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Abstract: General relativity is one of the pillars of modern physics. For decades, the theory has been
mainly tested in the weak-field regime with experiments in the solar system and radio observations of
binary pulsars. Until 2015, the strong-field regime was almost completely unexplored. Thanks to new
observational facilities, the situation has dramatically changed in the last few years. Today, we have
gravitational wave data of the coalesce of stellar-mass compact objects from the LIGO-Virgo-KAGRA
collaboration, images at mm wavelengths of the supermassive black holes in M87∗ and Sgr A∗

from the Event Horizon Telescope collaboration, and X-ray data of accreting compact objects from a
number of X-ray missions. Gravitational wave tests and black hole imaging tests are certainly more
popular and are discussed in other articles of this Special Issue. The aim of the present manuscript is
to provide a pedagogical review on X-ray tests of general relativity with black holes and to compare
these kinds of tests with those possible with gravitational wave data and black hole imaging.
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1. Introduction

The theory of general relativity is one of the pillars of modern physics. The theory
was proposed by Einstein at the end of 1915 [1] and in more than 100 years it has passed a
large number of observational tests without requiring any modification from its original
version [2]. The first test of general relativity can be dated back to 1919, when Eddington
and collaborators measured the effect of light bending by the Sun during a solar eclipse [3].
After that observation, Einstein and his theory soon became very popular, but the precision
and the accuracy of that measurement were actually quite poor and that experiment was
not really able to distinguish general relativity from alternative scenarios. Systematic tests
of general relativity started only in the 1960s with experiments in the solar system and in
the 1970s with accurate radio observations of binary pulsars [2]. Solar system experiments
and radio pulsar observations can mainly test the weak-field regime, where the astrophysical
system can be described as a Newtonian system plus some small corrections. With those
tests, we want to measure such small corrections and check whether they are consistent
with the predictions of general relativity. In the past 20 years, there have been significant
efforts to test general relativity on large scales (galactic scales or above) in response to the
problems of dark matter and dark energy [4–6]. Until some years ago, the strong-field regime
was almost completely unexplored. However, since 2015 the situation has dramatically
changed. Today, we can probe the strong-field regime with gravitational wave data from
the LIGO-Virgo-KAGRA collaboration (see, e.g., Refs. [7–9]), images of the supermassive
black holes in M87∗ and Sgr A∗ from the Event Horizon Telescope collaboration (see,
e.g., Refs. [10–12]), and X-ray data from a number of X-ray missions (see, e.g., Refs. [13–15]).

Black holes are ideal laboratories to test the strong-field regime as they are the sources
of the strongest gravitational fields that can be found today in the universe [16,17]. In 4-
dimensional general relativity, black holes are relatively simple objects and are completely
described by a small number of parameters. This is the celebrated result of the no-hair
theorem, which is actually a family of theorems with different versions and a number of
extensions [18]. According to the no-hair theorem, astrophysical black holes should be

Symmetry 2023, 15, 1277. https://doi.org/10.3390/sym15061277 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15061277
https://doi.org/10.3390/sym15061277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3180-9502
https://doi.org/10.3390/sym15061277
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15061277?type=check_update&version=2


Symmetry 2023, 15, 1277 2 of 16

characterized only by their mass, spin angular momentum, and electric charge. Since the
electric charge is normally negligible for macroscopic astronomical objects, the mass and
the spin should be the only two parameters relevant for astrophysical black holes and the
spacetime metric should be described by the Kerr solution [19]. Deviations from the Kerr
metric due to the presence of an accretion disk, nearby stars, or a non-vanishing equilibrium
electric charge can be estimated, but normally they turn out to be completely negligible; see,
e.g., Refs. [17,20,21]. For example, a non-vanishing equilibrium electric charge is a natural
consequence of the difference between the values of the masses of electrons and protons
as well as of their different photon scattering cross-sections. However, the value of the
equilibrium electric charge turns out to be completely negligible for the spacetime geometry
around a black hole; for more details, see, for instance, Section 6.5.2 in Ref. [17]. On the
other hand, the conclusion of the no-hair theorem can be easily invalidated in extensions
of general relativity (see, e.g., [22]) if macroscopic quantum gravity effects show up in the
vicinity of these compact objects (see, e.g., [23,24]), or in the presence of exotic matter fields
(see, e.g., [25,26]).

There are already some recent reviews on tests of general relativity with black hole
X-ray data; see, for instance, Ref. [27], where the interested reader can find more details and
a long discussion on the systematic uncertainties of this kind of measurements. The aim
of the present manuscript is to provide a shorter and more easily accessible review on the
topic. In particular, Section 3 shows the physics involved in the calculations of synthetic
black hole spectra and how we can modify these calculations to test new physics. While
X-ray tests are not as popular as tests with gravitational wave data and black hole imaging,
they can provide very competitive constraints, at least comparable and complementary to
those from gravitational waves and certainly stronger than those from black hole imaging.

2. Disk-Corona Model

To test general relativity with black hole X-ray data, we need to study very special
systems. To have a rough idea of how unique these systems are, we can consider the
stellar-mass black holes in our Galaxy. From stellar population and evolution studies, we
expect that there are 108–109 stellar-mass black holes formed from the collapse of heavy
stars in our Galaxy [28]. On the other hand, we know less than 100 stellar-mass black holes
that (more often sporadically, for short times, from weeks to months) have an accretion
disk sufficiently bright to be studied with our X-ray observatories. Some of these black
holes have been studied well and we have hundreds of observations from different X-ray
missions, while for other objects we have only a few observations. Among thousands of
X-ray observations of stellar-mass black holes in our Galaxy, we have to select the sources
and the observations suitable for testing general relativity, and in the end we find that there
are only a few spectra from the most recent X-ray missions that can do the job!

The prototype of astrophysical system for our tests is shown in Figure 1 (for more
details, see [29] and references therein). The black hole can be either a stellar-mass black
hole in an X-ray binary system or a supermassive black hole in an active galactic nucleus.
This black hole is surrounded by a cold, geometrically thin, and optically thick accretion
disk. Such a disk forms when the angular momentum of the accreting material is high and
the mass accretion rate is between a few percent and about 30% of the Eddington limit of
the central object. In these conditions, every point on the surface of the accretion disk emits
a blackbody-like spectrum and the whole disk has a multi-temperature blackbody-like
spectrum, because the temperature of the accreting material increases as the radial distance
from the black hole decreases. The thermal spectrum of the disk is normally peaked in the
soft X-ray band (0.1–10 keV) for stellar-mass black holes in X-ray binary systems and in the
UV band (1–100 eV) for supermassive black holes in active galactic nuclei. The “corona” is
some hot (∼100 keV) gas around the black hole and the inner part of the accretion disk: the
corona may be the base of the jet, some atmosphere above the accretion disk, hot material
in the plunging region between the inner edge of the accretion disk and the black hole, etc.
Since the disk is cold and the corona is hot, thermal photons from the accretion disk can
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inverse Compton scatter off free electrons in the corona. These Comptonized photons have
a spectrum that can be normally approximated well by a power law with an exponential
high-energy cutoff. Such a power law component is often the dominant component in
the X-ray spectra of accreting black holes. Some Comptonized photons can illuminate
the accretion disk: Compton scattering and absorption followed by fluorescent emission
generate the so-called reflection spectrum.

  

Black Hole
Accretion Disk

CoronaThermal Photons Reflection
Photons

Comptonized
Photons

Figure 1. Disk-corona model. The black hole is surrounded by a cold, geometrically thin, and optically
thick accretion disk. The corona is some hot gas near the black hole and the inner part of the accretion
disk. Thermal photons from the disk inverse Compton scatter off free electrons in the corona. Some
Comptonized photons illuminate the accretion disk and produce the reflection spectrum. Figure from
Ref. [30] under the terms of the Creative Commons Attribution 4.0 International License.

The reflection spectrum in the rest-frame of the material of the disk is characterized
by narrow fluorescent emission lines in the soft X-ray band and a Compton hump with
a peak at 20–30 keV [31,32]. The most prominent emission line is normally the iron Kα
line, which is at 6.4 keV in the case of neutral or weakly ionized iron atoms and shifts
up to 6.97 keV in the case of hydrogen-like iron ions. The reflection spectrum of the disk
observed far from the source is blurred by relativistic effects (gravitational redshift and
Doppler boosting) [17,33].

3. Synthetic Black Hole Spectra

In order to understand how we can use black hole X-ray data to test fundamental
physics, it can be useful to briefly review how we calculate synthetic spectra of accreting
black holes. We can consider the set-up illustrated in Figure 2, where we have the distant
observer, the accretion disk, and the corona. These calculations are extensively discussed
in the literature; see, for example, Ref. [17] and references therein. In this section, I only
outline the basic steps, without showing any formulae.

The first step is to calculate the redshift image of the accretion disk. We fire photons
from the image plane of the distant observer backward in time to the accretion disk. When
a photon hits the disk, we calculate its redshift g = Eo/Ee, where Eo is the photon energy
measured at the detection point in the rest-frame of the distant observer and Ee is the
photon energy at the emission point in the rest-frame of the gas in the disk. To achieve this,
we have to:

1. solve the equations of motion of the photons (the geodesic equations if we are con-
sidering a metric theory of gravity [2]) in order to connect every point of the ob-
server’s image of the disk to its emission point on the disk and calculate the photon
4-momentum at the emission point;

2. calculate the motion of the material in the disk (which should depend on the accretion
disk model and on the equations of motion of the particles of the disk) in order to
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determine the gas 4-velocity at the emission point (which, together with the photon
4-momentum at the emission point determined at point 1 above, is used to calculate
the photon energy at the emission point in the rest-frame of the gas in the disk, Ee).

The details of these calculations can be found, for example, in Refs. [17,34]. At the end of
the calculations, one has the redshift image of the accretion disk. If the photon’s equations
of motion are independent of the photon energy (as is the case in general relativity and any
other metric theory of gravity), every point of the observer’s image of the accretion disk
has a well defined redshift (if not, then every point of the observer’s image of the accretion
disk has a redshift that depends on the photon energy).

Figure 2. Set-up to calculate the spectrum of the accretion disk observed far from the source. See the
text for more details. Figure adapted from Ref. [34].

The second step is to calculate the emissivity profile of the disk. In the case of the
thermal component, current models employ Novikov–Thorne disks [35,36] and the emis-
sivity profile is determined by the spacetime metric and the mass accretion rate. In the
case of the reflection component, the emissivity profile is determined by the geometry
and the emissivity of the corona. If we know these properties of the corona, we can fire
photons from the corona to the accretion disk and calculate the emissivity profile of the
reflection spectrum. These calculations are similar to those at step 1 and require solving
the equations of motion of the photons from the corona to the disk and to determine the
motion of the material in the disk. Unfortunately, the properties of the corona are not
yet well understood. Current reflection models often do not assume a specific coronal
geometry and employ some phenomenological emissivity profiles (such as a power law,
broken power law, or twice broken power law) that are thought to be able to approximate
well the emissivity profile generated by any possible coronal geometry.

The third and last step is to calculate the spectrum at the emission point in the rest-
frame of the material of the disk. In the case of the thermal component, the spectrum is
simply a blackbody spectrum with possible corrections due to the disk atmosphere (mainly
photon-electron scattering). In the Novikov–Thorne model, the temperature at every radius
of the disk is determined by an equation that follows from the conservation of mass, energy,
and angular momentum and depends on the spacetime metric and the mass accretion rate.
In the case of the reflection spectrum, we have to solve radiative transfer equations and
the calculations involve atomic physics and some assumptions about the structure of the
accretion disk. In general relativity, and in any other metric theory of gravity, the atomic
physics in the strong gravitational field around a black hole is the same as the atomic
physics in our laboratories on Earth. This is because locally the laws of non-gravitational
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physics are those of special relativity in all metric theories of gravity. However, this is
not the case in some theories of gravity, where the values of some fundamental constants
(e.g., the fine structure constant α, the electron mass me, etc.) can be different in strong and
weak gravitational fields; see, e.g., Refs. [27,37,38]. This may have an impact on the atomic
energy levels, photon-electron scattering, etc., and, in turn, on the reflection spectrum of
the disk [39].

In conclusion, the calculations of the thermal and reflection components require some
assumptions about the astrophysical system (at least a model for the accretion disk, but the
calculation of the reflection spectrum would also require a model for the corona) and some
assumptions about fundamental physics (motion of photons and of particles around the
compact object and atomic physics in strong gravitational fields). If the astrophysical part
is well understood, we can think of testing the assumptions related to fundamental physics.
Note that the Comptonized spectrum from the corona cannot be used to test fundamental
physics, at least for the moment. The main reason is that we do not know the actual
properties of the corona (geometry, temperature, location). The analysis of the thermal and
reflection spectra can instead be used to test fundamental physics because the properties of
geometrically thin and optically thick accretion disks are thought to be well understood.

In the last few years, my group at Fudan University has developed two models for
testing fundamental physics with black hole X-ray data: relxill_nk [34,40] and nkbb [41].
relxill_nk is an extension of the relxill package developed by Thomas Dauser and
Javier Garcia [42–44] and can calculate reflection spectra of accretion disks in stationary,
axisymmetric, and asymptotically flat spacetimes. nkbb is instead a model for thermal
spectra of accretion disks in stationary, axisymmetric, and asymptotically flat spacetimes.
Both models are public and available on GitHub at https://github.com/ABHModels
(accessed on 10 June 2023). They can be used with standard X-ray data analysis packages
such as XSPEC.

4. Observational Constraints

There are two main strategies to test fundamental physics (in our case with black
hole X-ray data, but actually this is true in general). These two strategies are normally
referred to as the top-down (or theory-specific) approach and the bottom-up (or theory-
agnostic) approach.

The top-down strategy is the most natural and logical one. In this case, we want to
test some specific theory of gravity against general relativity. We can thus construct an
astrophysical model for general relativity and another astrophysical model for the other
theory of gravity, analyze some astrophysical data with the two models, and eventually
we use some statistical tool to check if one of the two models can explain the data better
than the other model (or in the most common case in which we want to test an extension
of general relativity that includes general relativity in some special limit, we can measure
and constrain the values of the parameters of the theory). The main drawback of this
method is that it requires knowing well the predictions of the theory to test, but this is not
so easy. For example, we may want to test a theory of gravity in which the spacetime metric
of astrophysical black holes is expected to be different from the Kerr solution of general
relativity. In such a case, we need to know the rotating black hole solution of that theory,
but in most cases we only know the non-rotating black hole solutions of theories beyond
general relativity simply because it is easier to find a static and spherically symmetric
solution rather than a stationary and axisymmetric one. Note that this is true even in
general relativity. The Schwarzschild solution describing static and spherically symmetric
black holes in general relativity was found by Schwarzschild a few months after Einstein
had presented his theory, while the Kerr solution was found by Kerr only in 1963 [19].

In the bottom-up (or agnostic) approach, we parametrize possible deviations from
the predictions of general relativity. For example, if we want to test the prediction that the
spacetime metric around astrophysical black holes is described by the Kerr solution, we
can analyze astrophysical data with a model employing a black hole metric in which some

https://github.com/ABHModels
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deformation parameters quantify possible deviations from the Kerr geometry and we can
recover the Kerr solution for specific values of these deformation parameters. From the
analysis of astrophysical data, we can infer the values of these deformation parameters
and check whether they are consistent with the Kerr solution. If, on the other hand, we
want to test the value of the fine structure constant in the strong gravitational field of
black holes, we can analyze astrophysical data with a model employing synthetic reflection
spectra calculated for different values of α. From the analysis of observations with this
model, we can estimate the value of the fine structure constant near black holes. The main
drawback of the bottom-up strategy is that normally we do not have a sufficiently general
model to take into account any possible deviations from the predictions of general relativity.
For example, we can use a certain deformed Kerr metric to test the Kerr hypothesis, but we
do not have the most general black hole metric that can describe any possible deviation
from the Kerr solution.

Up to now, most X-ray tests of general relativity with black holes have tested the Kerr
hypothesis, namely, if the spacetime metric around astrophysical black holes is described
by the Kerr solution. In the literature, we can find examples of theory-agnostic tests as
well as of theory-specific tests. Tests beyond the Kerr hypothesis are somewhat more
complicated and may be explored in coming years. For example, in Ref. [45] we tested the
weak equivalence principle with the bottom-up approach considering the possibility that
either the motion of X-ray photons or the motion of the particles in the disk can deviate
from the geodesic motion in the Kerr metric, and we constrained possible violations of the
weak equivalence principle with a NuSTAR observation of the stellar-mass black hole in
EXO 1846–031. A very preliminary study to use the analysis of the reflection spectrum to
measure the value of the fine structure constant in the strong gravitational field of black
holes was reported in Ref. [39] but without deriving any constraint from observations.

4.1. Agnostic Tests of the Kerr Hypothesis

Since the 1960s, many experiments in the solar system have tested the Schwarzschild
solution in the weak-field regime with the agnostic method. One can write the most general
static and spherically symmetric line element as an expansion in M/r, where M is the mass
of the central object and r is some radial coordinate. In isotropic coordinates, such a line
element should read

ds2 = −
(

1− 2M
r

+ β
2M2

r2 + . . .
)

dt2 +

(
1 + γ

2M
r

+ . . .
)(

dx2 + dy2 + dz2
)

(1)

in order to recover the correct Newtonian limit. In Equation (1), β and γ are unknown
parameters to be determined by observations. If we write the Schwarzschild metric in
isotropic coordinates, we find that β = γ = 1. We can analyze experiments in the solar
system employing the metric in Equation (1) to measure β and γ. As of now, solar system
experiments can confirm that the value of these two parameters is 1 with a precision at the
level of 10−5, which confirms the Schwarzschild solution in the weak-field regime within
the precision of current experiments [2].

In a similar spirit, we can try to test the Kerr solution around astrophysical black holes.
Unfortunately, we cannot use an expansion in M/r because we want to probe the strong
gravity region where M/r is not a small parameter. At least for the moment, we do not have
a general framework as in the case of solar system experiments. In the literature, there are
a number of parametric black hole spacetimes specifically proposed to test the Kerr hypothesis
with electromagnetic data; see, for instance, Refs. [46–52] for a non-complete list of options.
Every proposal has its advantages and disadvantages. One of these parametric black
hole spacetimes is the Johannsen metric [47], which has been extensively used for testing
general relativity with X-ray data as well as with other techniques. In Boyer–Lindquist-like
coordinates, the line element of the Johannsen metric is
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ds2 = −
Σ
(
∆− a2 A2

2 sin2 θ
)

B2 dt2 +
Σ

∆A5
dr2 + Σdθ2

+

[(
r2 + a2)2 A2

1 − a2∆ sin2 θ
]
Σ sin2 θ

B2 dφ2

−
2a
[(

r2 + a2)A1 A2 − ∆
]
Σ sin2 θ

B2 dtdφ , (2)

where

Σ = r2 + a2 cos2 θ , (3)

∆ = r2 − 2Mr + a2 , (4)

B =
(

r2 + a2
)

A1 − a2 A2 sin2 θ (5)

and the functions f , A1, A2, and A5 are defined as

f =
∞

∑
n=3

εn
Mn

rn−2 , A1 = 1 +
∞

∑
n=3

α1n

(
M
r

)n
, (6)

A2 = 1 +
∞

∑
n=2

α2n

(
M
r

)n
, A5 = 1 +

∞

∑
n=2

α5n

(
M
r

)n
. (7)

The Johannsen metric has four infinite sets of deformation parameters: {εn} (n = 3, 4, . . . ),
{α1n} (n = 3, 4, . . . ), {α2n} (n = 2, 3, . . . ), and {α5n} (n = 2, 3, . . . ). This form of the
Johannsen metric has the correct Newtonian limit and cannot be distinguished from the
Schwarzschild metric by solar system experiments (for this reason there are not ε1, ε2,
α11, α12, α21, and α51). α13 is the leading order correction to Kerr spacetime as well as the
parameter with the strongest impact on the spectra of thin disks, and for this reason most
tests of the Kerr hypothesis have focused on the constraints on the value of this parameter.

Figure 3 shows some reflection spectra of thin disks in the Johannsen spacetime for
different values of the deformation parameter α13 calculated with relxill_nk. Figure 4
shows some thermal spectra of thin disks in the Johannsen spacetime calculated with nkbb.
In both cases, all the other parameters of the models are kept constant and different spectra
are simply obtained by changing the value of the deformation parameter α13 (while all other
deformation parameters of the Johannsen metric vanish). The red spectra with α13 = 0 are
those in the Kerr metric. As we can see from Figures 3 and 4, the value of the deformation
parameter α13 has a clear impact on the shape of the reflection and thermal spectra. It is
thus clear that we can use relxill_nk and nkbb to analyze X-ray spectra of accreting black
holes and, modulo degeneracy with other parameters, we can measure α13.

Figure 5 compares the current measurements of the Johannsen deformation parameter
α13 obtained from the analysis of X-ray data with relxill_nk and nkbb, with the analysis
of gravitational wave data, and from black hole imaging. We distinguish tests of the
Kerr hypothesis with stellar-mass black holes from those with supermassive black holes,
as they can potentially probe different regimes. In the case of the constraints from reflection
features and gravitational wave data, only the most precise and accurate measurements on
α13 are shown in Figure 5.
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Figure 3. Synthetic reflection spectra of thin disks in the Johannsen spacetime for different values of
the deformation parameter α13. The values of the other model parameters are not changed. Figure
from Ref. [30] under the terms of the Creative Commons Attribution 4.0 International License.
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Figure 4. Synthetic thermal spectra of thin disks in the Johannsen spacetime for different values of
the deformation parameter α13. The values of the other model parameters are not changed. Figure
from Ref. [41].
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Figure 5. Summary of current measurements of the Johannsen deformation parameter α13 with
different techniques. Every measurement shows the best-fit value, the 3-σ upper and lower uncer-
tainties, and the name of the source. The constraints in green are the three most precise and accurate
measurements of α13 for stellar-mass black holes from the analysis of the reflection features using
relxill_nk (EXO 1846–031 [15], GRS 1739–278 [15], and GRS 1915+105 [53,54]). The constraint in
magenta is the measurement of α13 for the stellar-mass black hole in LMC X-1 from the analysis
of thermal spectra using nkbb [55]. The constraints in blue are obtained combining the analysis of
the reflection features with relxill_nk and of the thermal spectrum with nkbb for the same source
(GX 339–4 [56], GRS 1915+105 [57], and GRS 1716–249 [58]). The constraint in red is the most precise
measurement of α13 for stellar-mass black holes with gravitational wave data [59]. The constraint
in cyan is the most precise and accurate measurement of α13 for supermassive black holes from the
analysis of reflection features using relxill_nk (MCG–6–30–15 [14]). Last, the two constraints in
gray are from black hole imaging for the supermassive black holes M87∗ [11] and Sgr A∗ [60] (in both
cases, the authors do not report the best-fit values but only the allowed α13 ranges, which are larger
than the range (−1.5, 1.5) shown in this figure). The horizontal dotted line at α13 = 0 marks the Kerr
solution of general relativity. Figure adapted from Ref. [61].

The most stringent constraints to date are from the simultaneous analysis of reflection
features and thermal spectra of the stellar-mass black holes in GX 339–4, GRS 1915+105,
and GRS 1716–249 (blue data in Figure 5). In general, the sole analysis of the thermal
spectrum cannot constrain a deformation parameter well because the thermal spectrum has
a very simple shape (see Figure 4): even if we know the mass and the distance of the source,
we cannot constrain simultaneously the spin, the mass accretion rate, and the deformation
parameter (see the magenta constraint in Figure 5 and the discussion in Ref. [55]). For
supermassive black holes, the thermal spectrum is peaked in the UV band, where dust
absorption prevents any accurate measurement and, therefore, we cannot use the analysis
of the thermal spectrum and nkbb to test supermassive black holes. In general, we can
obtain stronger constraints from stellar-mass black holes than from supermassive black
holes (the sources are brighter and normally their spectra are not affected by absorption of
material crossing our line of sight, even if their hotter disks are more difficult to model).
However, MCG–6–30–15 is an exceptional case (cyan bar in Figure 5): the source is very
bright, its spectrum has often a very strong and broadened iron line, and the constraint
on α13 is obtained from the analysis of high-quality simultaneous observations, NuSTAR
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and XMM-Newton, that combine a broad energy spectrum and a high energy resolution in
the iron line region. In the end, the constraint on α13 from MCG–6–30–15 is comparable
to the best constraints from stellar-mass black holes with only relxill_nk (green data).
The red constraint from gravitational wave data of the coalescence of two stellar-mass
black holes is obtained following the approach proposed in Ref. [62], where one assumes
that the gravitational wave emission is the same as in general relativity and the constraint
on α13 only comes from the motion of the bodies; within an agnostic approach, it could
not be otherwise, because here we only know the spacetime metric—in this specific case,
the Johannsen metric with the deformation parameter α13—and we do not know the
field equations of the theory. These parametric black hole spacetimes are obtained by
deforming the Kerr solution following certain criteria; they are not the exact solutions of
specific gravity theories. The best gravitational wave constraint on α13 is weaker than the
best X-ray constraints, but for other deformations from the Kerr solution we may find
opposite results [59,63,64]. This is understandable because X-ray and gravitational wave
tests are sensitive to very different physics and different relativistic effects, so X-ray tests
can constrain better some deformations from the Kerr geometry and gravitational wave
tests can constrain better other deformations. Last, we have the constraints from M87∗ and
Sgr A∗ (gray data in Figure 5) from black hole imaging. These constraints are definitively
weaker than those from X-ray and gravitational wave tests. They may be able to reach the
current sensitivity of X-ray and gravitational wave tests with the launch of a telescope to
space; such a possibility is already discussed within the community and could improve the
current angular resolution by an order of magnitude.

4.2. Theory-Specific Tests of the Kerr Hypothesis

relxill_nk has even been used to test specific theories of gravity in which electrically
neutral black holes are not described by the Kerr solution. In the end, this technique is
quite general. We just need to implement the correct black hole metric in relxill_nk and
then analyze some reflection-dominated black hole spectra to measure the parameters of
the theory.

In Einstein–Maxwell dilaton–axion gravity, black holes are expected to have a dilaton
charge r2 ≥ 0 and the Kerr solution of general relativity is recovered when r2 = 0. In Ref. [65],
we analyzed a NuSTAR observation of the stellar-mass black hole in EXO 1846–031 and we
inferred the following constraint on r2

r2 < 0.011 (90% CL) . (8)

Conformal gravity is a family of theories beyond general relativity that have been
proposed to solve the problem of spacetime singularities [66–68]. The singularity-free black
holes in conformal gravity are characterized by a new parameter, L > 0. For L = 0, we
recover the singular Kerr solution of general relativity. From the analysis of black hole
X-ray data with relxill_nk we can infer the following constraint on L/M (where M is the
black hole mass) [69,70]

L/M < 0.09 (90% CL) . (9)

If we quantize general relativity, we obtain an effective quantum field theory valid
only at energies much lower than the Planck scale. Asymptotically safe quantum gravity
is a promising candidate scenario to provide a UV extension for such an effective field
theory of general relativity. In Ref. [71], the authors proposed a rotating black hole metric in
asymptotically safe quantum gravity. Such a solution is characterized by a new parameter,
γ̃ > 0, which is inversely proportional to the asymptotically safe fixed-point value of the
theory. The Kerr metric is recovered when γ̃ = 0. In Ref. [72], we implemented such a
rotating black hole metric in asymptotically safe quantum gravity in relxill_nk and we
analyzed a Suzaku observation of the stellar-mass black hole in GRS 1915+105. From our
analysis, we measured γ̃
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γ̃ < 0.047 (90% CL) . (10)

The constraint on γ̃ from X-rays is much stronger than that obtained from black hole
imaging in Ref. [71].

Even if we assume that general relativity is the correct theory of gravity, there is not
yet a proof that the final product of the complete gravitational collapse of an uncharged
body is a Kerr black hole. On the other hand, today we know exact solutions of the Einstein
equations in which the complete collapse of a body does not produce a Kerr black hole
and instead leads to a spacetime with naked singularities [73]. In Ref. [74], we explored the
possibility that the spacetime around gravitationally collapsed objects is described by the δ-
Kerr metric [75,76], which is an exact solution of the Einstein equations that can be obtained
from a non-linear superposition of the δ-metric and the Kerr metric. The δ-Kerr metric
has an extra parameter, q, which measures deviations from the Kerr solution. The Kerr
metric is recovered for q = 0, while the object is more oblate (prolate) than a Kerr black
hole if q > 0 (q < 0). Implementing the δ-Kerr metric in relxill_nk and analyzing the
NuSTAR spectrum of the stellar-mass black hole in EXO 1846–031, in Ref. [74] we inferred
the following constraint on q

−0.1 < q < 0.7 (90% CL) . (11)

The examples reported in this sub-section are to show that relxill_nk is a tool that
can normally test any theory of gravity in which we know the rotating black hole solution
and it is different from the Kerr metric. We also note that the constraints inferred from
the analysis of reflection spectra with relxill_nk are more stringent than the constraints
inferred with other electromagnetic techniques. On the other hand, constraints from
gravitational wave data are difficult to infer because they require precise calculations of
gravitational waveforms in those theories, which are normally not well studied yet.

5. Accuracy of X-ray Tests of General Relativity

Are the X-ray tests of the Kerr hypothesis presented in the previous section robust? In
Figure 5, we see that the X-ray measurements of the Johannsen deformation parameter α13
are certainly more precise than those with current gravitational wave data and black hole
imaging, but are they also accurate?

The answer to this question is that we believe that these tests of the Kerr hypothesis
with black hole X-ray data are robust, but we must be very careful to select the right sources
and the right observations. The point is that we do not need to test as many sources as
possible to obtain a large number of (accurate and inaccurate) measurements. We can
instead focus on a small number of spectra that are thought to be well understood and can
provide very precise measurements. Let us note that the situation is very different from
most astrophysical studies, where, for example, we want to measure the spin parameter of
as many sources as possible to study the spin distribution of a whole black hole population.
Another example is the case in which we want to study a certain kind of accretion state
of black holes, even if such a state is not ideal for precise measurements of the system.
The situation is also very different from the tests with gravitational wave data and black
hole imaging. In the case of gravitational wave data, all systems are quite similar and
share the same systematic uncertainties in the measurement of their parameters (in the
end, they are just two black holes in vacuum!); this is also evident from the fact that the
constraints from different sources on possible deviations from the Ker solution are all quite
similar [59,62], while in the case of X-ray tests we can have sources that provide very strong
constraints and sources that cannot provide constraints at all. In the case of black hole
imaging, we have only M87∗ and Sgr A∗, as the angular size of any other supermassive
black hole in our sky is too small and, therefore, we have to understand those sources and
their observations well even if they are not ideal for tests of fundamental physics.

Generally speaking, our tests with X-ray data require selecting sources in which
(a) the signature of relativistic effects is strong in the spectrum, and (b) the accretion
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process is well understood and constrained. Point (a) is necessary to break the degeneracy
between possible new physics and the astrophysical model, as well as to have precise
measurements/constraints of new physics. Point (b) is required to limit the systematic
uncertainties of the astrophysical model. To be more specific, the sources and observations
suitable for testing fundamental physics with the analysis of the reflection features should
meet the following requirements:

1. The inner edge of the accretion disk should be as close as possible to the compact
object. A necessary but not sufficient condition is that the spin parameter of the
compact object is high (say, a∗ > 0.9 if it is a Kerr black hole).

2. The corona should be compact and close to the compact object.
3. The accretion disk should be geometrically thin and optically thick, with the inner edge

at or near the innermost stable circular orbit (ISCO). A necessary, but not sufficient,
condition is that the Eddington-scaled accretion luminosity is between a few percent
and about 30%.

4. The spectrum must have a prominent iron line.
5. The source must be bright (and the data should not be affected by pile-up).
6. The geometry of the accretion disk and of the corona should not change during

the observation.
7. The X-ray data should cover both the iron line region and the Compton hump, and pos-

sibly have a good energy resolution in the iron line region.

Points 1 and 2 are necessary to have most of the reflection component generated very
close to the black hole, so that the relativistic effects in the X-ray spectrum are stronger and
thus they are more easy to measure with good precision; see also Refs. [27,42,77]. Since
relxill_nk assumes that the accretion disk is thin and the motion of the gas is Keplerian,
we must select the sources with such a disk, which is point 3 above. Simulations of reflection
spectra from GRMHD-generated thin disks show that we can recover the correct input
parameters well from the X-ray spectrum [78]. On the contrary, if we analyze sources with
a too high mass accretion rate, the disk is thick, and we can easily obtain very precise,
but inaccurate, measurements of the spacetime metric [79,80]. Since the shape of the iron
Kα line is the most informative part of the reflection spectrum for our tests, it is important
to analyze data with prominent and very broadened iron lines, which is point 4 above.
Note, for example, that in a fully ionized disk the iron line disappears in the X-ray spectrum
of the source. If we select the right sources and the right observations, the uncertainty in
the final measurement is dominated by the statistic uncertainty in the photon count, which
decreases if the source is bright (point 5). If the geometry of the accretion flow in the strong
gravity region or the geometry of the corona change during the observation, this should be
taken into account in the data analysis process and it is definitively a complication. If the
properties of the disk and the corona do not change, point 6, this simplifies the analysis.
Last, it is certainly useful both to have a good energy resolution in the iron line region
(because the shape of the iron line is the most informative part of the spectrum) and to
analyze a broad spectrum, including the Compton hump (because this helps to constrain
other parameters of the model, such as the ionization of the disk, and, in turn, even to
obtain a better measurement of the spacetime metric around the black hole), which is
point 7. For this reason, the constraints reported in Section 4 are mainly obtained from
NuSTAR data (which permit fitting of the energy band 3–80 keV) or, as in the case of
MCG–6–30–15, simultaneous observations of NuSTAR and XMM-Newton (which provide
a good energy resolution in the iron line region).

6. Concluding Remarks

This article has summarized the state of the art of tests of general relativity with
black hole X-ray data. In the past few years, we have developed the reflection model
relxill_nk and the thermal model nkbb to test fundamental physics from the analysis
of X-ray spectra of accreting black holes. So far, we have mainly worked on tests of the
Kerr hypothesis; that is, to test if the spacetime metric around astrophysical black holes is
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described by the Kerr solution as expected in the framework of standard physics (general
relativity, no exotic matter fields, no naked singularities, etc.). In the future, these tests
can be extended to study possible deviations from geodesic motion induced by new fields,
violation of Lorentz invariance, new interactions between the gravity and the matter sectors,
etc. While X-ray tests of general relativity are not as popular as tests with gravitational
wave data or black hole imaging, they can provide very competitive constraints, usually
somewhat stronger than those possible with current gravitational wave observations and
certainly much stronger than those with current images of the supermassive black holes
M87∗ and Sgr A∗.

If we select carefully the sources and the observations, X-ray tests of the Kerr hypothe-
sis can be robust, and in such a case the constraints on possible deviations from the Kerr
solution are limited by the quality of the data. To improve significantly current X-ray con-
straints we have to wait for the next generation of X-ray missions, starting from eXTP [81]
(currently scheduled to be launched in 2028). For example, an observation with eXTP can
roughly improve the constraint on a deformation parameter by an order of magnitude with
respect to a similar observation with NuSTAR of the same source [74]. However, in order
to fully exploit the high-quality data from the next generation of X-ray missions, it will be
necessary to develop more sophisticated theoretical models than those available today or,
otherwise, we risk having very precise, but not very accurate, measurements of the space-
time metric. Future models should include the effect of the returning radiation (i.e., the
radiation emitted by the disk and returning to the disk because of the strong light bending
near black holes), more accurate calculations of the reflection spectrum in the rest-frame
of the material in the disk, more sophisticated descriptions of the emissivity profiles by
implementing specific coronal geometries, and more sophisticated accretion disk models
than the Novikov–Thorne one (probably employing GRMHD-generated accretion disks).

Gravitational wave tests promise to improve quickly in the near future and we can
expect that eventually they will be able to put the most stringent constraints on the Kerr
hypothesis (see, for instance, Ref. [82]). However, X-ray tests can still be interesting because
they are complementary to the gravitational wave tests. X-ray tests can indeed probe better
the interactions between the gravity and the matter sectors. For example, non-minimal
coupling between the gravity and the matter sectors could induce deviations from geodesic
motions of photons or some particle species, variation in fundamental constants in the
strong gravity region around black holes, etc. These phenomena are more difficult or
impossible to detect with gravitational wave data. On the other hand, gravitational wave
tests are certainly more suitable to probe the gravitational sector itself and, in particular,
are sensitive to the dynamical regime, which cannot be probed by electromagnetic tests.
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