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Abstract: A novel discrete exponentiated Chen (DEC) distribution, which is a subset of the continuous
exponentiated Chen distribution, is proposed. The offered model is more adaptable to analyzing a
wide range of data than traditional and recently published models. Several important statistical and
reliability characteristics of the DEC model are introduced. In the presence of Type-II censored data,
the maximum likelihood and asymptotic confidence interval estimators of the model parameters
are acquired. Two various bootstrapping estimators of the DEC parameters are also obtained. To
examine the efficacy of the adopted methods, several simulations are implemented. To further clarify
the offered model in the life scenario, the two applications, based on the number of vehicle fatalities
in South Carolina in 2012 and the final exam marks in 2004 at the Indian Institute of Technology at
Kanpur, are analyzed. The analysis findings showed that the DEC model is the most effective model
for fitting the supplied data sets compared to eleven well-known models in literature, including:
Poisson, geometric, negative binomial, discrete-Weibull, discrete Burr Type XII, discrete generalized
exponential, discrete-gamma, discrete Burr Hatke, discrete Nadarajah-Haghighi, discrete modified-
Weibull, and exponentiated discrete-Weibull models. Ultimately, the new model is recommended to
be applied in many fields of real practice.

Keywords: discrete exponentiated Chen; censored data; confidence intervals; simulation study;
reliability characteristics; bootstrapping; maximum likelihood; entropy

1. Introduction

When it becomes impossible or impracticable to evaluate a product’s or piece of
equipment’s lifespan on a continuous scale, the discretization phenomenon occurs. This
applies to many domains, including clinical trials, engineering, economics, and other
associated sciences; see [1]. The lifespan of a copy machine is determined by the total
number of copies it produces. In survival analysis, the lifetime periods for people with
brain tumors, or the duration between remission and recurrence, may be documented as
the number of days. In a reliability framework, the functional state of a system is checked
every unit of time. Observed statistics represent the number of time units achieved prior to
a failure. In addition to lifespan statistics, the count phenomenon may be seen in a variety
of real-world contexts, including the number of earthquakes in a year, accidents, ecological
species types, insurance claims, and more. Discrete distributions are quite helpful for
modeling lifespan data in such circumstances. In this situation, the geometric and negative
binomial distributions are recognized as discrete substitutes for the exponential and gamma
distributions. In some real-world circumstances, these distributions do not, however, fit
discrete data. Many continuous lifespan distributions have been discretized in the literature
in recent decades as a result of the demand for more believable discrete distributions to
simulate discrete data in a range of real-world settings.
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Consider the discrete Weibull distribution, which is discussed in refs. [2,3], the dis-
crete Rayleigh distribution, which is discussed in refs. [4,5], the discrete inverse, which
is discussed in ref. [6], the exponentiated discrete Weibull distribution in ref. [7], and the
discrete Weibull geometric distribution, see [8]. To simulate data with a bathtub shape and
a growing failure rate in recent years, ref. [9] developed a discrete additive Perks-Weibull
distribution. The discrete Nadarajah and Haghighi distributions for one variable were
initially proposed by ref. [10]. To evaluate discrete rising failure and count data, ref. [11]
presented a discrete Perks distribution. A brand-new discrete Lindley distribution with
two parameters and an unusual bathtub-shaped hazard rate characteristic was described
by ref. [12]. For over- and under-dispersed data, ref. [13] presents the discrete Gompertz-G
family. Ref. [14] estimated the quantity of new coronavirus cases using a discrete gen-
eralized Lindley distribution. A discrete equivalent of the peculiar Weibull-G family of
distributions was shown by ref. [15]. They spoke about traditional and Bayesian estimates
and showed how the suggested model may be used with count data sets. A discrete equiv-
alent of the Teissier distribution with application to data counting was recently studied by
ref. [16].

Even though there are a lot of discretized distributions in the literature, there could be
situations when they conflict with discrete data modeling. There is therefore still plenty
of potential for creating novel discretized distributions that are appropriate in various
situations. In light of this, we suggest a discretized variant of the exponentiated Chen
distribution proposed by ref. [17]. To discretize continuous distribution, a variety of
techniques can be applied; see [18]. The following is the most typical procedure for finding
the discrete analog of a continuous distribution. Many discrete distributions have been
introduced using this approach to discretization, including the natural discrete Lindley [19],
the discrete Marshal-Olkin Weibull [20], the uniform Poisson-Ailamujia [21], the discrete
inverted Topp-Leone [22], and the discrete power-Ailamujia [23].

If the underlying random variable (RV) X has the survival function (SF), SX(x)P(X ≥ x),
the underlying RV Y has the probability mass function (PMF) (Y = [X], biggest integer less
than or equal to X)

P(Y = y) = P(y ≤ X < y + 1)

= P(X ≥ y)− P(X ≥ y + 1) = SX(y)− SX(y + 1), y = 0, 1, 2, . . . , ∞.
(1)

The technique described above generates a discrete distribution by using the same
functional form as the continuous version of the SF. However, this discrete variant retains
certain aspects of dependability. There is a strong motivation to apply this technique
in order to create discrete versions of existing continuous distributions. On numerous
occasions, constraints such as limited time or resources hinder the collection of complete
data sets. Incomplete data can involve censored data, which can be further explored in
ref. [24]. Various censoring algorithms have been documented in the literature to analyze
these types of data sets. The commonly employed censoring techniques include Type I and
Type II censoring. Type I censoring involves recording the event only if it occurs before a
predetermined time, while Type II censoring continues the research until a specific number
of subjects experience failure. Random censoring, on the other hand, is a distinct type of
censorship where individuals can be censored at any point during the experiment and
at different time intervals. In the context of clinical trials or medical research, random
censorship could occur when patients withdraw early without completing the prescribed
treatment. Further information on censoring techniques, their extensions, and their analysis
can be found in ref. [25]. Accurate analysis of randomly censored lifespan data is crucial
to derive reliable insights and meaningful research findings. Such data sets are frequently
encountered in fields such as biology, reliability studies, and medical science. Typically,
these data involve right-censoring, as it is impractical to observe individuals until their
deaths or because participants may drop out of the study. In regard to right-censoring with
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discrete observations, it has been examined by [26]. Notably, ref. [27] investigated various
inferential approaches for the exponentiated discrete Weibull model with censored data.

Therefore, the main objectives of the DEC model are:

1. The first advantage of this distribution over many other one- or two-parameter
discrete distributions is that it gives the various hazard rate forms, such as decreasing,
increasing, or increasing-constant. So, by virtue of these hazard rates, the proposed
model is suitable for modeling various data sets;

2. It offers various PMF shapes that may not be adequately modeled by other competitive
models that are appropriate to model positively skewed, negatively skewed, or
symmetric data;

3. Several statistical and reliability characteristics, including moments, probability func-
tions, reliability indices, hazard functions, order statistics, etc., are introduced;

4. Analysis results from two real applications showed that the DEC distribution fits
the given data sets satisfactorily compared to the other eleven discrete distribution
models in the literature;

5. Maximum likelihood and bootstrapping estimation methods are considered to esti-
mate the proposed parameters in the presence of data collected under the Type-II
censored strategy;

6. Through extensive Monte Carlo simulations using various accuracy criteria, namely
mean squared errors, mean absolute biases, and average interval lengths, the perfor-
mance of the acquired estimators is evaluated. It may seem reasonable to recommend
the use of Type-II censoring for estimating unknown parameters.

The remainder of the paper is organized as follows: In Section 2, materials and methods
are provided. Monte Carlo results and real data analysis are illustrated in Sections 3 and 4,
respectively. Finally, we provide some concluding remarks in Section 5.

2. Materials and Methods

The SF of the continuous exponentiated Chen distribution is provided by:

S(x) = 1−
(

1− eβ(1−exλ
)

)θ

, β, λ, θ > 0, x ≥ 0, (2)

subsequently, the PMF of the DEC distribution becomes

P(x) =
(

1− eβ(1−e(x+1)λ )

)θ

−
(

1− eβ(1−exλ
)

)θ

, x = 0, 1, 2, . . . , ∞, (3)

where β, λ, θ > 0, are the shape parameters. It is easy to show that the PMF in Equation (3)
is accurate, i.e., ∑∞

x=0 P(X = x) = 1.
For specified values of β, λ, and θ based on their domains, Figure 1 displays the PMF

and hazard rate function (HRF) shapes of the DEC distribution. It shows that the PMF can
be unimodal (for β = 0.1, λ = 0.4, θ = 4.2), right skewed (for β = 0.2, λ = 0.4, θ = 1.8) or
left skewed (for β = 0.1, λ = 0.3, θ = 7.5). It also shows that the HRF of the new model
exhibits different shapes, such as the decreasing (for β = 6, λ = 0.2, θ = 3), increasing (for
β = 0.1, λ = 0.6, θ = 2.2) or increasing-constant (for β = 0.1, λ = 0.4, θ = 2.5). As a result,
the proposed model is suitable for modeling different real-world data sets.
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Figure 1. The PMF and HRF plots of the DEC model. (a) PMF. (b) HRF.

For PMF in Equation (3), the cumulative distribution function (CDF) of DEC is given by:

F(x) =


[

1− eβ{1−e(bxc+1)λ}
]θ

f or x ≥ 0

0 f or x < 0
(4)

where bxc is the floor function that gives the greatest integer less than or equal to x. Then
the quantile function can be defined as Q(y) = in f {x : F(x) ≥ y}. For more details on this
quantile function, see Section 14 of ref. [28] and Theorem 2.1.10 of ref. [29]. It should be

noted here that F(0) =
(

1− eβ(1−e)
)θ

, and the proportion of non-zero values is given by
1− F(0).

Lemma 1. Let bxc denote the floor function and let dxe be a ceiling operator that provides the least
number larger (or equal to) than x. Then, for any integer n (or m), and real number x, we have
the following:

(i) n ≥ x if and only if n ≥ dxe.
(ii) bxc ≥ m if and only if x ≥ m.

Proof. According to ref. [30],

(i) Since dxe ≥ x, n ≥ dxe implies n ≥ dxe ≥ x. Thus, we have n ≥ x. Next, we need to
prove that n ≥ x implies n ≥ dxe. Its contrapositive statement is that n < dxe implies
n < x. Since dxe − 1 < x ≤ dxe, we can rewrite dxe = x + δ, where 0 ≤ δ < 1. Since
n and dxe are both integers, it is immediate from n < dxe that we can set n = dxe − k
where k = 1, 2, . . .. If we assume that n < x is not satisfied (that is, n ≥ x), then
we have dxe − k ≥ x which results in δ = dxe − x ≥ k. Thus, we have δ ≥ 1 since
k = 1, 2, . . ., which violates the condition 0 ≤ δ < 1.

(ii) Since x ≥ bxc, we have x ≥ m if bxc ≥ m. Next, we need to prove that x ≥ m
implies bxc ≥ m. Its contrapositive statement is that bxc < m implies x < m. Since
bxc ≤ x < bxc+ 1, we can rewrite bxc = x− δ, where 0 ≤ δ < 1. Since m and bxc
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are both integers, it is immediate from bxc < m that we can set m = bxc+ k where
k = 1, 2, . . .. If we assume that x < m is not satisfied (that is x ≥ m), then we have
x ≥ bxc+ k, which results in δ = x− bxc ≥ k. Thus, we have δ ≥ 1, which violates
the condition 0 ≤ δ < 1. �

However, the quantile function, Q(y) = F−1(y), of the DEC distribution is given by

Q(y) =

⌈{
ln
(

1− 1
β

ln
(

1− y1/θ
))}1/λ

− 1

⌉
.

Proof. It is immediate from F(x) ≥ y that we have

bxc ≥
{

ln
(

1− 1
β

ln
(

1− y1/θ
))}1/λ

− 1 (5)

Since bxc is an integer, we denote n = bxc for notational convenience. Then, applying
Lemma 1(i) to (1), we know that F(x) ≥ y is equivalent to

bxc ≥
⌈{

ln
(

1− 1
β

ln
(

1− y1/θ
))}1/λ

− 1

⌉
(6)

Since the last term in Equation (6) is an integer, we denote

m =

⌈{
ln
(

1− 1
β

ln
(

1− y1/θ
))}1/λ

− 1

⌉
, (7)

for notational convenience. That is, we have bxc ≥ m. By applying Lemma 1(ii), we have
x ≥ m, which implies

x ≥
⌈{

ln
(

1− 1
β

ln
(

1− y1/θ
))}1/λ

− 1

⌉
(8)

Then F(x) ≥ y is equivalent to

x ≥
⌈{

ln
(

1− 1
β

ln
(

1− y1/θ
))}1/λ

− 1

⌉
. (9)

Thus, we have

Q(y)= in f {x : F(x) ≥ y}

= in f
{

x : x ≥
⌈{

ln
(

1− 1
β ln
(

1− y1/θ
))}1/λ

− 1
⌉}

=

⌈{
ln
(

1− 1
β ln
(

1− y1/θ
))}1/λ

− 1
⌉

,

(10)

which completes the proof. It is noteworthy that the quantile function is left-continuous
while the CDF is right-continuous ref. [31]. �

2.1. Statistical Properties
2.1.1. Random Number Generation, Skewness, and Kurtosis

The popular quantile-based formulae for skewness or kurtosis were established by
refs. [32,33]. These indicators stand out in part because they can be computed even for
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distributions lacking moments and are less impacted by outliers. Following ref. [32], the
skewness (Sk) can be expressed as:

Sk =
Q
( 3

4
)
+ Q

(
1
4

)
− 2Q

(
1
2

)
Q
( 3

4
)
−Q

(
1
4

) . (11)

The Moors kurtosis [33], denoted by Ku, suggests looking like this:

Ku =
Q
( 7

8
)
−Q

( 5
8
)
+ Q

( 3
8
)
−Q

(
1
8

)
Q
( 3

4
)
−Q

(
1
4

) . (12)

Using Equation (5) in the aforementioned formulas, it is simple to derive the Sk and
Ku for the DEC distribution.

2.1.2. Moments

Calculating a probability distribution’s mean, variance, Sk, Ku, and other properties
involves using the distribution’s moments. The rth raw moments of the DEC distribution
may be obtained as follows:

ὼr = E(Xr) = ∑
x

(
(x + 1)r − xr)(1− F(x))

= ∑
x

(
(x + 1)r − xr)(1−

(
1− eβ(1−exλ

)

)θ
)

.
(13)

Hence, following [9], the DEC distribution’s initial four raw moments are obtained by
substituting r = 1, 2, 3, 4 using Equation (13).

Using the raw moments from the following relations, we can quickly determine the Sk
and Ku as follows:

Sk =
ὼ3 − 3ὼ2ὼ1 + 2ὼ3

1

[V(X)]3/2 and Ku =
ὼ4 − 4ὼ2ὼ1 + 6ὼ2ὼ2

1 − 3ὼ4
1

[V(X)]2
.

The ratio of the standard deviation to the mean is known as the coefficient of variation
(CV). The variance-to-mean ratio serves as the index of dispersion (ID). Keep in mind that
the CV is always scale-invariant and dimensionless. The ID, on the other hand, is only
dimensionless when it pertains to a dimensionless quantity, such as a count, as is the case
in practice. It is not scale-invariant.

Although both CV and ID are for non-negative variables, they are applied in various
situations. Most frequently, discrete variables with non-negative integer values, like counts,
are represented by the sample and theoretical IDs. A method for detecting whether data
is uniformly, unequally, or overly spread is the in ID, such as ID > 1, which refers to
over-dispersion, ID < 1; refers to the opposite (under-dispersion), and ID = 1 refers to
equi-dispersion. The following is the ID for the DEC model:

ID =
V(X)

E(X)
, (14)

where V(X) and E(X) are the variance and mean of X, respectively.
If one needs to compare the variance of two independent samples, the coefficient

of variation (CV), which is a relative measure of variance, is usually applied. Greater
variability is indicated by a high CV value. However, the CV for the DEC distribution is
given by

CV =
V(X)0.5

E(X)
.
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The aforementioned equations do not have a closed form, so we utilize R software to
statistically illustrate these traits. Figure 2 displays some shapes of the Sk and Ku measures
of the proposed model. It indicates that both measures depend excessively on the values of
θ. Using a complete random sample of size n = 100, based on different combinations of
DEC parameters, Table 1 displays some numerical findings for the mean (M), variance (V),
ID, CV, Sk, and Ku of the DEC distribution and indicates that:

• For fixed β and θ, as λ increases, the values of M, V, ID, CV, Sk, and Ku decrease;
• For fixed β and λ, as θ increases, the values of M and V increase, whereas ID, CV, Sk,

and Ku decrease;
• For fixed θ and λ, as β increases, the values of M, V, and ID decrease, whereas CV,

Sk, and Ku increase.
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Table 1. Some statistics for the DEC distribution using different combinations of its parameters.

λ→ 0.1 0.5 1.5

β↓ θ→ 1 2 3 4 1 2 3 4 1 2 3 4

1 M 2.3207 4.4133 6.3008 8.0035 0.2353 0.4364 0.6091 0.7582 0.1794 0.3266 0.4474 0.5465
V 95.134 174.98 242.48 300.02 0.3193 0.5202 0.6432 0.7153 0.1472 0.2199 0.2472 0.2478
ID 40.994 39.648 38.485 37.486 1.3567 1.1922 1.0561 0.9434 0.8206 0.6734 0.5526 0.4535
CV 4.2030 2.9973 2.4714 2.1642 2.4012 1.6529 1.3168 1.1155 2.1389 1.4360 1.1114 0.9110
Sk 6.0441 4.2406 3.4390 2.9609 2.8412 1.8383 1.3848 1.1212 1.6714 0.7396 0.2117 0.1868
Ku 50.638 29.624 23.037 20.042 15.984 11.555 11.543 12.958 3.7936 1.5471 1.0449 1.0350
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Table 1. Cont.

λ→ 0.1 0.5 1.5

β↓ θ→ 1 2 3 4 1 2 3 4 1 2 3 4

2 M 0.2281 0.4534 0.6761 0.8961 0.0342 0.0675 0.0997 0.1309 0.0322 0.0633 0.0935 0.1226
V 6.5340 12.941 19.226 25.391 0.0374 0.0716 0.1027 0.1310 0.0311 0.0593 0.0847 0.1076
ID 28.649 28.542 28.438 28.335 1.0923 1.0609 1.0306 1.0012 0.9678 0.9367 0.9065 0.8774
CV 11.208 7.9341 6.4856 5.6232 5.6477 3.9660 3.2159 2.7659 5.4845 3.8463 3.1146 2.6749
Sk 20.610 14.585 11.918 10.329 6.0767 4.1707 3.3025 2.7712 5.3022 3.5863 2.7935 2.3011
Ku 546.12 278.22 188.98 144.40 45.191 22.825 15.456 11.843 29.113 13.862 8.8037 6.2950

3 M 0.0230 0.0459 0.0688 0.0917 0.0059 0.0117 0.0175 0.0232 0.0058 0.0115 0.0172 0.0229
V 0.3840 0.7668 1.1483 1.5286 0.0060 0.0119 0.0177 0.0234 0.0057 0.0114 0.0169 0.0224
ID 16.695 16.688 16.681 16.674 1.0247 1.0190 1.0133 1.0076 0.9942 0.9885 0.9828 0.9771
CV 26.940 19.057 15.566 13.486 13.224 9.3376 7.6135 6.5844 13.125 9.2674 7.5559 6.5341
Sk 66.288 46.906 38.325 33.214 13.533 9.5060 7.7100 6.6323 13.049 9.1595 7.4235 6.3810
Ku 6359.3 3189.8 2133.3 1605.1 194.29 96.648 64.106 47.841 171.27 84.897 56.108 41.717

2.1.3. Survival and Hazard Rate Functions

The DEC distribution’s SF (S(·)) and HRF (h(·)) are provided, respectively, by

S(x) = P(X ≥ x) = 1−
(

1− eβ(1−exλ
)

)θ

, x = 0, 1, 2, . . . , ∞, (15)

and

h(x) = P(X = x|X ≥ x) =

(
1− eβ(1−e(x+1)λ )

)θ

−
(

1− eβ(1−exλ
)

)θ

1−
(

1− eβ(1−exλ )
)θ

, x = 0, 1, 2, . . . , ∞. (16)

The recommended distribution is more flexible to evaluate a broad range of data than
conventional and recently published models as a result of the distinctive forms of HRF.
The second rate of hazard (symbolized by srh(·)) and reversed hazard rate (symbolized by
rhr(·)) function of the suggested model are also explored.

srh(x) = P(X = x|X ≤ x) =

(
1− eβ(1−e(x+1)λ )

)θ

−
(

1− eβ(1−exλ
)

)θ

(
1− eβ(1−e(x+1)λ )

)θ
, x = 0, 1, 2, . . . , ∞, (17)

and

rhr(x) = ln
[

S(x)
S(x + 1)

]
= ln


1−

(
1− eβ(1−exλ

)

)θ

1−
(

1− eβ(1−e(x+1)λ )
)θ

, x = 0, 1, 2, . . . , ∞. (18)

2.1.4. Mean Past Life Function

The predicted inactivity time function, also known as the mean-past-life (MPL) func-
tion, is symbolised by the sign m*(i) and it measures the amount of time that has elapsed
since X failed, presuming that the system failed before i. It has various uses, including
actuarial studies, the dependability concept, survival evaluation, and forensic science. In a
discrete setting, the MPL function is defined as:

m∗(i) = E(i− X|X < i) =
1

F(i− 1)∑
i

j=1
F(j− 1); i = 1, 2, 3, . . ., ∞. (19)
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By substituting Equation (4) into m*(i), we can quickly calculate the MPL for the
suggested model.

2.1.5. Stress-Strength Reliability

Stress-strength (SS) reliability describes the life of a component that has random
strength (say X) and is subjected to a random stress (say Z). The component fails when the
stress applied to it exceeds its strength, but it continues to operate satisfactorily whenever
R = P[X > Z]. If the applied stress is greater than the component’s strength, it instantly
fails; otherwise, it performs properly. The SS system paradigm has several uses in disci-
plines including engineering, medicine, psychology, and other related domains; see [34–37].
A thorough analysis of SS models is provided in ref. [38]. For discrete independent RVs X
and Z, the SS reliability is defined as:

R = P(X > Z) = ∑∞

x=0
PX(x)FZ(x),

where, respectively, PX(x) and FZ(x) stand for the PMF and CDF of the independent
discrete RVs, X and Z. Let the numbers X ∼ DEC(β1, λ1, θ1) and X ∼ DEC(β2, λ2, θ2) be
genuine. Next, using Equations (3) and (4), we get

R = ∑∞

x=0

[(
1− eβ1(1−e(x+1)λ1 )

)θ1

−
(

1− eβ1(1−exλ1 )

)θ1
](

1− eβ2(1−e(x+1)λ2 )

)θ2

. (20)

Since the SS reliability parameter cannot be expressed in a clear formula, it can be
easily evaluated via any software.

2.1.6. Order Statistics

Particularly in the study of survival, order statistics are critical for constructing tol-
erance ranges for distributions and identifying population features. Let X1, X2, ..., Xn
represent a sample of size, n, taken at random sample from the DEC(β, λ, θ). Let the
associated order statistics be represented by X(1), X(2), ..., X(n). The CDF of the rth order
statistic is thus provided by, let’s say, υ = X(r) as:

Fr(υ) =∑n

i=r

(
n
i

)
Fi(υ)[1− F(υ)]n−i

= ∑n

i=r∑
n−i

k=0
(−1)k

(
n
i

)(
n− i

k

)
Fi+k(πυ)

= ∑n

i=r∑
n−i

k=0
(−1)k

(
n
i

)(
n− i

k

)[(
1− eβ(1−e(x+1)λ )

)θ
]i+k

.

(21)

The corresponding PMF for rth order statistic is

Fr(υ) = Fr(υ)− Fr(υ− 1)

= ∑n

i=r∑
n−i

k=0
(−1)k

(
n
i

)(
n− i

k

)[(
1− eβ(1−e(υ+1)λ )

)θ
]i+k

−∑n

i=r∑
n−i

k=0
(−1)k

(
n
i

)(
n− i

k

)[(
1− eβ(1−e(υ)

λ
)

)θ
]i+k

(22)

Setting r = 1 or r = n in Equation (9), the PMF of min(X(1), . . . , X(n)) or
max(X(1), . . . , X(n)) can be easily obtained.
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2.1.7. Entropy

The average amount of “information,” “surprise,” or “uncertainty” included in a
RV’s probable outcomes is measured by its entropy, in accordance with the principles of
information theory. The Renyi entropy (RE) (see [39]) is a fundamental entropy. It is a key
measure of complexity and uncertainty in many fields, such as statistical inference, physics,
econometrics, and pattern recognition in computer science. For the DEC distribution, the
RE (for ρ > 0, ρ 6= 1) can be specified as:

RE(ρ) = 1
1−ρ ln∑∞

x=0
Pρ

x (x)

= ρ
1−ρ ln∑∞

x=0

{(
1− eβ(1−e(x+1)λ )

)θ

−
(

1− eβ(1−exλ
)

)θ
}

,
(23)

where ρ ∈ R is a deformation parameter. As a specific instance of RE as ρ→ 1 , Shannon
entropy (Sh.E), which is given by Sh.E = −E[lnP(X)], may be produced.

2.2. Maximum Likelihood Method

One of the most commonly used methods for classical point estimation is the maximum
likelihood technique. The maximum likelihood estimate is the point in the parametric
space where the likelihood function is greatest. Due to its clear and adaptable logic, it has
become the accepted procedure for statistical inference. The model parameters’ maximum
likelihood estimators (MLEs) are obtained based on Type II censoring in this section. When
Type II censoring happens, an experiment contains a predefined number of participants
or items, n, and ends the experiment after a certain number, r, are seen to have failed; the
remaining subjects are then right-censored. On the other hand, under Type II censoring, the
experiment has been stopped at the xr observation. The probability function of the three
parameters based on Type-II censoring is calculated from the CDF in Equation (4) and the
associated PMF in Equation (3) as follows:

L(β, λ, θ) ∝ ∏r

i=1
P(xi)[S(xr)]

n−r

∝ ∏r
i=1

[(
1− eβ(1−e(xi+1)λ )

)θ

−
(

1− eβ(1−exλ
i )

)θ
][(

1− eβ(1−exλ
r )

)θ
]n−r

.
(24)

The likelihood function’s logarithm, l of β, λ and θ is given by

l ∝ ∑r

i=1
ln

[(
1− eβ(1−e(xi+1)λ )

)θ

−
(

1− eβ(1−exλ
i )

)θ
]
+ (n− r)ln

[(
1− eβ(1−exλ

r )

)θ
]

. (25)

Following are the derivatives of l with respect to the unknown parameters:

∂l

∂β
= ∑r

i=1


θ

(
1− e

xλ
i

)(
ϑ
(
xi ; β, λ

))θ−1(1− ϑ
(
xi ; β, λ

))
− θ

(
1− e(xi+1)λ

)(
ξ
(
xi ; β, λ

))θ−1(1− ξ
(
xi ; β, λ

))
(
ξ
(
xi ; β, λ

))θ − (ϑ(xi ; β, λ
))θ

− θ

(
1− exλ

r
)
(ϑ(xr ; β, λ))−1(1− ϑ(xr ; β, λ)) (26)

∂l
∂λ =

r

∑
i=1


θ

(
1−e(xi+1)λ

)
(xi+1)λ ln(xi+1)e(xi+1)λ−1(ξ(xi ;β,λ))θ−1(1−ξ(xi ;β,λ))−θ

(
1−exλ

i

)
exλ

i ln(xi)e
xλ

i −1
(ϑ(xi ;β,λ))θ−1eβ(1−e

xλ
i )

(ξ(xi ;β,λ))θ−(ϑ(xi ;β,λ))θ


−θ
(

1− exλ
r

)
(xr)

λln(xr)exλ
r −1(ϑ(xr; β, λ))−1(1− ϑ(xr; β, λ)),

(27)

∂l

∂θ
= ∑r

i=1

 (ξ(xi; β, λ))θ ln(ξ(xi; β, λ))− (ϑ(xi; β, λ))θ ln(ϑ(xi; β, λ))[
(ξ(xi; β, λ))θ − (ϑ(xi; β, λ))θ

]
− (n− r)ln(ϑ(xr; β, λ)), (28)

where ϑ(xi; β, λ) = 1− exp(β(1− exλ
i )) and ξ(xi; β, λ) = 1− exp(β(1− e(xi+1)λ

)).
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Now, a set of nonlinear equations exists with unknown parameters β, λ, and θ. It is
evident that it is difficult to obtain a closed-form solution. So, the above-described nonlinear
system may be solved numerically using an iterative method like Newton-Raphson.

2.3. Bootstrap Confidence Interval

The bootstrap approach, initially introduced by ref. [40], is a highly broad resampling
strategy for estimating the distributions of statistics based on independent observations.
As an alternative to asymptotic approaches, the bootstrap method is gaining popularity
since it has been shown to be effective in several situations. Here, we create a bootstrap-t
interval and a percentile bootstrap for the variables β, λ, and θ.

(1) Percentile Bootstrap Confidence Interval (B-P):

1. Calculate the MLE of ψ = (β, λ, θ);
2. To acquire the bootstrap estimate using ψ to obtain the bootstrap estimate of β

(say β̂b), λ (say λ̂b), and θ (say θ̂b) using the bootstrap sample;
3. Repeat step (ii) B times to obtain (β̂b(1), β̂b(2), . . . , β̂b(B)), (λ̂b(1), λ̂b(2), . . . , λ̂b(B))

and (θ̂b(1), θ̂b(2), . . . , θ̂b(B));
4. Sort (β̂b[1], β̂b[2], . . . , β̂b[B]), (λ̂b[1], λ̂b[2], . . . , λ̂b[B]), and (θ̂b[1], θ̂b[2], . . . , θ̂b[B]) in as-

cending-order as (β̂b[1], β̂b[2], . . . , β̂b[B]),(λ̂b[1], λ̂b[2], . . . , λ̂b[B]), and (θ̂b[1], θ̂b[2], . . .,
θ̂b[B]), respectively;

5. At a significant level ϕ, the two-sided 100(1− ϕ)% percentile bootstrap confi-
dence intervals of the unknown parameters β, λ, and θ are provided by {β̂b[Bϕ/2],
β̂b[B(1−ϕ/2)]}, {λ̂b[Bϕ/2], λ̂b[B(1−ϕ/2)]} and {θ̂b[Bϕ/2], θ̂b[B(1−ϕ/2)]}, respectively.

(2) Bootstrap-t Confidence Interval (B-T):

For the unidentified parameters β, λ, and θ, a two-sided 100(1− ϕ)% percentile
bootstrap-t confidence interval is provided by

1. The same as steps (i) and (ii) in B-P;
2. The Fisher information matrix may be used to calculate the t-statistic of ψ = (β, λ, θ) as;

3. T =
(

ψ̂b − ψ̂
)(

V
(

ψ̂b
))−1/2

, where β̂b, λ̂b, and θ̂b are the bootstrap estimates of β, λ,
and θ respectively, using the bootstrap sample;

4. where V
(

ψ̂b
)

is the asymptotic variances of ψ̂b
k ;

5. Repeat step (ii) B times to get T(1), T(2), . . . , T(B);
6. Sort T(1), T(2), . . . , T(B) in ascending order, such as T(1) < T(2) < . . . < T(B);
7. For the unidentified parameters β, λ, and θ, a two-sided 100(1− ϕ)% percentile boot-

strap-t confidence interval is provided by{
β̂ + T[B(ϕ/2)]

1
(
V
(

β̂
))−1/2

, β̂ + T[B(1−ϕ/2)]
1

(
V
(

β̂
))−1/2

}
,

{
λ̂ + T[B(ϕ/2)]

2
(
V
(
λ̂
))−1/2

, λ̂ + T[B(1−ϕ/2)]
2

(
V
(
λ̂
))−1/2

}
and {

θ̂ + T[B(ϕ/2)]
3

(
V
(
θ̂
))−1/2

, θ̂ + T[B(1−ϕ/2)]
3

(
V
(
θ̂
))−1/2

}
3. Numerical Comparisons

To verify the performance of the suggested estimators, established in the preceding
Section 2.2, of the parameters β, λ, and θ, Monte Carlo simulations are conducted in this
section. Briefly, we shall provide the simulation scenario. Following that, some discussions
on the simulation results are provided.
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3.1. Simulation Scenario

To evaluate the efficiency of the acquired maximum likelihood estimates and of the
bootstrap interval estimates of β, λ, and θ, in this subsection, several Monte Carlo simulation
studies are conducted. Now, to collect a Type-II censored sample from the DEC model, we
propose the following steps:

Step 1: Set the actual values of β, λ, and θ.
Step 2: Determine the specific values of n (total test units) and r (effective sample size).
Step 3: Generate pseudo-random values with size n from DEC(β, λ, θ) using

xi =

⌈{
ln
(

1− 1
β

ln
(

1− u1/θ
i

))}1/λ

− 1

⌉
, i = 1, 2, . . . , n, (29)

where ui ∈ (0, 1) denotes the uniform random variate.
Step 4: Sort the outputs in Step-3, and for a specific r obtain Type-II censored sample.
Step 5: For each set (n, r), compute the MLEs and 100(1− ϕ)% B-P/B-T interval estimates

of β, λ, and θ.

Now, by adopting three sets of DEC parameters (β, λ, θ) namely Set-1:(0.1, 0.4, 0.8),
Set-2:(0.2, 0.8, 1.5), and Set-3:(1.5, 0.8, 0.4), a large 2000 Type-II censored samples are
generated based on various options of n and r. Here, several choices of n such as
n(= 40, 60, 80, 100, 120, 160, 200) are used, where r(effective sample size) is used as a failure
percentage (FP) such as (r/n)× 100% = 50, 75, 100% for each n, all acquired estimates of
β, λ, and θ are evaluated. Obviously, the Type-II censored sample generated at FP = 100%
implies the complete sample. Following the bootstrap (B-P/B-T) interval estimates of
β, λ, and θ are also obtained using B =10,000 repetitions. The same actual values of β, λ,
and θ are also considered as initial values for calculating the acquired MLEs of the same
unknown parameters.

Specifically, for each group (n, r), the average estimates (AEs) with their mean squared
errors (MSEs), mean absolute biases (MABs), and average interval lengths (AILs) of β (for
example) are obtained using the following formulae:

AE = 1
N

N

∑
j=1

β(j), MSE = 1
N

N

∑
j=1

(
β(j) − β

)2
,

MAB = 1
N ∑N

j=1

∣∣∣β(j) − β
∣∣∣ and AIL(1−ϕ)(β) = 1

N ∑N
j=1

(
Uβ(j) − Lβ(j)

)
,

where L(·) and U(·) denote the lower and upper bounds of the interval estimate, N is
the number of replications,β(j) is the calculated estimate of β at ith iteration. In a similar
pattern, the AEs, MSEs, MABs, and AILs of λ and θ can be easily developed. We further
recommend that the coverage probability criterion be considered when comparing the
interval estimates; in our evaluations, this criterion is averted for brevity. All numerical
evaluations are performed via R 4.2.2 programming software through the ‘maxLik’ package
introduced by ref. [41]. All numerical results of β, λ, and θ are obtained and reported in
Tables 2–4, respectively.

3.2. Simulation Discussions

This subsection focuses on several evaluations of the performance of the suggested point
and interval estimation methods. From Tables 2–4, we can draw the following conclusions:

• Generally, in terms of lowest MSE, MAB, and AIL values, the acquired estimates of
the unknown parameters β, λ, and θ behave well;

• As n increases, the MSEs, MABs, and AILs of β, λ, and θ tend to decrease. This finding
confirms the consistency feature of the associated estimates when the required sample
size is increased. A similar pattern is observed when the FP increases;
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• For fixed (n, r), the interval estimates obtained from the B-T procedure have shorter
AILs compared to those obtained from the B-P procedure. This result holds for all
given parametric sets;

• As the true values of β, λ, and θ increase, for each setting, the MSEs, MABs, and AILs
of all unknown parameters β, λ, or θ increase;

• As the true values of β and θ increase, with fixing λ, the MSEs, MABs, and AILs of β
increase while those of λ and θ decrease;

• In summary, the simulated results showed that the suggested estimation approaches of
the DEC parameters perform well under Type-II censoring and can be easily extended
to other models or other censoring plans;

• Heat-map visualization is a way of graphically representing numerical data where the
value of each data point is indicated using specified colors. Therefore, utilizing the heat-
map tool in R 4.2.2 programming software, the calculated point (or interval) estimates
of β, λ, or θ using Set-1 and Set-2 (for instant) are shown in Figures 3–5, respectively.

Table 2. The AEs, MSEs, MABs, and AILs of β.

n FP% AE MSE MAB AIL AE MSE MAB AIL AE MSE MAB AIL
B-P B-T B-P B-T B-P B-T

Set→ 1 2 3

40 50% 0.0417 0.0220 0.0885 0.4530 0.4527 0.0829 0.0491 0.1756 0.8866 0.8871 1.7423 0.1920 0.3297 2.1419 2.1215
75% 0.0519 0.0114 0.0844 0.2765 0.2759 0.1305 0.0332 0.1631 0.6168 0.6150 1.8229 0.1769 0.3237 1.8440 1.8268
100% 0.1170 0.0102 0.0804 0.2410 0.2403 0.2375 0.0328 0.1460 0.4851 0.4855 1.4441 0.1581 0.3123 1.8148 1.7971

60 50% 0.0334 0.0124 0.0866 0.3711 0.3709 0.0338 0.0359 0.1720 0.6580 0.6581 1.7792 0.1479 0.3200 1.7803 1.7630
75% 0.0332 0.0108 0.0807 0.2521 0.2518 0.2279 0.0316 0.1601 0.5594 0.5594 1.8179 0.1186 0.3195 1.7714 1.7544
100% 0.1111 0.0078 0.0690 0.1939 0.1932 0.2573 0.0281 0.1294 0.2557 0.2560 1.5037 0.1099 0.3174 1.1769 1.1656

80 50% 0.0233 0.0075 0.0826 0.3046 0.3039 0.0264 0.0336 0.1696 0.6059 0.6060 1.6507 0.1094 0.3123 0.9369 0.9258
75% 0.0305 0.0065 0.0741 0.1358 0.1347 0.2162 0.0309 0.1423 0.4935 0.4935 1.7861 0.1066 0.2916 0.9212 0.9123
100% 0.1059 0.0062 0.0583 0.1245 0.1236 0.2737 0.0231 0.1105 0.2343 0.2342 1.4140 0.1048 0.2889 0.8439 0.8358

100 50% 0.0206 0.0072 0.0824 0.2543 0.2536 0.0453 0.0302 0.1625 0.5522 0.5522 1.8057 0.1033 0.2804 0.7529 0.7457
75% 0.0332 0.0057 0.0711 0.1187 0.1181 0.1628 0.0276 0.1258 0.4919 0.4914 1.8167 0.1036 0.2779 0.7412 0.7341
100% 0.1035 0.0043 0.0494 0.1034 0.1027 0.2117 0.0161 0.0928 0.2059 0.2058 1.4683 0.1023 0.2762 0.7269 0.7199

120 50% 0.0187 0.0071 0.0820 0.2394 0.2386 0.0334 0.0285 0.1471 0.5105 0.5101 1.7668 0.0995 0.2702 0.6836 0.6771
75% 0.0343 0.0055 0.0709 0.1159 0.1150 0.2471 0.0170 0.1079 0.4469 0.4469 1.6029 0.0926 0.2488 0.6691 0.6626
100% 0.1036 0.0038 0.0447 0.0878 0.0870 0.2139 0.0135 0.0861 0.1819 0.1818 1.4003 0.0916 0.2419 0.6045 0.5987

160 50% 0.0187 0.0069 0.0814 0.2113 0.2104 0.1077 0.0125 0.1016 0.3692 0.3693 1.7500 0.0871 0.2247 0.6001 0.5943
75% 0.0300 0.0053 0.0688 0.0870 0.0863 0.1284 0.0123 0.0978 0.2833 0.2830 1.5132 0.0858 0.2244 0.5299 0.5248
100% 0.1030 0.0027 0.0393 0.0662 0.0657 0.2101 0.0099 0.0747 0.1782 0.1781 1.3620 0.0689 0.2076 0.3221 0.3190

200 50% 0.0210 0.0065 0.0791 0.1720 0.1712 0.1036 0.0116 0.1008 0.3404 0.3403 1.6654 0.0571 0.1801 0.2432 0.2409
75% 0.0335 0.0049 0.0672 0.0877 0.0866 0.1072 0.0117 0.0964 0.2133 0.2133 1.5955 0.0457 0.1630 0.2234 0.2213
100% 0.1023 0.0021 0.0358 0.0667 0.0655 0.2086 0.0078 0.0687 0.1032 0.1032 1.2793 0.0398 0.1586 0.2155 0.2118

Table 3. The AEs, MSEs, MABs and AILs of λ .

n FP% AE MSE MAB AIL AE MSE MAB AIL AE MSE MAB AIL
B-P B-T B-P B-T B-P B-T

Set→ 1 2 3

40 50% 0.6916 0.1583 0.3686 0.6839 0.6822 1.2733 0.9213 0.9825 1.4147 1.4139 0.9221 0.4349 0.6402 0.7928 0.7843
75% 0.5987 0.0911 0.2722 0.5699 0.5687 1.1841 0.8264 0.8706 1.3871 1.3868 0.8505 0.4316 0.6520 0.7792 0.7714
100% 0.4360 0.0107 0.0777 0.3745 0.3739 0.8824 0.0737 0.1925 1.0514 1.0510 1.1350 0.4045 0.6197 0.7683 0.7606
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Table 3. Cont.

n FP% AE MSE MAB AIL AE MSE MAB AIL AE MSE MAB AIL
B-P B-T B-P B-T B-P B-T

Set→ 1 2 3

60 50% 0.8681 0.1498 0.3620 0.6559 0.6523 1.0706 0.9001 0.9280 1.1927 1.1919 0.9990 0.3856 0.6141 0.7507 0.7439
75% 0.6710 0.0595 0.2186 0.5292 0.5272 0.9084 0.7432 0.8218 0.8597 0.8591 0.8594 0.3798 0.5888 0.7309 0.7236
100% 0.4214 0.0058 0.0594 0.2807 0.2786 0.8423 0.0345 0.1402 0.7242 0.7235 1.1592 0.3641 0.5350 0.7156 0.7113

80 50% 0.7619 0.1366 0.3508 0.5429 0.5408 1.7280 0.8804 0.9094 1.0749 1.0744 1.0939 0.3567 0.5592 0.7058 0.7016
75% 0.6183 0.0572 0.2032 0.3915 0.3896 1.6218 0.5785 0.7292 0.7637 0.7636 0.8831 0.3332 0.5422 0.6987 0.6949
100% 0.4173 0.0042 0.0504 0.2478 0.2469 0.8373 0.0277 0.1222 0.6500 0.6492 1.1489 0.3181 0.5504 0.6786 0.6746

100 50% 0.7508 0.1325 0.3491 0.4523 0.4513 1.5840 0.7995 0.8509 0.9872 0.9869 0.8966 0.2587 0.4511 0.6773 0.6732
75% 0.5818 0.0393 0.1822 0.3231 0.3217 1.5030 0.5212 0.7030 0.7459 0.7450 0.9098 0.2085 0.3748 0.6305 0.6267
100% 0.4132 0.0030 0.0427 0.2100 0.2089 0.8259 0.0176 0.1016 0.5257 0.5248 1.4402 0.1662 0.2939 0.6273 0.6235

120 50% 0.7491 0.1135 0.2941 0.4066 0.4051 1.5624 0.7154 0.7849 0.8834 0.8825 0.9474 0.1385 0.2633 0.6249 0.6212
75% 0.5622 0.0336 0.1730 0.2741 0.2721 1.5292 0.4800 0.6831 0.6931 0.6923 1.1251 0.1064 0.1990 0.5931 0.5908
100% 0.4103 0.0024 0.0378 0.1943 0.1933 0.8171 0.0142 0.0922 0.4907 0.4902 1.1420 0.0982 0.1774 0.5867 0.5844

160 50% 0.6805 0.0844 0.2805 0.3025 0.3013 1.4831 0.1178 0.3103 0.5457 0.5450 1.0633 0.0818 0.1521 0.5630 0.5608
75% 0.5730 0.0311 0.1625 0.2398 0.2387 1.0662 0.2725 0.4039 0.4601 0.4593 1.1342 0.0672 0.1398 0.4719 0.4680
100% 0.4074 0.0018 0.0324 0.1689 0.1679 0.8127 0.0102 0.0792 0.3860 0.3849 1.0414 0.0631 0.1266 0.3059 0.3047

200 50% 0.6367 0.0599 0.2367 0.2491 0.2483 1.1102 0.0882 0.2767 0.5193 0.5184 1.0748 0.0599 0.1131 0.2783 0.2769
75% 0.5482 0.0246 0.1482 0.2142 0.2132 1.0655 0.0839 0.2656 0.4474 0.4465 1.1350 0.0391 0.0894 0.2674 0.2670
100% 0.4059 0.0014 0.0298 0.1452 0.1446 0.8100 0.0085 0.0723 0.3647 0.3639 1.0520 0.0337 0.0805 0.2587 0.2485

Table 4. The AEs, MSEs, MABs and AILs of θ.

n FP% AE MSE MAB AIL AE MSE MAB AIL AE MSE MAB AIL
B-P B-T B-P B-T B-P B-T

Set→ 1 2 3

40 50% 0.4446 0.7854 0.5406 2.1597 2.1594 0.9829 1.9999 1.3528 2.9249 2.9226 0.3798 0.1594 0.3986 1.1072 1.1050
75% 0.5394 0.4391 0.5289 1.5823 1.5810 1.1107 1.7040 1.2528 1.6133 1.6130 0.3754 0.1570 0.3943 0.9912 0.9894
100% 0.9934 0.3775 0.4820 1.3819 1.3825 1.3396 1.5040 0.9932 1.4323 1.4312 0.3255 0.1566 0.3950 0.9883 0.9861

60 50% 0.3305 0.5004 0.5388 1.6101 1.6099 0.9910 1.2992 1.1668 1.8858 1.8847 0.3193 0.1479 0.3774 0.9484 0.9465
75% 0.4060 0.3853 0.4465 1.2698 1.2684 1.1738 1.0025 1.0051 1.4980 1.4953 0.3629 0.1470 0.3787 0.8063 0.8047
100% 0.8813 0.2431 0.3643 1.0588 1.0574 1.2706 0.9674 0.9329 1.0675 1.0641 0.3708 0.1428 0.3692 0.7308 0.7294

80 50% 0.3257 0.2618 0.4983 1.2735 1.2751 1.2389 1.0495 1.0245 1.7836 1.7829 0.3325 0.1407 0.3636 0.7157 0.7143
75% 0.4199 0.1895 0.4029 0.7621 0.7620 1.4924 0.9604 0.7603 1.3942 1.3937 0.3503 0.1200 0.3245 0.6947 0.6946
100% 0.8424 0.1843 0.2925 0.6855 0.6846 1.7427 0.5398 0.6040 0.9418 0.9408 0.3236 0.1189 0.3078 0.6603 0.6594

100 50% 0.3196 0.2543 0.4888 1.1413 1.1415 1.2652 1.0176 0.9790 1.5616 1.5607 0.3561 0.1176 0.3304 0.6305 0.6293
75% 0.4480 0.1611 0.3699 0.7046 0.7042 1.5613 0.8758 0.6701 1.1564 1.1816 0.3433 0.0949 0.2598 0.6161 0.6147
100% 0.8245 0.1085 0.2414 0.5535 0.5531 1.6614 0.4450 0.5824 0.8965 0.8943 0.3984 0.0914 0.2803 0.5596 0.5586

120 50% 0.3128 0.2535 0.4856 1.0088 1.0091 1.3561 0.9651 0.9370 1.2006 1.2010 0.3829 0.0835 0.1706 0.5497 0.5486
75% 0.4620 0.1494 0.3649 0.6646 0.6652 1.3951 0.6821 0.5789 1.1810 1.1549 0.3223 0.0789 0.2288 0.5155 0.5136
100% 0.8224 0.0964 0.2203 0.5034 0.5032 1.6541 0.4144 0.5547 0.8301 0.8286 0.3311 0.0574 0.1939 0.3822 0.3810

160 50% 0.3416 0.2223 0.4587 0.9346 0.9347 1.4312 0.5939 0.7273 1.1889 1.1872 0.3468 0.0548 0.1682 0.3634 0.3627
75% 0.4386 0.1441 0.3520 0.5255 0.5256 1.4874 0.4699 0.5650 1.1013 1.1002 0.3809 0.0533 0.1782 0.3481 0.3483
100% 0.8160 0.0659 0.1937 0.4364 0.4362 1.6094 0.3943 0.4697 0.7415 0.7402 0.3332 0.0504 0.1771 0.3123 0.3117

200 50% 0.3708 0.1953 0.4294 0.8913 0.8920 1.5361 0.4075 0.5755 1.0186 1.0190 0.3591 0.0464 0.1477 0.3079 0.3073
75% 0.4655 0.1280 0.3373 0.4937 0.4941 1.5888 0.3691 0.5464 0.7932 0.7932 0.3173 0.0375 0.1397 0.2965 0.2947
100% 0.8125 0.0497 0.1707 0.3997 0.4001 1.6509 0.3306 0.4265 0.6376 0.6359 0.3022 0.0357 0.1282 0.2901 0.2884
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Figure 3. Heat-maps for the Monte Carlo results of 𝛽. (a) Set-1. (b) Set-2. 
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Figure 3. Heat-maps for the Monte Carlo results of β. (a) Set-1. (b) Set-2.
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Figure 3. Heat-maps for the Monte Carlo results of 𝛽. (a) Set-1. (b) Set-2. 
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Figure 4. Heat-maps for the Monte Carlo results of 𝜆. (a) Set-1. (b) Set-2. 
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Figure 4. Heat-maps for the Monte Carlo results of λ. (a) Set-1. (b) Set-2.
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Figure 4. Heat-maps for the Monte Carlo results of 𝜆. (a) Set-1. (b) Set-2. 
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Figure 5. Heat-maps for the Monte Carlo results of 𝜃. (a) Set-1. (b) Set-2. 

4. Real-Life Applications 
This section presents the analysis of two applications utilizing different real data sets 

in order to (i) examine the usefulness and adaptability of the offered model to real phe-
nomena; (ii) demonstrate the applicability of the inferential results to a real practical sit-
uation; and (iii) evaluate to see whether the proposed model is a better choice than the 
other eleven models. The first application examines the number of vehicle fatalities for 
thirty-nine counties in the state of South Carolina in 2012, acquired from the National 
Highway Traffic Safety Administration’s (www-fars.nhtsa.dot.gov, accessed on 13 Janu-
ary 2023.). Firstly, this data set (denoted by Data-I) was reported by ref. [42]. Another 
application provides an analysis of the final exam marks in 2004 of 48 slow-paced stu-
dents in mathematics at the Indian Institute of Technology at Kanpur. This data set (de-
noted by Data-II) is taken from ref. [43] and reanalyzed by ref. [44]. It is better to point out 
here that the number of vehicle deaths or check marks have the same philosophy of sep-
arate data points as in different cases in nature, such as weights, heights, ages, etc. The 
data sets I and II are reported in Table 5, while their statistics, namely: min, max, (first, 
second, and third) quartiles 𝑄 , 𝑖 = 1,2,3, mode, mean, standard deviation (St.D), 𝑆𝑘, and 
Ku, are listed in Table 6. 

Table 5. Complete data sets I and II. 

Data-I 22, 26, 17, 4, 48, 9, 9, 31, 27, 20, 12, 6, 5, 14, 9, 16, 3, 33, 9, 20, 68, 13, 51, 13, 2, 4,17, 16, 6, 52, 50, 48, 23, 12, 13, 
10, 15, 8, 1 

Data-II 29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15, 86, 21, 15, 14, 39, 15, 14, 70, 44, 6, 23, 58, 19, 50, 23, 11, 6, 
34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19, 31 
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Figure 5. Heat-maps for the Monte Carlo results of θ. (a) Set-1. (b) Set-2.
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4. Real-Life Applications

This section presents the analysis of two applications utilizing different real data
sets in order to (i) examine the usefulness and adaptability of the offered model to real
phenomena; (ii) demonstrate the applicability of the inferential results to a real practical
situation; and (iii) evaluate to see whether the proposed model is a better choice than
the other eleven models. The first application examines the number of vehicle fatalities
for thirty-nine counties in the state of South Carolina in 2012, acquired from the National
Highway Traffic Safety Administration’s (www-fars.nhtsa.dot.gov, accessed on 13 January
2023). Firstly, this data set (denoted by Data-I) was reported by ref. [42]. Another appli-
cation provides an analysis of the final exam marks in 2004 of 48 slow-paced students in
mathematics at the Indian Institute of Technology at Kanpur. This data set (denoted by
Data-II) is taken from ref. [43] and reanalyzed by ref. [44]. It is better to point out here that
the number of vehicle deaths or check marks have the same philosophy of separate data
points as in different cases in nature, such as weights, heights, ages, etc. The data sets I
and II are reported in Table 5, while their statistics, namely: min, max, (first, second, and
third) quartiles Qi, i = 1, 2, 3, mode, mean, standard deviation (St.D), Sk, and Ku, are listed
in Table 6.

Table 5. Complete data sets I and II.

Data-I 22, 26, 17, 4, 48, 9, 9, 31, 27, 20, 12, 6, 5, 14, 9, 16, 3, 33, 9, 20, 68, 13,
51, 13, 2, 4,17, 16, 6, 52, 50, 48, 23, 12, 13, 10, 15, 8, 1

Data-II
29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15, 86, 21, 15, 14,
39, 15, 14, 70, 44, 6, 23, 58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4,

60, 20, 23, 40, 65, 19, 31

Table 6. Vital summary statistics of data sets I and II.

Data Min Max Q1 Q2 Q3 Mode Mean St.D Skew. Kurt.

I 1 68 9 14 24.5 9 19.538 16.507 1.288 3.798

II 4 86 14 19.5 34 15 25.896 18.605 1.332 4.323

To demonstrate the validity and superiority of the proposed model, based on the
first and second datasets, the DEC probability model is compared alongside the other
eleven competing models in the literature, namely: Poisson (P(θ)) by ref. [45], discrete
Weibull (DW(λ, θ)) by ref. [44], negative binomial (NB(n, θ)) and geometric (G(p)) dis-
cussed by ref. [46], discrete Burr Type XII (DB(λ, θ ) by ref. [4], discrete generalized-
exponential (DGE(λ, θ)) by ref. [47], discrete gamma (DG(λ, θ)) by ref. [6], discrete Burr
Hatke (DBH(θ)) by ref. [48], discrete Nadarajah-Haghighi (DNH(λ, θ)) by ref. [10], dis-
crete modified Weibull (DMW(α, λ, θ)) by ref. [49], and exponentiated discrete Weibull
(EDW(α, λ, θ)) by ref. [7] distributions.

To specify the best model, several criteria are used, namely: negative log-likelihood

(NLL= −
ˆ
l), Akaike (A = 2π − 2

ˆ
l), consistent Akaike (CA = −2

ˆ
l + 2nπ(n− π − 1)−1),

Bayesian (B = −2
ˆ
l+πlog(n)) and Hannan-Quinn (HQ= −2

ˆ
l+πlog(log(n))) information

criteria, where π is the length of the model parameter vector. Besides them, the Kolmogorov-
Smirnov (K-S) statistic with its p-value is also considered. Obviously, the best probability
model distribution gives the best fit for a given set of data if it has the highest p-value and
the lowest values of all other measures. Via R programming software 4.2.2, by installing the
‘AdequacyModel’ package proposed by ref. [50], the maximum likelihood estimates (with
their standard errors (St.Es)) as well as the fitted model selection criteria are presented in
Table 7.

www-fars.nhtsa.dot.gov
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Table 7. Summary fit (St.E) of the DEC model and its competing models from data sets I and II.

Model α λ θ NLL A CA B H-Q K-S (p-Value)

Data-I

DEC 0.5207
(0.4120)

0.2215
(0.0599)

10.139
(11.773) 153.121 309.781 309.889 311.445 310.378 0.088 (0.920)

DMW 0.6727
(0.0947)

1.2965
(0.3646)

1.2965
(0.3646) 210.594 427.187 427.732 432.801 429.308 0.204 (0.036)

EDW 0.7930
(0.3019)

0.7278
(0.3622)

0.9389
(0.0518) 196.492 398.984 399.529 404.597 401.105 0.092 (0.914)

DGE 1.7338
(0.4101)

0.0695
(0.0130) - 153.365 310.730 311.064 314.057 311.924 0.111 (0.721)

DNH 1.9281
(1.1305)

0.0200
(0.0155) - 154.907 313.814 314.147 317.141 315.008 0.110 (0.730)

DB 14.531
(46.924)

0.0260
(0.0838) - 214.879 431.758 431.866 433.421 432.354 0.758 (0.001)

DW 1.2974
(0.1582)

21.791
(2.8466) - 180.934 365.868 366.201 369.195 367.062 0.338 (0.003)

DG 0.0816
(0.0198)

1.6343
(0.3401) - 153.907 311.814 312.148 315.141 313.008 0.126 (0.570)

NB 19.534
(2.5126)

1.6827
(0.3936) - 153.458 310.917 311.250 314.244 312.110 0.116 (0.667)

DBH 0.9985
(0.0064) - - 153.609 311.218 311.551 314.545 312.411 0.097 (0.854)

G 0.0487
(0.0076) - - 155.904 313.809 313.917 315.472 314.406 0.162 (0.257)

P 19.539
(0.7078) - - 324.089 650.178 650.286 651.841 650.775 0.407 (0.002)

Data-II

DEC 0.6483
(0.5218)

0.2064
(0.0569)

25.021
(36.898) 196.448 397.903 398.170 400.984 399.317 0.080 (0.917)

DMW 0.9429
(0.0826)

0.8011
(1.7965)

1.0309
(0.0087) 153.699 309.939 310.085 314.390 311.190 0.135 (0.479)

EDW 0.7051
(0.3785)

0.6433
(0.3169)

8.0766
(11.453) 153.153 312.307 312.993 317.298 314.097 0.090 (0.912)

DGE 2.6662
(0.6283)

0.0657
(0.0102) - 196.951 398.897 399.199 401.645 399.820 0.108 (0.632)

DNH 3.7619
(2.1185)

0.0070
(0.0046) - 201.743 407.485 407.752 411.228 408.899 0.155 (0.201)

DB 4.7414
(13.418)

0.0693
(0.1964) - 297.676 597.352 597.439 599.223 598.059 0.837 (0.001)

DW 1.5458
(0.1666)

29.549
(2.9245) - 247.486 498.971 499.238 502.714 500.385 0.403 (0.002)

DG 0.0879
(0.0188)

2.3093
(0.4419) - 198.609 401.217 401.484 404.960 402.631 0.132 (0.371)

NB 25.896
(2.5012)

2.4440
(0.5219) - 197.296 398.593 398.860 402.335 400.007 0.115 (0.553)

DBH 0.9990
(0.0046) - - 197.522 399.044 399.310 402.786 400.458 0.095 (0.774)

G 0.0372
(0.0053) - - 205.111 412.222 412.309 414.093 412.929 0.222 (0.017)

P 25.896
(0.7345) - - 396.589 795.178 795.265 797.050 795.886 0.400 (0.004)

It is evident from the Data-I fit in Table 7 that the DEC distribution, which has the
lowest statistical values and the highest p-value among all the fitted competitive models, is
the best model. Also, from the Data-II fit in Table 7, it is clear that the DEC distribution,
with respect to the p-value, is the best distribution among all compared models, while the
other three-parameter DMW and EDW distributions perform better with respect to the
other given criteria. Further, in Figure 6, the corresponding probability-probability (PP) plot
is a visual plot showing the relationship between observed cumulative probability (OCP)
and expected cumulative probability (ECP) of the DEC distribution and its competing
distributions. It also supports our findings in Table 7. Various visualization goodness
tools, namely (i) histogram with fitted PDF, (ii) fitted CDF, (iii) quantile-quantile (QQ), and
(iv) total time test (TTT) plots, are utilized to show the goodness-of-fit of a theoretical model
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to observed data; see Figure 7. It is evident, from both data sets I and II, that (i) the fitted
DEC density captures the general pattern of the histograms well; (ii) all estimated DEC
distribution (or quantile) points are quite close to the straight line; and (iii) the DEC failure
rate has an increasing shape. As a result, from the empirical results, we can conclude that
the new DEC distribution provides a significantly good fit compared to the other traditional
(or newly developed) discrete statistical models.

Now, to evaluate the acquired estimates of β, λ, and θ developed by maximum likeli-
hood and bootstrap (based on 10,000 replications) methods in a real scenario, three Type-II
censored samples from each data set in Table 5 are generated based on different values of r;
see Table 8. For each generated sample in Table 8, the MLEs (with their St.Es) and 95% B-
P/B-T interval estimates (with their interval widths (IWs)) of β, λ, and θ are calculated and
presented in Table 9. It indicates that the maximum likelihood results behave well, and
interval estimates derived from the B-T method perform better than those derived from the
other. Further, when r increases, both St.Es and IWs associated with all DEC parameters
are narrowed. The proposed applications used, among others, two sets of common real
data to show how the proposed model works well in practice.

Table 8. Type-II censored samples from data sets I and II.

Data Sample (n,r) Censored Data

I S1 (39,15) 1, 2, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12
S2 (39,25) 1, 2, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17

S3 (39,35) 1, 2, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 20, 20, 22, 23, 26, 27, 31,
33, 48, 48

II S1 (40,10) 4, 5, 6, 6, 7, 7, 8, 11, 12, 12
S2 (40,20) 4, 5, 6, 6, 7, 7, 8, 11, 12, 12, 13, 14, 14, 15, 15, 15, 15, 15, 18, 18
S3 (40,30) 4, 5, 6, 6, 7, 7, 8, 11, 12, 12, 13, 14, 14, 15, 15, 15, 15, 15, 18, 18, 18, 19, 19, 19, 20, 21, 21, 23, 23, 23

Table 9. Point and Interval estimates of β, λ, and θ from data sets I and II.

Data Sample Par. MLE 95% B-P 95% B-T

Est. St.E Lower Upper IW Lower Upper IW

I S1 β 0.15609 0.26527 0.00082 1.75908 1.75826 1.69149 3.45015 1.75866
λ 0.33839 0.14174 0.21511 0.86544 0.65033 0.21522 0.86535 0.65013
θ 109.436 6.26917 0.49886 111.171 110.673 107.700 218.373 110.674

S2 β 1.72548 0.14644 0.04341 1.30376 1.26035 0.88835 2.14992 1.26157
λ 0.10891 0.02040 0.41946 0.87445 0.45499 0.41913 0.87440 0.45527
θ 37.0191 5.71375 1.64925 87.9969 86.3476 1.64759 87.4598 85.8122

S3 β 1.09670 0.12054 0.00001 0.17878 0.17877 0.13331 0.31218 0.17886
λ 0.15842 0.01656 0.16618 0.43915 0.27297 0.16617 0.43903 0.27286
θ 3.38060 4.22500 0.29401 3.57161 3.27760 3.18252 6.46714 3.28463

II S1 β 0.08532 0.17775 0.00048 1.05458 1.05410 1.50958 2.56398 1.05440
λ 0.38639 0.14233 0.25537 0.75433 0.49897 0.25541 0.75437 0.49897
θ 107.005 9.62347 0.68500 108.049 107.364 105.961 213.325 107.364

S2 β 1.28223 0.15383 0.49357 1.13166 0.63809 0.49350 1.13167 0.63817
λ 0.15828 0.02261 0.45165 0.79943 0.34777 0.45167 0.79941 0.34774
θ 3.53467 4.92523 0.34364 3.21346 2.86982 3.84519 6.72540 2.88021

S3 β 0.00981 0.00529 0.00001 0.07341 0.07340 0.09695 0.17064 0.07369
λ 0.52541 0.00401 0.14500 0.34021 0.19521 0.71023 0.90577 0.19553
θ 50.0159 0.95232 49.1555 51.1473 1.99180 49.1545 51.1475 1.99299
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Figure 6. The PP plots of the DEC model and its competing models from data sets I and II. (a) Data-I.
(b) Data-II.
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Figure 7. Plots of data histograms with fitted PDF, fitted CDF, QQ, and TTT of the DEC models. 
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Figure 7. Plots of data histograms with fitted PDF, fitted CDF, QQ, and TTT of the DEC models.
(a) Data-I. (b) Data-II.

Potential application areas of the new DEC distribution could include those already
considered, and other real (or simulated) data could be easily incorporated. Furthermore,
the numerical findings developed from the real data sets support the same findings investi-
gated in our Monte Carlo simulations.
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5. Concluding Remarks

In this study, a new three-parameter discrete model, named the discrete exponentiated
Chen distribution, is introduced. The probability mass function of the new model can
be “unimodal”, “right-skewed” or “left-skewed” as can its hazard rate function, which
can be “decreasing“, “increasing”, or “increasing-constant”. In particular, the statistical
characteristics of the model we propose are found. These consist of order statistics, entropy,
skewness, kurtosis, moments, quantiles, medians, and other statistics. In the presence
of Type II censored data, the maximum likelihood approach was used to fit the model
parameters. In order to assess the efficacy of the method provided in this article, several
simulations have been undertaken. Finally, to further explain the suggested model, two real
data sets are provided. The first application examines the number of vehicle fatalities in
39 counties in South Carolina in 2012, as reported by the National Highway Traffic Safety
Administration. The second application examines the final exam results of 48 slow learners
who attended the Indian Institute of Technology in Kanpur in 2004. As a summary, based on
the given data sets, we have shown that the offered model furnishes a better fit than some
existing discrete distributions, including: Poisson, geometric, negative binomial, discrete
Weibull, discrete Burr Type XII, discrete generalized-exponential, discrete gamma, discrete
Burr Hatke, discrete Nadarajah-Haghighi, discrete modified Weibull, and exponentiated
discrete Weibull models. Thus, we can conclude that the proposed estimation procedures
provide a good explanation of the proposed distribution in the presence of data collected
under Type II censoring. In future work, one can easily examine the stress strength,
reliability, or failure rate of the proposed model based on other sampling schemes, such as
progressive Type-II censoring. Finally, we hope that the proposed distribution attracts a
wider set of applications in different sectors.
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