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Abstract: Fractional differential equations (FDEs) arising in engineering and other sciences describe
nature sufficiently in terms of symmetry properties. This paper proposes a numerical technique to
approximate ordinary fractional initial value problems by applying fractional radial basis function
neural network. The fractional derivative used in the method is considered Riemann-Liouville type.
This method is simple to implement and approximates the solution of any arbitrary point inside or
outside the domain after training the ANN model. Finally, three examples are presented to show the
validity and applicability of the method.

Keywords: artificial neural networks; RBF; radial basis function; fractional differential equations;
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1. Introduction

The symmetry design of the system includes integer partial differential equations and
fractional-order partial differential equations. Fractional differential equations (FDEs) can
be applied for modelling many problems in real-life. Lately, fractional calculus has received
much consideration of the researchers due to it’s numerous applications in diverse scientific
fields such as fluid flow, dynamical system control theory, signal processing, diffusion
transport, electric network, etc. [1–4]. In most cases, it is hard to gain analytical solutions of
these problems. Therefore, numerical approaches have to be applied for approximating the
solution of FDEs [5–15].

According to our primary studies, over the past decades, various numerical methods
have been proposed for solving these problems. For example finite difference [16,17], Ado-
mian decomposition [18], monotone iterative technique [19], random walk [20], operational
matrix method [21,22], etc. Although these techniques provide good approximations to the
solution, but most of them give series expansions in the neighborhood of initial conditions
are used [23].

In recent years, artificial neural network (ANN ) methods have been established as a
powerful technique to solve partial and ordinary differential problems [24–26].

Lagaris et al. [27] proposed an artificial neural network method to solve boundary
and initial value problems. Pakdaman et al. [28] applied neural network and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimization technique to solve linear and nonlinear
FDEs. Pang et al. [29] presented fractional physics-informed neural networks to solve
space-time fractional advection-diffusion equations. Jafarian et al. [30] employed ANN
model for approximate polynomial solution of fractional order Volterra integro differential
equations. Qu et al. [31] discussed about a neural network algorithm based on Legendre’s
polynomial to solve fractional diffusion equations. In another study, the neural network
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training and cosine basis functions with adjustable parameters have been presented by Qu
and Liu for solving fractional order differential equations [32].

One of the advantages of solving equations ANN is the simple implementation and
approximation of the solution of any desired point inside or outside the domain after
training the ANN model. In this paper, we apply fractional radial basis function neural
network (FRBF-NN) to solve fractional order initial value problems.

This paper is organized as follows: Section 2 lists basis definitions and fundamental
issues of fractional calculus and structure of RBF neural network are given. Section 3
describes the proposed algorithm for solving FDEs. Section 4 presents three examples to
show the effectiveness of the proposed method. Finally, Section 5 includes the conclud-
ing remarks.

2. Preliminaries

In this section, we intend to give some definitions and concepts related to fractional
calculus and RBF neural network, which are used further in this article.

2.1. Fractional Derivative Definition

An important benefit of the fractional derivative over the ordinary derivative is that it
extends the search region around the test point in specified boundaries [1].

The Riemann-Liouville differential operator Dν, for a function f : (0, ∞) → R that
ν > 0 is defined as [33]:

Dν f (x) =
1

Γ(n− ν)

∂n

∂xn

∫ x

0
(x− t)n−ν−1 f (t)dt, (1)

that n = [ν] + 1, [ν] is the integer part of ν and Γ(.) denotes the Gamma function.

2.2. Structure of RBF-Neural Network

The RBF neural networks, can be used function approximation problems.
RBF networks architecture consists of three layers:

• The input layer
• The hidden layer includes radial basis functions:

The nonlinear input space is represented by a nonlinear mapping to a higher dimen-
sional space in the hidden layer.

• The output layer consists of linear neurons:

Linear regression is performed to predict the desired goals by output layer. Archi-
tecture of RBF networks is indicated in Figure 1. Suppose X ∈ Rm1 be the input vector,
the RBF network’s overall mapping, s : Rm1 → R is given as:

y =
M

∑
i=1

wiφi(‖x− xi‖) + b, (2)

where M is the number of hidden layer neurons, xi ∈ Rm1 are the RBF neural network
centers, wi refer to the weights between the output neuron and the hidden layer, φi is the
ith hidden neuron kernel and b refers to the bias term of the output neuron.

Without losing the generality, only one neuron is considered in the output layer.
Some of the kernel functions that use in RBF neural networks are: inverse multiquadrics,
multiquadrics and Gaussian functions [34]. The Gaussian function is the most commonly
used kernel because of its versatility [35].
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φi(‖x− xi‖) = exp(−‖x− xi‖2

σ2 ), (3)

that σ refers to the spread of the Gaussian kernel.

Figure 1. Architecture of RBF-NN.

3. Description of the Method

Here, we describe the fractional RBF neural network to approximate FDEs. The
RBF-NN standard learning algorithms are based on classic gradient descent algorithm.
By applying fractional derivatives, more information can be obtained in comparison with
the classic derivative, which only results the tangent at a point of the given function [36].

Consider a FDE of order ν,

Dν
xy(x) = f (x, y(x)),

where y(x0) = y0, x ∈ Rm1 .
The overall mapping, at the nth learning iteration is written as follows:

y(n) =
M

∑
i=1

wi(n)φi(x, xi) + b(n),

where M is the number of neurons, weights wi(n) and b(n) are adjusted at each iteration.
The approximate solution y(n) satisfies the initials conditions.

The error function can be written as:

E(n) =
1
2
(Y(n)− y(n))2 =

1
2 ∑

k
e2

k(n),

where Y(n) is the nth iteration’s output. e(n) = Y(n)− y(n) is error between exact solution
and approximate solution, and k is the number of output layer nourons.

The equation of weight update applying convex combination of fractional and classical
gradient is written as [37]:

wi(n + 1) = wi(n)− αη5wi E(n)− (1− α)ην5ν
wi

E(n), (4)
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where mixing parameter α ∈ [0, 1], ην and η prefer to the step sizes of fractional and
classical gradients, and

−5wi E(n) = φi(x, xi)ek(n), (5)

−5ν
wi

E(n) = φi(x, xi)ek(n)
w1−ν

i
Γ(2− ν)

. (6)

Using (5) and (6), Equation (4) can be reduced to:

∆wi(n) = ek(n){αη + (1− α)ηνw(1−ν)
i (n)}φi(x, xi). (7)

Also the update formula for b(n) is as follows:

∆b(n) = ek(n){(1− α)ηνb(1−ν)(n) + αη}. (8)

4. Numerical Results

This section provides three numerical examples in order to verify the powerfulness
and applicability of the proposed strategy. It is worth mentioning that for obtaining the
best results during training, the parameters α, ν, η and ην of FRBF-NN for each example are
empirically selected. We use just the real part of the update sentence beacause of avoiding
complex values.

The experiments are repeated 50 times for 1000 epoch iterations. The values of weights
and bias were randomly initialized per round. All the mathematical computations were
conducted using MATLAB-R2019b.

Example 1. Let us consider the following FDE

x
0 D0.5

C u(x) + u(x) =
2x1.5

Γ(2.5)
+ x2, 0 ≤ x ≤ 1,

where u(0) = 0. The analytical solution of this example is u(x) = x2.

The learning rates were taken to be η = 10−2 and ην = 3× 10−2. The parameters α
and ν were set to 0.5 and 0.6 respectively. For training phase, a total of 101 and 1001 values
of x were applied ranging from 0 to 1. Table 1 reports the numerical results of the proposed
method. Figure 2 plots the mean squared error for ∆x = 0.01. Figures 3 and 4 show the
approximated output of present method compared to the actual output for the training and
testing data.

Table 1. Numerical results for Example 1.

∆x Number of Kernels MSE (Training) MSE (Testing) Approximation Accuracy

0.01 35 7.34× 10−5 7.41× 10−5 99.40%

0.001 70 1.88× 10−5 2.21× 10−5 99.66%
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Figure 2. Mean squared error plot for Example 1.

Figure 3. Comparison between exact values and the approximated results of FRBF-NN during the
training phase.

Figure 4. Comparison between analytical results and the predicted values of FRBF-NN during the
testing phase.
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Example 2. We consider the following FDE as:

∂u(x, y, t)
∂t

= d(x, y)
∂1.8u(x, y, t)

∂x1.8 + e(x, y)
∂1.6u(x, y, t)

∂y1.6 + q(x, y, t),

where x, y ∈ (0, 1) for t ∈ [0, Tend] that Tend = 1,

d(x, y) =
Γ(2.2)x2.8y

6
,

e(x, y) =
2xy2.6

Γ(4.6)
,

q(x, y, t) = x3y3.6,

in which the initial conditions are: u(0, y, t) = u(x, 0, t) = 0, u(x, y, 0) = x3y3.6, u(1, y, t) =
y3.6e−t and u(x, 1, t) = x3e−t for t ≥ 0.

The analytical solution of this problem is u(x, y, t) = x3y3.6e−t. The function u(x, y, t)
is approximated using FRBF-NN. The learning rates were taken to be η = 10−2 and
ην = 3× 10−2. The parameters α and ν were set to 0.6 and 0.6, respectively.

Table 2 lists the numerical results obtained of the proposed method. Figure 5 displays
the mean squared error plot for training phase. Figure 6 represents The absolute error
surfaces for test data points in t = 0.16 and train data points in t = 0.

Table 2. Numerical results for Example 2.

∆t ∆x = ∆y Number of
Kernels MSE (Training) MSE (Testing) Approximation

Accuracy

0.1 0.1 150 1.20× 10−4 7.71× 10−5 99.40%
0.05 0.05 400 2.56× 10−5 1.11× 10−5 99.75%

Figure 5. The plot of mean squared error for Example 2.
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Figure 6. The surface of the absolute error for Example 2.

Example 3. Finally, we consider the following FDE

∂u(x, t)
∂t

+
∂αu(x, t)

∂tα
= µ1

∂2u(x, t)
∂x2 − µ2

∂u(x, t)
∂x

+ f (x, t),

that 0 < x < 1, 0 ≤ t ≤ Tend = 1 and

f (x, t) = 10(−2 + 14x− 18x2 + 4x3)(t + 1) + 10
(

1 +
t1−α

Γ(2− α)

)
x2(1− x)2,

with the initial conditions u(x, 0) = 10(1 − x)2x2, u(1, t) = u(0, t) = 0 and u(x, 1) =
20x2(1− x)2.

The analytical solution of this example is u(x, t) = 10x2(1− x)2(1 + t). The learning
rates were taken to be η = 10−2 and ην = 10−2. The parameters α and ν were set to 0.4 and
0.7, respectively.

Table 3 displays the numerical results obtained for this example. Figure 7 shows the
mean squared error plot for training phase. Figure 8 represents the absolute error surfaces
for train and test data points.
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Figure 7. The plot of the mean squared error for Example 3.

Figure 8. The surface of the absolute error for Example 3 during the training (Up) and testing (Down)
phases.
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Table 3. Numerical results for Example 3.

∆t ∆x Number of
Kernels MSE (Training) MSE (Testing) Approximation

Accuracy

0.01 0.01 120 8.37× 10−5 5.31× 10−5 99.44%

5. Conclusions

This paper presented a method to approximate FDEs by using artificial neural network
model. The presented technique is the convex combination of the fractional and classical
gradient descents. By applying fractional derivatives, more information can be obtained
compared with the classical derivative. Fractional derivative has the potential to do what
integer-order derivative cannot. An important benefit of the fractional derivative over the
ordinary derivative is that it extends the search region around the test point in specified
boundaries. To test the effectiveness of the proposed method we used it to solve three FDEs.
The results shown that implementation of this method is easy and it has high accuracy
when applied to solve FDEs.
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