . . . , r. Note that if [Xα, Xβ] = ∑r

γ=1 cγ
αβXγ for α, β = 1, . . . , r, then

[vα, vβ] = −∑r
γ=1 cγ

αβvγ for α, β = 1, . . . , r (cf. [1]).
To determine the exact form of the Lie group action ϕ : G× N → N as in (4), we impose

ϕ(exp(λαvα), x) = ϕα(λα, x) ∀ α = 1, . . . , r, ∀x ∈ N, (13)

where λ1, . . . , λr ∈ R. If we stay in a neighborhood U of the origin of G, where every
element g ∈ U can be written in the form

g = exp(λ1v1) · . . . · exp(λrvr),

then the relations (13) and the properties of ϕ allow us to determine ϕ on U. If we fix x ∈ N,
the right-hand side of the equality turns into an integral curve of the vector field Xα; this is
why (13) holds.

Proposition 2. (see [1,5] for details) Let g(t) be a solution to the system

dg
dt

=
r

∑
α=1

bα(t)XR(g), ∀t ∈ R, g ∈ G.

Then, x(t) = ϕ(g(t), x0) is a solution of X = ∑r
α=1 bα(t)Xα, where x0 ∈ N. In particular, if one

takes the solution g(t) that satisfies the initial condition g(0) = e, then x(t) is the solution of X
such that x(0) = x0.

Let us study a particularly relevant form of automorphic Lie systems that will be
used hereafter. If g is a finite-dimensional Lie algebra, then Ado’s theorem [30] guarantees
that g is isomorphic to a matrix Lie algebra gM. Let V = {M1, . . . , Mr} be a basis of
gM ⊂ Mn(R). As reviewed in Section 2.2, each Mα gives rise to a right-invariant vector
field XR

α (g) = Mαg, with g ∈ G, on G. These vector fields have the opposite commutation
relations to the (matrix) elements of the basis.

In the case of matrix Lie groups, the system (11) takes a simpler form. Let Y(t) be the
matrix associated with the element g(t) ∈ G. Using the right invariance property of each
XR

α , we have that

dY
dt

=
r

∑
α=1

bα(t)XR
α (Y(t)) =

r

∑
α=1

bα(t)RY(t)∗,e

(
XR

α (e)
)
=

r

∑
α=1

bα(t)RY(t)∗,e(Mα).

We can write the last term as

r

∑
α=1

bα(t)RY(t)∗,e(Mα) =
r

∑
α=1

bα(t)MαY(t),
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in such a way that for matrix Lie groups, the system on the Lie group is

dY
dt

= A(t)Y(t), Y(0) = I, with A(t) =
r

∑
α=1

bα(t)Mα, (14)

where I is the identity matrix (which corresponds with the neutral element of the matrix Lie
group) and the matrices Mα form a finite-dimensional Lie algebra, which is anti-isomorphic
to the VG Lie algebra of the system (by anti-isomorphic we imply that the systems have the
same constants of structure but that they differ in one sign).

There exist various methods to solve system (11) analytically ([6], §2.2), such as the
Levi decomposition [35] or the theory of reduction of Lie systems ([4], Theorem 2). In some
cases, it is relatively easy to solve it, as is the case where b1, . . . , br are constants. We will
depict an example in this particular case in Section 4. Nonetheless, we are interested in a
numerical approach, since we will try to solve the automorphic Lie system with adapted
geometric integrators. The solutions on the Lie group can be straightforwardly translated
into solutions on the manifold for the Lie system defined on N via the Lie group action (2).

To finish this section, we will employ the previous developments in order to define our
novel procedure to (geometrically) construct a continuous solution of a given Lie system.

The 7-step method: Reduction procedure to automorphic Lie system
The method can be itemized in the following seven steps:

1. We identify the VG Lie algebra of vector fields X1, . . . , Xr that defines the Lie system
on N.

2. We look for a Lie algebra g isomorphic to the VG Lie algebra, whose basis is {M1, . . . ,
Mr} ∈ Mn×n(R) with the same structure constants of X1, . . . , Xr in absolute value,
but with a negative sign.

3. We integrate the vector fields X1, . . . , Xr to obtain their respective flows Φα : R×N →
N with α = 1, . . . , r.

4. Using canonical coordinates of the second kind and the previous flows we construct
the Lie group action ϕ : G× N → N using expressions in (13).

5. We define an automorphic Lie system X̂G
R on the Lie group G associated with g as

in (11).
6. We compute the solution of the system X̂G

R that fulfills g(0) = e.
7. Finally, we retrieve the solution for X on N through the expression x(t) = ϕ(g(t), x0).

3. Discretization of Lie Systems

This section adapts known numerical methods on Lie groups to automorphic Lie
systems. For this purpose, we start by reviewing briefly some fundamentals on numer-
ical methods for ordinary differential equations and Lie groups [36–38], and later focus
on two specific numerical methods on Lie groups, the Magnus expansion and RKMK
methods [8,23–26].

Recall that, in this paper, we focus on ordinary differential equations of the form

dx
dt

= f (t, x), t ∈ [a, b], x(t) ∈ N, f ∈ Xt(N). (15)

When N is (or diffeomorphic to) a Euclidean space, there is a plethora of numerical schemes
approximating the analytic solution x(t) of (15) [36,37]. We will focus on one-step methods
with fixed time step. By that we mean that solutions are approximated by a sequence of
numbers xk = x(tk) ∈ N with tk = a + kh, h = (b− a)/N , b > a and

xk+1 − xk
h

= fh(tk, xk, xk+1), (16)

where N is the number of steps our time interval is divided to. We call h the time step,
which is fixed, while fh : R× N × N → TN is a discrete vector field, which (recall that,
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for now, we set N to be a Euclidean space with norm ‖ · ‖) is a given approximation of f
in (15). As usual, we shall denote the local truncation error by Eh, where

Eh = ||xk+1 − x(tk+1)||, (17)

and say that the method is of order r if Eh = O(hr+1) for h→ 0, i.e., limh→0 |Eh/hr+1| < ∞.
Regarding the global error

EN = ||xN − x(b)||,

we shall say that the method is convergent of order r if EN = O(hr), when h → 0. As for
the simulations, we pick the following norm in order to define the global error, that is

EN = max
k=1,...,N

||x(tk)− xk||.

Given the relevant examples in this paper, e.g., Ricatti equations, where N = Rn, we
will employ classical methods to approximate (15), particularly the Heun method (conver-
gent of order 2) and RK4 (convergent of order 4), and compare to our novel discretization
proposal.

3.1. Numerical Methods on Matrix Lie Groups

Our purpose is to numerically solve the initial condition problem for system (14)
defined on a matrix Lie group G of the form

dY
dt

= A(t)Y with Y(0) = I, (18)

where Y ∈ G while A(t) ∈ g ∼= TeG is a given t-dependent matrix and I is the identity
matrix in G. That is, we are searching for a discrete sequence {Yk}k=0,...,N such that Yk ∈ G.
In a neighborhood of the zero in TeG, the exponential map defines a diffeomorphism onto
an open subset of the neutral element of G and the problem is equivalent to searching for a
curve Ω(t) in g such that

Y(t) = exp(Ω(t)). (19)

This ansatz helps us to transform (18), which is defined in a nonlinear space, into a new
problem in a linear space, namely the Lie algebra g ' TeG. This is expressed in the classical
result by Magnus [39].

Theorem 2 (Magnus, 1954). The solution of the matrix Lie group (18) in G can be written for
values of t close enough to zero, as Y(t) = exp(Ω(t)), where Ω(t) is the solution of the initial
value problem

dΩ
dt

= dexp−1
Ω(t)(A(t)), Ω(0) = 0 , (20)

where 0 is the zero element in TeG.

When we are dealing with matrix Lie groups and Lie algebras, the dexp−1 is given by

dexp−1
Ω (H) =

∞

∑
j=0

Bj

j!
adj

Ω(H), (21)

where the {Bj}j=0,...,∞ are the Bernoulli numbers and adΩ(H) = [Ω, H] = Ω H − H Ω.
The convergence of the series (21) is ensured as long as a certain convergence condition is
satisfied [39].

If we try to integrate (20) applying a numerical method directly (note that, now, we
could employ one-step methods (16) safely), Ω(t) might sometimes drift too much away
from the origin and the exponential map would not work. This would be a problem, since
we are assuming that Ω(t) stays in a neighborhood of the origin of g where the exponential
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map defines a local diffeomorphism with the Lie group. Since we still do not know how
to characterize this neighborhood, it is necessary to adopt a strategy that allows us to
resolve (20) sufficiently close to the origin. The thing to do is to change the coordinate
system in each iteration of the numerical method. In the next lines we explain how this is
achieved.

Consider now the restriction of the exponential map given by

exp : Ug ⊂ g→ exp(Ug) ⊂ G,

A 7→ exp(A)

so that this map establishes a diffeomorphism between an open neighborhood Ug around
the origin in g and its image. Since the elements of the matrix Lie group are invertible
matrices, the map Ug → exp(Ug)Y0 ⊂ G : A 7→ exp(A)Y0 from Ug ⊂ g to the set

exp(A)Y0 = {Y ∈ G : ∃X ∈ Ug, Y = XY0}

is also a diffeomorphism. This map gives rise to the so-called first-order canonical coordinates
centered at Y0.

As is well-known, the solutions of (20) are curves in g whose images by the exponential
map are solutions to (18). In particular, the solution Ω(0)(t) of system (18) such that Ω(0)(0)
is the zero matrix in TIdG, namely 0, corresponds with the solution Y(e)(t) of the system
on G such that Y(e)(0) = I. Now, for a certain t = tk, the solution Ω(tk)(t) in g such that
Ω(tk)(tk) = 0, corresponds with Y(e)(t) via first-order canonical coordinates centered at
Y(e)(tk) ∈ G, since

exp(Ω(tk)(tk))Y(e)(tk) = exp(0)Y(e)(tk) = Y(e)(tk),

and the existence and uniqueness theorem guarantees exp(Ω(0)(t)) = exp(Ω(tk)(t))Y(e)(tk)
around tk. In this way, we can use the curve Ω(tk)(t) and the canonical coordinates centered
on Y(e)(tk) to obtain values for the solution of (18) in the proximity of t = tk, instead of
using Ω(0)(t). Whilst the curve Ω(0)(t) could be far from the origin of coordinates for tk,
we know that Ω(tk)(t) will be close, by definition. Applying this idea in each iteration of
the numerical method, we are changing the curve in g to obtain the approximate solution
of (18) while we stay near the origin (as long as the time step is small enough).

Thus, what is left is defining proper numerical methods for (20) whose solution,
i.e., {Ωk}k=0,...,N , via the exponential map, provides us with a numerical solution of (18)
remaining in G. In other words, the general Lie group method defined this way [8,23] can
be set by the recursion

Yk+1 = eΩk Yk. (22)

Next, we introduce two relevant families of numerical methods providing {Ωk}k=0,...,N .

3.1.1. The Magnus Method

Based on the work by Magnus, the Magnus method was introduced in [23,40]. The
starting point of this method is to resolve Equation (20) by means of the Picard procedure.
This method ensures that a given sequence of functions converges to the solution of (20) in
a small enough neighborhood. Operating, one obtains the Magnus expansion

Ω(t) =
∞

∑
k=0

Hk(t), (23)

where each Hk(t) is a linear combination of iterated commutators. The first three terms are
given by
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H0(t) =
∫ t

0
A(ξ1)dξ1 ,

H1(t) = −
1
2

∫ t

0

[∫ ξ1

0
A(ξ2)dξ2, A(ξ1)

]
dξ1 ,

H2(t) =
1

12

∫ t

0

[∫ ξ1

0
A(ξ2)dξ2,

[∫ ξ1

0
A(ξ2)dξ2, A(ξ1)

]]
dξ1

+
1
4

∫ t

0

[∫ ξ1

0

[∫ ξ1

0
A(ξ2)dξ2, A(ξ1)

]
dξ2, A(ξ1)

]
dξ1 .

Note that the Magnus expansion (23) converges absolutely in a given norm for every t ≥ 0
such that ([8], p. 48)∫ t

0
‖A(ξ)‖dξ ≤

∫ 2π

0

dξ

4 + ξ[1− cot(ξ/2)]
≈ 1.086868702.

In practice, if we work with the Magnus expansion, we need a way to handle the
infinite series and calculate the iterated integrals. Iserles and Nørsett proposed a method
based on binary trees [23,40]. In ([8], §4.3) we can find a method to truncate the series in
such a way that one obtains the desired order of convergence. Similarly, ([8], §5) discusses
in detail how the iterated integrals can be integrated numerically. In our case, for practical
reasons we will implement the Magnus method following the guidelines of Blanes, Casas,
and Ros [41], which is based on a Taylor series of A(t) in (18) around the point t = h/2
(recall that, in the Lie group and Lie algebra equations, we are setting the initial time
t0 = a = 0). With this technique, one is able to achieve different orders of convergence.
In particular, we will use the second- and fourth-order convergence methods ([41], §3.2),
although one can build up to eighth-order methods.

The second-order approximation is

exp(Ω(h)) = exp(ha0) +O(h3)

and the forth-order one reads

exp(Ω(h)) = exp
(

ha0 +
1

12
h3a2 −

1
12

h3[a0, a1]

)
+O(h5),

where Ω(0) = 0 and

ai =
1
i!

di

dti A(t)
∣∣∣∣
t=h/2

i = 0, 1, 2.

As we see from the definition, the first method computes the first and second derivative
of matrix A(t). Applying the coordinate change in each iteration (22), we can implement it
through the following equations:

Yk+1 = exp
[

hA
(

tk +
h
2

)]
Yk. [Order 2] (24)

Yk+1 = exp
(

ha0 + h3(a2 − [a0, a1])
)

Yk,

t1/2 = tk +
h
2

, a0 = A(t1/2), a1 =
Ȧ(t1/2)

12
, a2 =

Ä(t1/2)

24
,

 [Order 4] (25)

where Ȧ(t0), Ä(t0) stand for the first and second derivatives of A(t) in terms of t at
t0. Note that the convergence order is defined for the Lie group dynamics (18). That is,
when we say that the above methods are convergent of order 2, for instance, that means
EN = ||YN −Y(b)|| = O(h2), with h→ 0, for a proper Lie matrix norm.
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3.1.2. The Runge–Kutta–Munthe–Kaas Method

Changing the coordinate system in each step, as explained in previous sections, the
classical RK methods applied to Lie groups give rise to the so-called Runge–Kutta–Munthe–
Kaas (RKMK) methods [25,26]. The equations that implement the method are

Θj = h
s

∑
l=1

ajl Fl ,

Fj = dexp−1
Θj

(A(tk + cjh)),

Θ = h
s

∑
l=1

bl Fl ,

Yk+1 = exp(Θ)Yk.

 j = 1, . . . , s,

where the constants {ajl}s
j,l=1, {bl}s

l=1, {cj}s
j=1 can be obtained from a Butcher’s table ([38],

§11.8) (note that s is the number of stages of the usual RK methods). Apart from this, we
have the consistency condition ∑s

l=1 bl = 1. As the equation that we want to solve comes
in the shape of an infinite series, it is necessary to study how we evaluate the function
dexp−1

Ω(t). For this, we need to use truncated series up to a certain order in such a way that
the order of convergence of the underlying classical RK is preserved. If the classical RK is of
order p and the truncated series of (20) is up to order j, such that j ≥ p− 2, then the RKMK
method is of order p (see [25,26] and ([42], Theorem 8.5, p. 124)). Again, this convergence
order refers to the equation in the Lie group (18).

Let us now determine the RKMK method associated with the explicit Runge–Kutta
whose Butcher’s table is

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 1/3 1/3 1/6

that is, a Runge–Kutta of order 4 (RK4). This implies that we need to truncate the series
dexp−1

Ω(t) at j = 2:

dexp−1
Ω (A) ≈ A− 1

2
[Ω, A] +

1
12

[Ω, [Ω, A]]. (26)

Then, the RKMK implementation for the given Butcher’s table is

F1 = dexp−1
On

(A(tk)),

F2 = dexp−1
1
2 hF1

(
A
(

tk +
1
2

h
))

,

F3 = dexp−1
1
2 hF2

(
A
(

tk +
1
2

h
))

,

F4 = dexp−1
hF3

(A(tk + h)),


Θ =

h
6
(F1 + 2F2 + 2F3 + F4),

Yk+1 = exp(Θ)Yk,
(27)

where dexp−1 is (26).
It is interesting to note that the method obtained in the previous section using the

Magnus expansion (24) can be retrieved by an RKMK method associated with the following
Butcher’s table:

0
1/2 1/2

0 1

Since it is an order 2 method, for the computation of dexp−1, one can use dexp−1
Ω (A) ≈ A.
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3.2. Numerical methods for Lie Systems

So far, we have established in Procedure 2.3.1 how to construct an analytical solution
of a Lie system on a manifold N via a Lie group action on N, which is obtained by means
of the integration of the VG Lie algebra of the Lie system. On the other hand, in Section 3.1
we have reviewed some methods in the literature providing a numerical approximation of
the solution of (18) remaining in the Lie group G (which accounts for their most remarkable
geometrical property).

Now, let us explain how we combine these two elements to construct our new numer-
ical methods, so we retrieve the solution of (12) on N. Let ϕ be the Lie group action (13)
and consider the solution of the system (18) such that Y(0) = I. This solution permits us
to retrieve the solution on N of (12) for small values of t, i.e., when a solution Y(t) of (18)
stays close to the neutral element and hence the Lie group action ϕ is properly defined.
Numerically, we have shown that the solutions of (18) can be provided through the approx-
imations of (21), say {Ωk}k=0,...,N , and (22), as long as we stay close enough to the origin.
As particular examples, we have picked the Magnus and RKMK methods in order to obtain
{Ωk}k=0,...,N and, furthermore, the sequence {Yk}k=0,...,N . Next, we establish the scheme
providing the numerical solution to Lie systems.

Definition 3. Let us consider a Lie system evolving on a manifold N of the form

dx
dt

=
r

∑
α=1

bα(t)Xα(x), x(a) = x0,

and let
dY
dt

= A(t)Y, A(t) =
r

∑
α=1

bα(t)Mα,

be its associated automorphic Lie system. We define the numerical solution to the Lie system, i.e.,
{xk}k=0,...,N , via Algorithm 1.

Algorithm 1 Lie systems method
Lie systems method

1: Initial data: N , h, x0, A(t), Y0 = I, Ω0 = 0.
2: Numerically solve dΩ

dt = dexp−1
Ω A(t)

3: Output {Ωk}k=1,...,N
4: for k = 1, . . . ,N − 1 do

Yk+1 = eΩk Yk,
xk+1 = ϕ(Yk+1, xk),

5: end for
6: Output: (x1, x2, ..., xN ).

At this point, we would like to highlight an interesting geometric feature of this
method. On the one hand, the discretization is based on the numerical solution of the
automorphic Lie system underlying the Lie system, which, itself, is founded upon the
geometric structure of the latter. This numerical solution remains on G, i.e., Yk ∈ G for all k,
due to the particular design of the Lie group methods (as long as h is small). Given this, our
construction respects as well the geometrical structure of the Lie system, since, in principle,
it evolves on a manifold N. We observe that the iteration

xk+1 = ϕ(Yk+1, xk)
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leads to this preservation, since xk+1 ∈ N as long as Yk+1 ∈ G and xk ∈ N (we recall that
ϕ : G× N → N). Note as well that the direct application of a one-step method (16) on a
general Lie system (12) would destroy this structure.

For future reference, in regards of the Lie group methods (22), we shall refer to (24) as
Magnus 2, to (25) as Magnus 4, and to (27) as, simply, RKMK (we recall that this method is
order 4 convergent).

4. Application to SL(n,R)
4.1. SL(2,R) and the Riccati Equation

Let us recall the first-order Riccati equation over the real line R. One can check a
comprehensive description of all the physical applications of this equation in [2]. The
Riccati equation reads

dx
dt

= b0(t) + b1(t)x + b2(t)x2 , (28)

where b0(t), b1(t), b2(t) are arbitrary t-dependent functions. The associated t-dependent
vector field is X = b0(t)X0 + b1(t)X1 + b2(t)X2, where

X0 = ∂x, X1 = x∂x, X2 = x2∂x

and whose commutators are

[X0, X1] = X0, [X0, X2] = 2X1, [X1, X2] = X2. (29)

This proves that the Riccati equation is a Lie system related to a VG Lie algebra isomorphic
to sl(2,R). Thus, we employ the 7-step method in Section 2.3.1 to study its solutions. We
choose the basis V = {M0, M1, M2} of sl(2,R) to integrate the VG Lie algebra to a Lie
group action of SL(2,R) on R. In more detail,

M0 =

(
0 1
0 0

)
, M1 =

1
2

(
1 0
0 −1

)
, M2 =

(
0 0
−1 0

)
.

Note that

[M0, M1] = −M1, [M0, M2] = −2M1, [M1, M2] = −M2.

We obtain the flows for the vector fields X0, X1, and X2 by integrating them in terms of the
real parameters λ0, λ1, andλ2, respectively. Indeed, the flows of the vector fields X0, X1, X2
read

Φ0(λ0, x0) = λ0 + x0 , Φ1(λ1, x0) = x0eλ1 , Φ2(λ2, x0) =
x0

1− λ2x0
,

respectively. Using canonical coordinates of the second-kind, we can write Y ∈ SL(2,R)
near the neutral element as

Y = exp(λ0M0) exp(λ1M1) exp(λ2M2) . (30)

We define the Lie group action ϕ : SL(2,R)×R→ R through the equations

ϕ(exp(λi Mi), x) = Φi(λi, x) i = 0, 1, 2.

Calculating the three exponential expressions in (30) and comparing the expression with
an arbitrary element Y ∈ SL(2,R) with parameters αδ− βγ = 1, we have

Y =

(
α β
γ δ

)
=

(
eλ1/2 − λ0λ2e−λ1/2 λ0e−λ1/2

−λ2e−λ1/2 e−λ1/2

)
,
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from where the parameters (λ0, λ1, λ2) read

λ0 =
β

δ
, λ1 = −2 log δ , λ2 = −γ

δ
. (31)

The action is obtained as

ϕ(Y, x0) = ϕ(exp(λ0M0) · exp(λ1M1) · exp(λ2M2), x0) = Φ0(λ0, Φ1(λ1, Φ2(λ2, x0))),

and substituting the flows,

ϕ(Y, x0) = λ0 +
x0

1− λ2x0
eλ1 .

Now, substituting the parameters (31) and bearing in mind that for any Y ∈ SL(2,R) it
is fulfilled that αδ− γβ = 1, we can reach the expression of the action that results in a
homography [43]

ϕ(Y, x0) =
αx0 + β

γx0 + δ
. (32)

4.1.1. Exact Solution

It is interesting to note that if the t-dependent coefficients of the Lie system are
constants, the matrix Y associated with the linear system on the Lie group is t-independent
and the solution of the automorphic Lie system can be easily retrieved.

For example, consider the Riccati equation with constant coefficients

dx
dt

= 1 + 2x + x2,

obtained by assuming b0(t) = 1, b1(t) = 2 and b2(t) = 1 in (28). The system on the
group (14) associated with this Riccati equation reads

dY
dt

= AY, Y(t) =
(

y11(t) y12(t)
y21(t) y22(t)

)
∈ SL(2,R), Y(0) = I2, (33)

where I2 is the identity 2× 2 matrix and A(t) is

A =
2

∑
i=0

bi Mi =

(
1 1
−1 −1

)
.

If we write (33) in the canonical form

dy11

dt
= y11 + y21,

dy12

dt
= y12 + y22,

dy21

dt
= −y11 − y21,

dy22

dt
= −y12 − y22,

or equivalently, dy/dt = Σy, where

y =


y11
y12
y21
y22

, Σ =


1 0 1 0
0 1 0 1
−1 0 −1 0
0 −1 0 −1

, y(0) =


1
0
0
1

,

the solution of the system reads

y(t) = exp
(∫ t

0
Σ(τ)dτ

)
y(0) = exp(tΣ)y(0).

Observe that the matrix Σ is constant, so the integration is trivial. Furthermore, since Σ is
nilpotent, the exponential is simply truncated at order 2. In this way, we obtain the solution:
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y(t) = (t + 1, t,−t, 1− t)T ⇒ Y(t) =
(

t + 1 t
−t 1− t

)
.

Applying the Lie group action, we retrieve the solution of the original system:

x(t) = ϕ(Y(t), x0) =
tx0 + x0 + t
1− t− tx0

,

where x0 is the initial condition.

4.1.2. Numerical Example

Let us now put into practice the numerical methods proposed in Definition 3. For this
matter, we consider

dx
dt

= 2t− x
t
+

x2

t3 , t ≥ 1. (34)

This is another Riccati equation with t-dependent coefficients b0(t) = 2t, b1(t) = −1/t and
b2(t) = 1/t3. Its solution is

x(t) =
2t3 − 2t2

2t− 1
(35)

for the initial condition x(1) = 0.
In Figure 1, we show how the described numerical methods approximate the exact

solution (35) in the interval [1, 10] taking different time steps and employing Magnus 2,
Magnus 4, and RKMK as underlying methods in the Lie group.
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[h = 3]
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x(
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exact
Magnus2
Magnus4

RKMK
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80

100

[h = 0.5]

t

exact
Magnus2

Figure 1. Exact vs. numerical solutions of (34) with x(1) = 0. In the left plot we observe the natural
better approximation of higher-order methods for huge time steps (h = 3). In the right plot, we
observe a closer approximation to the exact dynamics when h decreases (h = 0.5).

In Figure 2, we show convergence plots. To make a proper comparison, we include two
classical numerical schemes, Heun (order 2) and RK4, respectively, for the corresponding
orders, applied directly to (34). As is apparent, the slopes of the convergence lines are two
and four, and this manifests that the order of convergence of the numerical methods on
the underlying Lie group is transmitted to the manifold in this particular example. This
transmission can be easily understood in terms of the local truncation error of the underlying
Lie group method and the particular form of the analytical solution we obtain, i.e., (32).
Namely, if we are applying an order p Lie group method in this particular example, that
means αk+1 = α(tk+1) +O(hp1+1), βk+1 = β(tk+1) +O(hp2+1), γk+1 = γ(tk+1) +O(hp3+1),
δk+1 = δ(tk+1) + O(hp4+1), where p =min{p1, p2, p3, p4}. Naturally, α, β, γ, δ are the
components of the SL(2,R) matrix we are dealing with. Taking this into account, the
analytical expression (32) and the definition of the local truncation error we have introduced
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in (17), it is straightforward to see that Eh = O(hp+1), and, consequently, it is expected that
the convergence order of the Lie group method is transmitted to the manifold.

10−4 10−3 10−2 10−1 100
10−9

10−6

10−3

100

E
N

Magnus2
Heun

10−3 10−2 10−1 100
10−14

10−9

10−4

RKMK
Magnus4

RK4

Figure 2. Convergence for the Riccati Equation (34).

4.2. SL(3,R) and Matrix Riccati Equations

A general matrix Riccati equation [44] has the following form:

dΓ
dt

= G1(t) + G2(t)Γ + ΓG3(t) + ΓG4(t)Γ, (36)

where Γ, G1(t) ∈ Mn×m(R), G2(t) ∈ Mn×n(R), G3(t) ∈ Mm×m(R), G4(t) ∈ Mm×n(R).
The case that matters to us is n = 2, m = 1, for which the matrix Riccati equation has a VG
Lie algebra isomorphic to sl(3,R). Then, Equation (36) takes the form(

ẋ
ẏ

)
=

(
g1(t)
g2(t)

)
+

(
g3(t) g4(t)
g5(t) g6(t)

)(
x
y

)
+

(
x
y

)
g7(t) +

(
x
y

)(
g8(t) g9(t)

)(x
y

)
, (37)

where g1(t), . . . , g9(t) are arbitrary functions of time. Equivalently, we can write the previ-
ous matrix equation as

dx
dt

= g1(t) + (g3(t) + g7(t))x + g4(t)y + g8(t)x2 + g9(t)xy,

dy
dt

= g2(t) + g5(t)x + (g6(t) + g7(t))y + g8(t)xy + g9(t)y2.
(38)

The t-dependent vector field associated with this system can be written as

X = g1(t)X1 + g2(t)X2 + (g3(t) + g7(t))X3 + (g6(t) + g7(t))X4 + g4(t)X5 + g5(t)X6 + g8(t)X7 + g9(t)X8,

where

X1 = ∂x, X2 = ∂y, X3 = x∂x, X4 = y∂y,

X5 = y∂x, X6 = x∂y, X7 = x2∂x + xy∂y, X8 = xy∂x + y2∂y.

Note that X only really depends on eight t-dependent functions, since g3(t), g6(t), and
g7(t) appear as linear combinations g3(t) + g7(t) and g6(t) + g7(t). Let us list only the
non-vanishing commutators for these vector fields:

[X1, X3] = X1, [X1, X6] = X2, [X1, X7] = 2X3 + X4, [X1, X8] = X5,

[X2, X4] = X2, [X2, X5] = X1, [X2, X7] = X6, [X2, X8] = X3 + 2X4,

[X3, X5] = −X5, [X3, X6] = X6, [X3, X7] = X7, [X4, X5] = X5,

[X4, X6] = −X6, [X4, X8] = X8, [X5, X6] = X4 − X3,

[X5, X7] = X8, [X6, X8] = X7.

(39)
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From this we conclude that (37) is a Lie system. Now, we choose a matrix basis for
sl(3,R):

M1 =

 0 0 0
0 0 0
−1 0 0

, M2 =

0 0 0
0 0 0
0 −1 0

, M3 =
1
3

2 0 0
0 −1 0
0 0 −1

, M4 =
1
3

−1 0 0
0 2 0
0 0 −1

,

M5 =

0 0 0
1 0 0
0 0 0

, M6 =

0 1 0
0 0 0
0 0 0

, M7 =

0 0 1
0 0 0
0 0 0

, M8 =

0 0 0
0 0 1
0 0 0

.

To integrate the VG Lie algebra of (38) to a Lie group action, we express the elements of the
Lie group SL(3,R) in terms of canonical coordinates of the second-kind in the following
way:

Y =

y11 y12 y13
y21 y22 y23
y31 y32 y33

 =
8

∏
i=1

exp(λi Mi) ∈ SL(3,R), (40)

where λ1, . . . , λ8 ∈ R are real parameters univocally determined for each Y in an open
neighborhood of the neutral element of SL(3,R). The exponentials in the above expression
can be calculated very easily and, by using their values in (40), it turns out that

y11 = k1, y12 = λ6k1, y13 = (λ6λ8 + λ7)k1,

y21 = λ5k2, y22 = (1 + λ5λ6)k2, y23 = (λ5λ7 + λ5λ6λ8 + λ8)k2,

y31 = −λ1k1 − λ2λ5k2, y32 = −λ2(1 + λ5λ6)k2 − λ1λ6k1,

y33 = −λ1(λ6λ8 + λ7)k1 − λ2(λ5λ7 + λ5λ6λ8 + λ8)k2 + e(−λ3−λ4)/3,

(41)

where k1 = e(2λ3−λ4)/3 y k2 = e(2λ4−λ3)/3. Rewriting some equalities in terms of others, i.e.,
y31 = −λ1y11 − λ2y21 and y32 = −λ1y12 − λ2y22, we obtain a linear system from which
we obtain λ1 and λ2. Operating with the remaining ones, we calculate the rest of the
parameters.

λ1 =
y22y31 − y21y32

y12y21 − y11y22
, λ2 =

y11y32 − y12y31

y12y21 − y11y22
,

eλ3 = −y11(y12y21 − y11y22), eλ4 =
(y12y21 − y11y22)

2

y11
,

λ5 = − y11y21

y12y21 − y11y22
, λ6 =

y12

y11
,

λ7 =
y12y23 − y13y22

y12y21 − y11y22
, λ8 =

y13y21 − y11y23

y12y21 − y11y22
.

(42)

Integrating the vector fields X1, . . . , X8, we obtain their flows, Φ1, . . . , Φ8, which in turn
give us the action

Φ1(λ1, (x0, y0)) = (λ1 + x0, y0), Φ2(λ2, (x0, y0)) = (x0, λ2 + y0),

Φ3(λ3, (x0, y0)) = (x0eλ3 , y0), Φ4(λ4, (x0, y0)) = (x0, y0eλ4),

Φ5(λ5, (x0, y0)) = (x0 + y0λ5, y0), Φ6(λ6, (x0, y0)) = (x0, y0 + x0λ6),

Φ7(λ7, (x0, y0)) =

(
x0

1− x0λ7
,

y0

1− x0λ7

)
, Φ8(λ8, (x0, y0)) =

(
x0

1− y0λ8
,

y0

1− y0λ8

)
.
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In view of (40), the composition of the flows Φ1 ◦ Φ2 ◦ · · · ◦ Φ8 allows us to obtain the
complete action (x, y) = ϕ(Y, (x0, y0)), with

x =
x0(1 + λ5λ6) + y0λ5

1− x0λ7 − y0λ8
eλ3 + λ1, y =

x0λ6 + y0

1− x0λ7 − y0λ8
eλ4 + λ2.

Operating with these expressions, we can rewrite the action through homographies as
follows:

(x0, y0)→
(

a21 + a22x0 + a23y0

a11 + a12x0 + a13y0
,

a31 + a32x0 + a33y0

a11 + a12x0 + a13y0

)
,

with coefficients

a11 = 1, a12 = −λ7, a13 = −λ8, a21 = λ1,

a22 = (1 + λ5λ6)eλ3 − λ1λ7, a23 = λ5eλ3 − λ1λ8, a31 = λ2,

a32 = λ6eλ4 − λ2λ7, a33 = eλ4 − λ2λ8.

(43)

Numerical example

To illustrate again our numerical methods, we will take the following equation as an
example: 

dx
dt

= 5 sin 10t− x + y,

dy
dt

= 5 cos 10t + x + y,
(44)

which is a matrix Riccati Equation (37) with t-dependent functions

g1(t) = 5 sin 10t, g2(t) = 5 cos 10t, g3(t) + g7(t) = −1,

g4(t) = 1, g5 = 1, g6(t) + g7(t) = 1, g8(t) = g9(t) = 0.

More exactly, it is an affine system of first-order differential equations. For the initial
condition (x(0), y(0)) = (1, 0), the solution of (44) is

x(t) =
157
102

cosh
√

2t−
√

2
3
19

51
sinh
√

2t +
5

102
sin 10t− 55

102
cos 10t,

y(t) =
27
√

2
34

sinh
√

2t +
5

102
cosh

√
2t +

15
34

sin 10t− 5
102

cos 10t.

Figure 3 shows convergence plots.
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Figure 3. Convergence for the affine system of first-order differential Equation (44).
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In this case, one can depict that, although our method is still convergent, the order
of the Lie group is not transmitted to the manifold N (in both cases the slope of the
convergence lines is about 1). In this case, our method is not compared to Heun and RK4
applied directly to (44) but to an alternate scheme given by

xk+1 = ϕ(Ỹk+1, xk), (45)

where {Ỹk}k=0,...,N is the numerical solution of (18) when Heun and RK4 are applied to
them (in Figure 3, they are referred to as Heun and RK4). Naturally, this implies that
Ỹk /∈ G.

Our conjecture is that, in this case, the construction of the action changes the con-
vergence of the method, which can be sustained in the high nonlinearity obtained when
defining the parameters (41)–(43). An interesting open question is whether there is a way
to modify the methods according to the Lie group action so that the convergence is trans-
mitted correctly. Another clue pointing in that direction is that, as can be easily seen in
the plots, although the velocity of convergence is about the same for our method and (45),
quantitatively the error of the former is lower. We consider this as another (positive) ge-
ometrical symptom, since, apparently, the error worsens when the underlying Lie group
structure is not preserved.

4.3. Generalization to SL(n,R)

The special linear Lie group plays an essential role in mechanical systems and in-
tegrable systems (see [19,27,45] and references therein). This is why we briefly detail a
possible generalization of our proposed methods to SL(n,R).

Recall that the Lie algebra sl(n,R) associated with the Lie group SL(n,R) has dimen-
sion n2 − 1. In fact, a matrix representation of sl(n,R) is given by the matrix Lie algebra
given by n× n traceless matrices. For simplicity, we can choose a basis of sl(n,R) given
by n2 − n matrices with one nontrivial off-diagonal entry equal to one, together with n− 1
diagonal traceless matrices of the form

1 0 0 · · · 0
0 −1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

,


1 0 0 · · · 0
0 0 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

, · · ·


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

.

The total n2 − 1 matrices are traceless and linearly independent. A Lie group action
ϕ : SL(n,R)×Rn−1 → Rn−1 can then be constructed via homographies as follows (cf. [44]):

x1 =
a10 + a11x0

1 + a12x0
2 + · · · a1,n−1x0

n−1

a00 + a01x0
1 + a02x0

2 + · · · a0,n−1x0
n−1

,

x2 =
a20 + a21x0

1 + a22x0
2 + · · · a2,n−1x0

n−1

a00 + a01x0
1 + a02x0

2 + · · · a0,n−1x0
n−1

,

...

xn−1 =
an−1,0 + an−1,1x0

1 + an−1,2x0
2 + · · · an−1,n−1x0

n−1

a00 + a01x0
1 + a02x0

2 + · · · a0,n−1x0
n−1

,

(46)
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where (x1, . . . , xn−1) = ϕ(Y, (x0
1, . . . , x0

n−1)), where Y ∈ SL(n,R) is

Y =


a00 a01 a02 · · · a0,n−1
a10 a11 a12 · · · a1,n−1
a20 a21 a22 · · · a2,n−1
...

...
...

. . .
...

an−1,0 an−1,1 an−1,2 · · · an−1,n−1

.

Note that if 〈 · , · 〉 is the standard scalar product in Rn and we call ai, with i = 0, . . . , n, the
rows of Y and x0 stands for the point (1, x0

1, . . . , x0
n−1) in Rn, then (46) can be rewritten as

xi = 〈ai, x0〉/〈a0, x0〉 for i = 1, . . . , n− 1.
It is worth noting that if two VG Lie algebras V1, V2 on two manifolds N1, N2 are

diffeomorphic, i.e., there exists a diffeomorphism φ : N1 → N2 such that φ∗V1 = V2, then
V1, V2 can be integrated to two φ-equivariant Lie group actions ϕ1 : G × N1 → N1 and
ϕ2 : G×N2 → N2, i.e., φ(ϕ1(g, x)) = ϕ2(g, φ(x)) for every x ∈ N1 and g ∈ G. In particular,
if V1 is the VG Lie algebra of matrix Riccati equations studied in this section and V2 is
another VG Lie algebra on N2 = N1 diffeomorphic to V1, then the Lie group action ϕ2 is
φ-equivariant to ϕ1. Since every diffeomorphism in N1 can be understood as a change in
variables, the φ-equivariance of ϕ1 and ϕ2 entails that a change in variables in N2 allows us
to write the action of every g ∈ SL(n,R) via ϕ2 as a homography. Note that it is simple to
prove that (46) gives rise to a Lie group action of SL(n,R) and its fundamental vector fields
are those related to matrix Riccati equations.

Increase in Numerical Cost as n Increases

We can indirectly measure the numerical cost of our schemes according to the time
they need to compute the solution. Let us consider the following equation:

dx
dt

= 2t− x
t
+

x2

t3 , t ≥ 1, x(1) = 0, (47)

whose analytical solution is

x(t) =
2t3 − 2t2

2t− 1
.

Now, we apply our five numerical schemes to the equation above and plot the step
size (which is strictly related with n) versus the time consumed for the resolution of the
equation.

In the diagrams displayed in Figure 4, we can observe that in the logarithmic axis the
relation between the variables is close to being linear. As expected, the fourth-order schemes
(RKMK, Magnus 4, and RK4) show a bigger increase in numerical cost as n increases.
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Figure 4. Numerical integration of Riccati Equation (47).



Symmetry 2023, 15, 1285 23 of 30

Now, we renact the same process to the following differential system:
dx
dt

= 5 sin 10t− x + y,

dy
dt

= 5 cos 10t + x + y,

{
x(0) = 1,

y(0) = 0,
(48)

whose solution can be written as
x(t) =

157
102

cosh
√

2t−
√

2
3
19

51
sinh
√

2t +
5

102
sin 10t− 55

102
cos 10t,

y(t) =
27
√

2
34

sinh
√

2t +
5

102
cosh

√
2t +

15
34

sin 10t− 5
102

cos 10t.

and we obtain the following figures.
In Figure 5, when h is small (and, therefore, n is big), we observe again a linear relation

between the numerical cost and the index n.
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Figure 5. Numerical integration of Equation (48).

5. Applications in Linear Quadratic Control

Now, we provide an interesting application to optimal control of the method to obtain
the solution of Lie systems given in Procedure in Section 2.3.1. A very useful model to carry
out the control of dynamical systems is the representation in the space of states. The most
general representation on such space is{

ẋ(t) = f (x(t), u(t), t),

y(t) = h(x(t), u(t), t),

where x : [t0, t f ]→ Rn is a vector containing the state variables of the system, ẋ : [t0, t f ]→
Rn is its time derivative, u : [t0, t f ] → Rm is the vector containing the input variables,
y : [t0, t f ] → Rp is the vector with the output variables, and f : Rn ×Rm ×R → Rn and
h : Rn ×Rm ×R→ Rp are two t-dependent arbitrary vector fields. We can manipulate the
inputs to modify the state of the system.

A very important and common model is that of linear systems, given their simplic-
ity [46]. Indeed, it is pretty usual to search for a linearization of nonlinear problems. The
most general representation of a linear system is{

ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + D(t)u(t),
(49)

where the t-dependent matrices A(t), B(t), C(t), and D(t) are the state (or system) ma-
trix, the input matrix, the output matrix, and the feedthrough (or feedforward) matrix,
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respectively. In order for the system to be defined, the dimensions of the matrices must be
A(t) ∈ Mn, B(t) ∈ Mn×m, C(t) ∈ Mp×n, and D(t) ∈ Mp×m for every t ∈ R.

In particular, we are interested in the problem of optimal control with a quadratic cost
function, which, as we are going to show, can be transformed into a matrix Ricatti equation.
That is, given a linear system (49), the state x0, and the time interval [t0, t f ], we need to find
an input u(t) starting with condition x(t0) = x0 that minimizes the quadratic cost function,
i.e.,

J(x, u) def.
= x(t f )

TSx(t f ) +
∫ t f

t0

x(t)TQ(t)x(t)dt +
∫ t f

t0

u(t)TR(t)u(t)dt,

where S is a positive semi-definite matrix and for all t ∈ [t0, t f ] the matrices Q(t) and R(t)
are, respectively, positive semi-definite and positive definite. Obviously, S, Q(t) ∈ Mn×n,
and R(t) ∈ Mm×m for every t ∈ R.

Since the matrices involved are positive (semi-)definite, the terms appearing in them
are a measure of the size of the vectors x and u. Each of them “penalizes" a different aspect
of the control. The first one measures how far the system is from the null state x = 0 at the
end of the time interval. Analogously, the second term measures the distance between the
state and the null state along time. In this way, the faster the system approaches the null
state, the smaller the cost function is and the closer it is to the null state at the end of the
time interval. On the other hand, the third term measures the size of the input along time
in such a way that the smaller it is (with respect to the measure defined by the matrix R(t)),
the smaller the value of the function J will be.

Adjusting the matrices S, Q(t), R(t) we choose what aspects are more important. If
we choose the matrix S in such a way that staying far from the null state at the end of the
interval is very penalized, the optimal control will conduct the system towards this state
at the end of the time interval, at the cost that the input will be bigger. If Q(t) takes over
the other two matrices, the control will lead the system to the null state as fast as possible.
On the contrary, if the dominant matrix is R(t), the input u will be small, but probably the
other two aspects will be adversely affected. This is interesting when the size of the input
is related to any other variable that we would like to minimize.

In this formulation, the cost function leads the system towards the null state. Nonethe-
less, it is easy to modify the problem so the system drifts towards a different state. If we
aim at establishing the system in a certain state xc, if we are capable of finding an input uc
such that

0 = Axc + Buc,

then, performing the change in variables{
x(t)− xc → x̂(t),

u(t)− uc → û(t),

we obtain a new system

dx̂
dt

=
dx
dt

= A(x̂ + xc) + B(û + uc) = Ax̂ + Bû + Axc + Buc︸ ︷︷ ︸
=0

= Ax̂ + Bû

in which we can apply the quadratic cost function to obtain an optimal control problem
that conducts the system towards x̂ = x− xc = 0. In this way, the original system will tend
to xc.

The solution of the linear quadratic control problem is given as a state-feedback
controller, i.e., the optimal input uo(t) that minimizes J(x, u) is a function of the state of
the system. In particular, we can write uo(t) = K(t)x(t), where K(t) is the feedback matrix
and is calculated as

K(t) = −R(t)−1B(t)TP(t),
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where P(t) is the solution of the following matrix differential Riccati equation:

dP
dt

= PBR(t)−1BTP− PA− ATP−Q(t), P(t f ) = S. (50)

The initial condition is given at the end of the time interval because one needs to integrate
the equation in reverse ([47], §8.2). Equation (50) is the matrix Riccati equation introduced
in Section 4.

Now, we are going to solve an example involving linear quadratic control by the
application of our analytical resolution of Lie systems.

Example: Velocity of a Vehicle

We propose a model of a control for the velocity of a vehicle. We will have a single
input variable, which will correspond with the strength of the engine to accelerate the
vehicle. Let us assume that the only force that could decelerate the vehicle is the friction
with air and that it is proportional to the square of the velocity [48]. For simplicity, our
model reduces to describing motions with positive velocity. Under these hypotheses, it is
enough to take the velocity of the vehicle as the variable of state to completely characterize
the system. Applying Newton’s second law, we obtain the equation describing the system:

F− kv2 = m
dv
dt

,

where F is the engine force, v is the velocity, k is a constant of proportionality, and m is the
mass of the vehicle. For simplicity, we will take m = k = 1. We change the notation to use
u instead of F, this being the input of the system. So, the system now reads

dv
dt

= −v2 + u.

This system is nonlinear, but when we are designing a control that keeps the velocity
constant around a certain value, we can linearize the system in the neighborhood of such a
value to compute the optimal control with quadratic cost function that keeps the vehicle
at cruising speed. Again, to simplify the computations, we take vc = 1. Under these
circumstances, dv/dt = 0, so we obtain uc = 1. The linearized system around the point
(vc, uc) results in

d∆v
dt

= −2∆v + ∆u,

where ∆v = v− 1 and ∆u = u− 1 are the incremental variables around (vc, uc).
To further simplify, we will take all the matrices constant in the quadratic cost function,

and equal to one in the time interval [0, 1]. Then, the cost function is

J(v, u) = ∆v(1)2 +
∫ 1

0
∆v(s)2ds +

∫ 1

0
∆u(s)2ds. (51)

The function ∆uo(t) that minimizes (51) is ∆uo = K(t)∆v(t), where K = −R−1BTP. In our
case, K(t) = −P(t), P(t) being the solution of the Riccati equation

dP
dt

= PBR−1BTP− PA− ATP−Q = P2 + 4P− 1, (52)

with (final) condition P(1) = S = 1.
Now, we resolve (52) analytically, applying our procedure explained in Section 2.3.1.

Since it is a Riccati equation with constant coefficients, given its simplicity, we can compute
its analytical solution by resolving its associated linear system on the group SL(2,R). In this
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case, we have to solve dY(t)/dt = AY(t), with Y(1) = I, where the matrix A is (according
to the notation in Section 4.1)

A = −M0 + 4M1 + M2 =

(
2 −1
−1 −2

)
.

The exact solution of this system will be expressed in its canonical form dy/dt = Σy, where

Σ =


2 0 −1 0
0 2 0 −1
−1 0 −2 0
0 −1 0 −2

, y(1) =


1
0
0
1

.

Its solution is

y(t) = exp
(∫ t

1
Σdτ

)
y(1) = exp((t− 1)Σ)y(1),

that is,

y(t) =
e−(
√

5t+
√

5)

10


(5 + 2

√
5)e2

√
5t + (5− 2

√
5)e2

√
5

√
5e2
√

5 −
√

5e2
√

5t

√
5e2
√

5 −
√

5e2
√

5t

(5− 2
√

5)e2
√

5t + (5 + 2
√

5)e2
√

5

.

Finally, we can retrieve the solution to (52) by means of the Lie group action of SL(2,R)
on R as

P(t) = ϕ(Y(t), P(1)) =
(5 +

√
5)e2

√
5t + (5−

√
5)e2

√
5

(5− 3
√

5)e2
√

5t + (5 + 3
√

5)e2
√

5
.

The optimal control problem is ∆uo = −P(t)∆v. We introduce a constant ∆uc that
carries the system from an initial perturbation to the functioning point v = 1. If we start
from a point v(0) = v, to determine the constant value of u that takes the system back to
the cruising speed ∆uc, the equation is

d∆v
dt

= −2∆v + ∆uc,

with initial conditions ∆v(0) = v− 1 and ∆v(1) = 0. The solution can be computed trivially

∆uc =
2v− 2
1− e2 .

In Figure 6, we have depicted the evolution of the system with different initial condi-
tions around v = 1. The continuous line represents the evolution of the system when we
use optimal control and the discontinuous line corresponds with a constant u.

The chosen values of S, Q, R for the optimal control do not take the vehicle at cruising
speed in the time interval considered. This makes sense if we think of the quadratic
cost function as a compromise to reduce the size of the input, so the system reaches the
functioning point fast and efficiently. If we want to ensure that the vehicle reaches the
cruising speed, we need to reflect it in the cost function by giving more weight to S and Q.
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Figure 6. Evolution of the system with optimal control and constant control.

If we now calculate the cost function for different initial conditions, we see that the
constant control makes the system reach the cruising speed quicker and with less error
than the optimal control, and the cost is smaller. We list some values in Table 1.

The input represents the engine force accelerating the vehicle. It is also reasonable that
the fuel consumption will be proportional to the strength of the force. In this way, we can
derive the optimal control that keeps the vehicle at constant cruising speed and minimizes
the amount of fuel.

Table 1. Summary of results in example.

J(v, u)× 1000 v = 1.2 v = 1.15 v = 1.1 v = 1.05 v = 1

Optimal Control 10.340 5.816 2.585 0.646 0
Constant Control 11.771 6.621 2.943 0.736 0

6. Conclusions

This paper is concerned with the integration of Lie systems, both from the analytical
and numerical perspectives, using particular techniques adapted to their geometric features.
This work is rooted in the field of numerical and discrete methods specifically adapted for
Lie systems, which is still a very unexplored branch of research [2,13,14,49].

One major result in this paper is that we are able to solve Lie systems on Lie groups.
This permits us to solve all Lie systems related to the same automorphic Lie system at
the same time (equivalently, all Lie systems that have isomorphic VG Lie algebras) [1,5].
Automorphic Lie systems present a simple superposition rule that only depends on a single
particular solution. This is an advantage in comparison with superposition rules for general
Lie systems, which used to depend on a larger number of particular solutions. The second
most important advantage is that, since Lie groups admit a local matrix representation,
automorphic Lie systems can be written as first-order systems of linear homogeneous ODEs
in normal form.

Employing the geometric structure of Lie systems, we propose a particular geometric
integrator for Lie systems that exploits the properties of such a structure. Particularly, we
employ the Lie group action obtained by integrating the Vessiot–Guldberg Lie algebra of a
Lie system to obtain the analytical solution of the Lie system. We use the automorphic Lie
system related to a Lie system, along with geometric schemes, say Lie group integrators,
to preserve the group structure. Specifically, we use two families of numerical schemes;
the first one is based on the Magnus expansion, whereas the second is based on RKMK
methods. We have compared both methods in different situations. We can generally say
that the fourth-order RKMK is slightly more precise than the Magnus expansion of the same
order. Regarding the transmission of convergence order from the Lie group method to the
Lie system method, our conjecture, rooted in the results obtained for different Lie groups,
is that how the Lie group action is constructed has a central role. Whilst the numerical
methods work very satisfactorily on the Lie group level, when we translate the properties
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into the manifold, we see that the convergence and precision of the numerical method
can be modified (as in the SL(3,R) case). Nonetheless, since our methods are based on
geometric integrators, they inherit all the geometric properties we wish to preserve and the
solutions always belong in the manifold, where the Lie system is defined (something that
is not preserved if one uses classical numerical schemes).

From the results obtained for SL(2,R) and SL(3,R), we have been able to provide a
generalization to SL(n,R), and we have discussed the form of the Lie group action. As
has been evidenced, SL(n,R) is a relevant Lie group, appearing recurrently in nonlinear
oscillators of Winternitz–Smorodinsky, Milney–Pinney, and Ermakov sytems, as well as
higher-order Riccati equations.

The last important result is that solving higher-order Riccati equations has allowed us
to resolve important examples appearing in engineering problems. We have particularly
proposed a problem in optimal control in which matrix Riccati equations appear naturally
from quadratic cost functions.

In the future, we will analyze the convergence transmission from automorphic Lie
systems to related Lie systems. In addition, since the exponential is a local diffeomorphism,
the topological study of matrix Lie groups would allow us to establish the optimal time-step
for Lie group methods, which is a long-standing problem that would also help optimize
Lie system methods. Another endeavor is to study Lie systems on more general manifolds
that are not necessarily isomorphic to Rn and depict how some geometric and topological
invariants are preserved [50,51]. Right now, we are working on examples on Anti-de-Sitter
spaces so we can depict how the curvature is preserved under the numerical method. We
could easily generalize this to all kinds of systems in all types of curved spaces. This will in
fact prove the interest of our 7-step method, since one could argue that the nongeometric
approximation methods seem fairly better than our proposal. Nonetheless, in our forth-
coming publications, we will show that when there are invariants in the game, the 7-step
method is the best choice to preserve certain geometric and topological invariants.
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17. Angelo, R.M.; Wresziński, W.F. Two-level quantum dynamics, integrability and unitary NOT gates. Phys. Rev. A 2005, 72, 034105.

[CrossRef]
18. Lázaro-Camí, J.A.; Ortega, J.P. Superposition rules and stochastic Lie-Scheffers systems. Ann. Inst. H. Poincaré Probab. Stat. 2009,

45, 910–931. [CrossRef]
19. Hussin, V.; Beckers, J.; Gagnon, L.; Winternitz, P. Superposition formulas for nonlinear superequations. J. Math. Phys. 1990, 31,

2528–2534.
20. Cariñena, J.F.; de Lucas, J.; Sardón, C. A new Lie systems approach to second-order Riccati equations. Int. J. Geom. Meth. Mod.

Phys. 2011, 9, 1260007. [CrossRef]
21. Cariñena, J.F.; de Lucas, J. Applications of Lie systems in dissipative Milne-Pinney equations. Int. J. Geom. Meth. Mod. Phys. 2009,

6, 683–699. [CrossRef]
22. Odzijewicz, A.; Grundland, A.M. The Superposition Principle for the Lie Type first-order PDEs. Rep. Math. Phys. 2000, 45, 293–306.

[CrossRef]
23. Iserles, A.; Nørsett, S.P. On the solution of linear differential equations in Lie groups. Philos. Trans. R. Soc. A 1999, 357, 983–1020.

[CrossRef]
24. Zanna, A. Collocation and relaxed collocation for the Fer and Magnus expansions. J. Numer. Anal. 1999, 36, 1145–1182. [CrossRef]
25. Munthe-Kaas, H. Runge-Kutta methods on Lie groups. BIT Numer. Math. 1998, 38, 92–111. [CrossRef]
26. Munthe-Kaas, H. High order Runge-Kutta methods on manifolds. J. Appl. Numer. Math. 1999, 29, 115–127. [CrossRef]
27. de Lucas, J.; Grundland, A.M. A Lie systems approach to the Riccati hierarchy and partial differential equations. J. Differ. Equ.

2017, 263, 299–337.
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