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Abstract: In this paper, we investigate the solution to a class of symmetric non-homogeneous two-
dimensional fractional integro-differential equations using both analytical and numerical methods.
We first show the differences between the Caputo derivative and the symmetric sequential fractional
derivative and how they help facilitate the implementation of numerical and analytical approaches.
Then, we propose a numerical approach based on the operational matrix method, which involves
deriving operational matrices for the differential and integral terms of the equation and combining
them to generate a single algebraic system. This method allows for the efficient and accurate approxi-
mation of the solution without the need for projection. Our findings demonstrate the effectiveness of
the operational matrix method for solving non-homogeneous fractional integro-differential equations.
We then provide examples to test our numerical method. The results demonstrate the accuracy
and efficiency of the approach, with the graph of exact and approximate solutions showing almost
complete overlap, and the approximate solution to the fractional problem converges to the solution
of the integer problem as the order of the fractional derivative approaches one. We use various
methods to measure the error in the approximation, such as absolute and L2 errors. Additionally, we
explore the effect of the derivative order. The results show that the absolute error is on the order of
10−14, while the L2 error is on the order of 10−13. Next, we apply the Laplace transform to find an
analytical solution to a class of fractional integro-differential equations and extend the approach to
the two-dimensional case. We consider all homogeneous cases. Through our examples, we achieve
two purposes. First, we show how the obtained results are implemented, especially the exact solution
for some 1D and 2D classes. We then demonstrate that the exact fractional solution converges to the
exact solution of the ordinary derivative as the order of the fractional derivative approaches one.

Keywords: integro-differential; symmetry; sequential fractional derivative; operational matrices

1. Introduction

Fractional calculus is a branch of mathematical analysis that extends the concepts of
differentiation and integration to non-integer orders. The origins of fractional calculus can
be traced back to the work of Leibniz and Euler in the 18th century, who introduced the
concept of fractional differentiation and integration. However, in the late 19th and early
20th centuries, fractional calculus began to be studied systematically, thanks to the work of
mathematicians such as Liouville, Riemann, and Grunwald; see [1]. One of the main results
of fractional calculus is the fractional derivative, which is a generalization of the classical
derivative to non-integer orders. The fractional derivative has numerous applications in
physics, engineering, and other sciences, particularly in problems involving non-locality or
memory effects [2].
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Another important concept in fractional calculus is the fractional integral, which is a
generalization of the classical integral to non-integer orders. The fractional integral is useful
for solving differential equations involving fractional derivatives and has applications in
areas such as signal processing and control theory.

One of the most significant advancements in the field of fractional calculus is the de-
velopment of the Caputo fractional derivative. Caputo introduced the fractional derivative
in 1967, which is defined as the Riemann–Liouville fractional derivative with the initial
conditions being in the form of a non-singular integer. The Caputo fractional derivative
is widely used in various applications due to its ability to handle initial conditions better
than other types of fractional derivatives; see [2] for more details.

The concept of symmetric sequential fractional derivatives was first introduced by
Kilbas, Srivastava, and Trujillo in [3]. They defined the sequential fractional derivative of
order α and β, α, β > 0 as the composition of two fractional derivatives of orders α and β,
respectively. Later, a generalization of this concept was proposed by Zhang and Wei [4],
who defined the sequential fractional derivative of arbitrary order as the composition of
n fractional derivatives of different orders. In [5], Atanackovic and Pilipovic studied the
symmetric sequential fractional derivative in the context of the Caputo sense. They derived
the Laplace transform of the symmetric sequential fractional derivative and discussed its
basic properties. They also investigated the relationship between the sequential fractional
derivative and the fractional integral.

Li et al. [6] introduced a new class of symmetric sequential fractional derivative
models and demonstrated their applications in the fields of fluid mechanics, heat transfer,
and finance. Zhong et al. [7] discussed the properties of sequential fractional derivatives
and their application to fractional partial differential equations. They also showed that
the sequential fractional derivative is more general than the Riemann–Liouville fractional
derivative.

One of the key properties of symmetric sequential fractional derivatives is their non-
commutativity. This means that the order in which the fractional derivatives are applied
can affect the final result. This property has been studied in detail by several researchers,
such as Baleanu, Gülsuand Mohammadi [8], who have shown that it can have important im-
plications for the behavior of complex systems. Symmetric sequential fractional derivatives
have also been used in numerical methods for solving differential equations. Fractional
Adams–Bashforth methods that use sequential fractional derivatives to approximate the
solution of fractional differential equations have been proposed by Zhang, Li, and Shen [9].

Moreover, different applications in science and engineering are modeled by integro-
differential equations (IDEs) and partial differential equations (PDEs); see [10,11]. They
arise naturally in many fields, including physics, engineering, economics, and biology. One
of the earliest studies of IDEs was performed by Volterra in [12], who developed a theory
of integral equations based on his work on functional analysis. Then, the study of IDEs has
grown significantly, with many researchers contributing to the development of the field.

On the other hand, in [2], the authors showed one of the key properties of IDEs is their
non-locality, which means that the solution at a given point depends not only on the local
values of the function but also on its integral over a certain range. This property makes the
analysis of IDEs more challenging than that of ordinary differential equations (ODEs).

Several techniques have been developed for solving IDEs, including numerical meth-
ods, Laplace transforms, and Fourier transforms. One of the most popular methods for
solving IDEs, which has been used by Baleanu et al. [13], is the method of characteristics,
which involves finding curves along which the solution to the equation is constant. This
method has been applied to a wide range of problems, including those in fluid mechanics,
heat transfer, and finance.

The stability analysis of IDEs is another important topic in the study of these equations.
Stability analysis involves studying the behavior of the solutions to the IDEs as time passes
and determining whether the solutions converge or diverge. Several researchers have
developed stability criteria for IDEs, which have been used in the study of problems in
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biology, finance, and other fields. Wang, Sun, and Li [14] studied the stability of solutions
to fractional differential equations with the Caputo derivative. They presented a new
sufficient condition for the asymptotic stability of the zero solution to the equation, based
on the Lyapunov direct method. In recent years, there has been a growing interest in the use
of operational matrices in machine learning and data analysis. Operational matrices can be
used to represent data in a low-dimensional space, which can make it easier to analyze and
process large datasets. Operational matrices are an important tool in applied mathematics
and engineering for solving differential equations and other problems. They are matrices
that used to calculate the estimated solution of a differential equation in terms of the values
of the function and its derivatives at a finite set of points. Wu and Liao [15] presented an
efficient approach to obtain higher-order approximations of fractional derivatives using the
generalized Taylor matrix method.

Canuto et al. [16] provided one of the most common methods for solving differential
equations using the spectral method. This method involves approximating the solution
of a differential equation using a series of orthogonal functions, such as Fourier series or
Chebyshev polynomials and then using the corresponding operational matrices to solve for
the coefficients of the series. For more detail, we refer the reader to the references [17–20].

This article is divided into six sections. The first two sections provide a brief overview
of the literature on the applications of and solutions to fractional IDEs. We also mention
some preliminary definitions and theorems used in this work. More attention is paid
to some symmetric sequential derivatives and fractional Laplace transform results. A
derivation of the operational matrix method (OMM) can be found in Section 3. A proof of
these matrices is given. Section 4 derives exact solutions for 1D and 2D fractional IDEs. All
homogeneous cases are considered. Finally, the last two sections provide some examples
for two purposes. First, we show how the results obtained are implemented, specifically
the exact solution for some IDE classes. Next, we show the efficiency of OMM. In addition,
we end the article with some conclusions and concluding remarks.

It is worth mentioning that our investigation focuses on solving a class of symmetric
non-homogeneous two-dimensional fractional integro-differential equations using both
analytical and numerical methods. Initially, we highlight the distinctions between the
Caputo derivative and the symmetric sequential fractional derivative and discuss how these
differences aid in the implementation of numerical and analytical approaches. Subsequently,
we propose a numerical approach based on the operational matrix method. This approach
entails deriving operational matrices for the differential and integral terms of the equation
and combining them to form a unified algebraic system. This method enables efficient and
precise approximation of the solution without requiring projection.

2. Preliminaries

We start this section by defining two important operators, which are the Caputo
fractional derivative and the Riemann–Liouville fractional integral operator.

Definition 1 ([3,21]). Let q, s > 0 and M ∈ N with M − 1 < q < M. Then, the Caputo
derivative of z(s) of order q is defined as

cDqz(s) =
1

Γ(M− q)

∫ s

0
(s− r)M−q−1z(M)(r)dr (1)

and the fractional integral operator is given by

Iqz(s) =
1

Γ(q)

∫ s

0
(s− r)q−1z(r)dr. (2)
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The power rule is one of the important rules, and it is given as follows for both
operators

cDqsγ =

{
0, γ < q, γ ∈ {0, 1, 2, ...}

Γ(γ+1)
Γ(γ−q+1) zγ−q otherwise

}
(3)

and

Iqsγ =
Γ(γ + 1)

Γ(γ + q + 1)
zγ+q. (4)

The relations between these operators are given as follows:

cDq Iqz(s) = z(s) (5)

and

Iq(cDqz(x)) = z(x)−
M−1

∑
j=0

zj(0)
j!

sj. (6)

Formula (3) implies that if 1
2 < q ≤ 1, then

cD2qsq =
Γ(q + 1)

Γ(q− 2q + 1)
sq−2q =

Γ(q + 1)
Γ(1− q)

s−q (7)

and
cDq(cDqsq) =c Dq

(
Γ(q + 1)

Γ(1)

)
= 0. (8)

Thus,
cD2qsq 6=c Dq(cDqsq). (9)

Hence, the Caputo derivative is not symmetric-sequential. The definition of a symmetric-
sequential derivative is given as follows.

Definition 2 ([22,23]). If q ∈ (0, 1) with

cDMqz(s) = cDq
(

cD(M−1)qz(s)
)

, M ∈ N, (10)

then the derivative is called a symmetric-sequential Caputo derivative of order p, which we denote
by scDMqz(s). For simplicity, we use DMqz(s) to mean symmetric sequential derivative.

Now, we define a list of interesting functions that we use in this paper.

Definition 3. Let α1 > 0, α2 > 0, and λ, γ ∈ <. Then,

1. The one and two Mittag–Leffler functions are

Eα1(s) =
∞

∑
j=0

sj

Γ(jα1 + 1)
, Eα1,α2(s) =

∞

∑
j=0

sj

Γ(jα1 + α2)
, (11)

respectively.
2. The fractional sine and cosine functions are

sinα1,λ,γ(s) =
Eα1((λ + iγ)s)− Eα1((λ− iγ)s)

2i
,

cosα1,λ,γ(s) =
Eα1((λ + iγ)s) + Eα1((λ− iγ)s)

2
, (12)

respectively.



Symmetry 2023, 15, 1263 5 of 22

For the sequential fractional derivative, we mention two important results in the
following theorem.

Theorem 1. Let q > 0 and L(r(t)) = R(s). Then, the Laplace transforms Dqr(t) and D2qr(t)
on [0, ∞) are given as

L(Dqr(t)) = sqR(s)− sq−1r(0) (13)

and
L(D2qr(t)) = s2qR(s)− s2q−1r(0)− sq−1Dqr(0). (14)

In the next theorem, we list the Laplace transforms of some functions that we use in
this paper.

Theorem 2. Let q > 0 and α ∈ <. Then, the Laplace transform of Mittag–Leffler and fractional
trigonometric functions are given as follows:

L(Eq(±αtq)) =
sq−1

sq ∓ α
, sq > α, (15)

L(tqEq,q(±αtq)) =
qsq−1

(sq ∓ α)2 , sq > α, (16)

L(sinq,λ,γ(tq)) =
µsq−1

(sq − λ)2 + µ2 , (17)

L(cosq,λ,γ(tq)) =
sq−1(sq − λ)

(sq − λ)2 + µ2 , (18)

L(t2q−1GEq(αtq)) =
1

(sq − α)2 , (19)

where

GEq(t) =
∞

∑
j=0

(j + 1)tj

Γ(q(j + 2))
. (20)

3. Non-Homogeneous Two-Dimensional Fractional Integro-Differential Equations

This section is devoted to the method of solving a class of two-dimensional fractional
inegro-differential Equations of the form

wxx(x, t) + D2q
t w(x, t) + ν1Dq

t w(x, t) + wx(x, t) + ν2(t)w(x, t) + ν3 Iq
t w(x, t) = g(x, t) (21)

with
w(0, t) = w(1, t) = 0, t ≥ 0 (22)

and
w(x, 0) = r(x), Dq

t w(x, 0) = 0, 0 < x < 1 (23)

on the domain [0, 1]× [0, η], where ν1, ν3 are real constants, r ∈ C3([0, 1]), ν2 ∈ C[0, η] and
g ∈ C([0, 1]× [0, η). Before we start the method of solution, we need the following definition.

Definition 4 ([24–26]). Let M1, M2 ∈ N and ∆x = 1
M1

and ∆t =
η

M2
be two step sizes in the

x and t directions, respectively. Let xi = i∆x and tj = j∆t for i ∈ Ax = {0, 1, . . . , M1 − 1}
and j ∈ At = {0, 1, . . . , M2 − 1}. The two-dimensional Block Pulse function (BPF) is a function
βi,j : [0, 1)× [0, η)→ < defined by

βi,j(x, t) =

{
1, x ∈ [xi, xi+1), t ∈ [tj, tj+1)

0, otherwise
(24)

where i ∈ Ax and j ∈ At.
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The two-dimensional BPF can be split into the product of two one-dimensional BPFs
as follows.

Theorem 3. For any i ∈ Ax and j ∈ At, we have

βi,j(x, t) = βxi(x)βtj(t) (25)

where βxi(x) and βtj(t) are BPFs on [0, η) and [0, Tmax), respectively.

Proof. The proof follows directly from the fact that (x, t) ∈ [a, b) × [c, d) if and only if
x ∈ [a, b) and t ∈ [c, d).

Since [0, 1)× [t, η) is divided into disjoint sets {[xi, xi+1)× [tj, tj+1) : i ∈ Ax, j ∈ At},
one can see the following product and orthogonality relations

βi1,j1(x, t)βi2,j2(x, t) =

{
βi1,j1(x, t), i1 = i2, j1 = j2
0, otherwise

, (26)

∫ 1

0

∫ η

0
βi1,j1(x, t)βi2,j2(x, t)dtdx =

{
∆x∆t, i1 = i2, j1 = j2
0, otherwise

. (27)

Using these two properties, we can prove the completeness property.

Theorem 4. Let w ∈ L2([0, 1)× [0, η)) be a bounded function. Then,

w(x, t) ≈
M1−1

∑
i=0

M2−1

∑
j=0

wijβi,j(x, t) (28)

with

wij =
1

∆x∆t

∫ xi+1

xi

∫ tj+1

tj

w(x, t)dtdx. (29)

Proof. After multiplying Equation (28) by βi,j(x, t) and then integrating both sides, the
result of the theorem will follow directly.

Using Theorem 4, we can approximate the functions w(x, t), ν2(t), g(x, t), and r(x) as

w(x, t) ≈
M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)βtj(t), (30)

g(x, t) ≈
M1−1

∑
i=0

M2−1

∑
j=0

gijβxi(x)βtj(t), (31)

ν2(t) ≈
M2−1

∑
j=0

v2jβtj(t), (32)

r(x) ≈
M1−1

∑
i=0

riβix(x). (33)

Hence, the sequential derivatives of the function w can be expanded as

D2q
t w(x, t) =

M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)D2q
t βtj(t), (34)

Dq
t w(x, t) =

M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)Dq
t βtj(t). (35)
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In addition, the product and orthogonality relations of BPF imply that

ν2(t)w(x, t) =

(
M2−1

∑
j=0

v2jβtj(t)

)(
M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)βtj(t)

)
(36)

=
M1−1

∑
i=0

M2−1

∑
j=0

v2jwijβxi(x)βtj(t).

If we substitute these approximations in Equation (21), we obtain

M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)D2q
t βtj(t) + ν1

M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)Dq
t βtj(t)

+
M1−1

∑
i=0

M2−1

∑
j=0

v2jwijβxi(x)βtj(t) + ν3

M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)Iq
t βtj(t)

=
M1−1

∑
i=0

M2−1

∑
j=0

gi,jβxi(x)βtj(t)− wxx(x, t)− wx(x, t). (37)

To be able to write Equation (37) in matrix form, let us define the following matrices:

βx =


βx0(x)
βx1(x)

...
βx(M1−1)(x)

, W =


w00 w01 . . . w0(M2−1)
w10 w11 . . . w1(M2−1)

...
...

. . .
...

w(M1−1)0 w(M1−1)1 . . . w(M1−1)(M2−1)

, (38)

βt =


βt0(t)
βt1(t)

...
βt(M2−1)(t)

, V2 =


ν20 0 . . . 0
0 ν21 . . . 0
...

...
. . .

...
0 0 . . . ν2(M2−1)

, R =


r0
r1
...

rM1−1

, (39)

H =


g00 g01 . . . g0(M2−1)
g10 g11 . . . g1(M2−1)

...
...

. . .
...

g(M1−1)0 g(M1−1)1 . . . g(M1−1)(M2−1)

. (40)

Thus, Equation (37) becomes

βx
∗(x)WD2q

t βt(t) + ν1βx
∗(x)WDq

t βt(t) + βx
∗(x)WV2βt(t)

+ν3βx
∗(x)WIq

t βt(t) = βx
∗(x)Gβt(t)− wxx(x, t)− wx(x, t) (41)

where ∗ mean the transpose of a matrix. The initial conditions yield to

Dq
t w(x, 0) =

M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)Dq
t βtj(0) = βx(x)∗WDq

t βt(0) = 0, (42)

w(x, 0) =
M1−1

∑
i=0

M2−1

∑
j=0

wijβxi(x)βtj(0) = βx
∗(x)Wβt(0) = βx

∗R, (43)

which give

WDq
t βt(0) = 0 (44)

and
Wβt(0) = R. (45)
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The next step is to find the operational integration matrix of the Riemann integral.

Theorem 5. Let
I(r(x)) =

∫ x

0
r(t)dt. (46)

Then, the operational matrix of I is

OI =
∆x

2



1 2 2 . . . 2 2
0 1 2 . . . 2 2

0 0 1
. . . 2 2

...
...

...
. . . . . .

...
0 0 0 . . . 1 2
0 0 0 . . . 0 1


. (47)

Proof. Let 0 ≤ k ≤ M1 − 1 and k ∈ N. Then,

I(βxk(x)) =
∫ x

0
βxk(t)dt (48)

=


0, x < xk

x− xk, xk ≤ x < xk+1

∆x, xk+1 ≤ x < 1

. (49)

Therefore, if

I(βxk(x)) =
M1−1

∑
j=0

γj,kβxj(x), (50)

then

γj,k =
1

∆x

∫ 1

0
(I(βxk(t))βxj(t)dt (51)

=
1

∆x

∫ xj+1

xj

(I(βxk(t))dt (52)

=


∆x
2 , 0 ≤ j = k ≤ M1 − 1

∆x, 0 ≤ j < k ≤ M1 − 1
0, 0 ≤ k < j ≤ M1 − 1

(53)

which completes the proof.

Theorem 5 and Equation (41) give the following equation when we take the Rie-
mann integral

βx
∗(x)O∗I WD2q

t βt(t) + ν1βx
∗(x)O∗I WDq

t βt(t) + βx
∗(x)O∗I WV2βt(t) (54)

+ν3βx
∗(x)O∗I WIq

t βt(t) = βx
∗(x)O∗I Gβt(t)− wx(x, t) + wx(0, t)− w(x, t) + w(x, 0).

Assume that wx(0, t) = λ(t). Then,

λ(t) =
M2−1

∑
k=0

λkβtk(t) =
M1−1

∑
i=0

M2−1

∑
k=0

λkβxi(x)βtk(t) = βx
∗(x)Λβt(t) (55)
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where

Λ =


λ0 λ1 . . . λM2−1
λ0 λ1 . . . λM2−1
...

...
. . .

...
λ0 λ1 . . . λM2−1

. (56)

This is true since

M1−1

∑
k=0

βxk(x) = 1. (57)

Hence, Equation (54) and the boundary condition w(x, 0) = 0 give

βx
∗(x)O∗I WD2q

t βt(t) + ν1βx
∗(x)O∗I WDq

t βt(t) + βx
∗(x)O∗I WV2βt(t)

+ν3βx
∗(x)O∗I WIq

t βt(t) = βx
∗(x)O∗I Gβt(t)− wx(x, t)

+βx
∗(x)Λβt(t)− βx

∗(x)Wβt(t). (58)

Taking the Riemann integral for both sides of Equation (58), we obtain

βx
∗(x)O∗I O∗I WD2q

t βt(t) + ν1βx
∗(x)O∗I O∗I WDq

t βt(t) + βx
∗(x)O∗I O∗I WV2βt(t)

+ν3βx
∗(x)O∗I O∗I WIq

t βt(t) = βx
∗(x)O∗I O∗I Gβt(t)− βx

∗(x)Wβt(t)

+βx
∗(x)O∗I Λβt(t)− βx

∗(x)O∗I Wβt(t). (59)

Since the BPFs {βxk : k = 0, 1, ..., M1 − 1} are linearly independent,

O∗I O∗I WD2q
t βt(t) + ν1O∗I O∗I WDq

t βt(t) + O∗I O∗I WV2βt(t) + ν3O∗I O∗I WIq
t βt(t)

= O∗I O∗I Gβt(t)−Wβt(t) + O∗I Λβt(t)−O∗I Wβt(t). (60)

In the next theorem, we find the operational matrix of Iq
t .

Theorem 6. The operational matrix of Iq
t is

Oq =
∆q

t
Γ(q + 2)



1 s1 s2 . . . sM2−2 sM2−1
0 1 s1 . . . sM2−3 sM2−2

0 0 1
. . . sM2−4 sM2−3

...
...

...
. . . . . .

...
0 0 0 . . . 1 s1
0 0 0 . . . 0 1


(61)

where sµ = (µ + 1)q+1 − 2µq+1 + (µ− 1)q+1, µ = 1, 2, ..., M2 − 1.

Proof. Let 0 ≤ µ ≤ M2 − 1 and µ ∈ N. Then,

Iq
t βtµ(t) =

1
Γ(q)

∫ t

0
(t− z)q−1βtµ(z)dz (62)

=


0, t < tµ
(t−tµ)q

Γ(q+1) , tµ ≤ t < tµ+1
(t−tµ)q−(t−tµ+1)

q

Γ(q+1) , tµ+1 ≤ t < η

. (63)

If

Iq
t βtµ(t) =

M2−1

∑
k=0

ξk,µβtk(t), (64)
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then

ξk,µ =
1
∆t

∫ η

0

(
Iq
t βtµ(v)

)
βtk(v)dv (65)

=
1
∆t

∫ tk+1

tk

(
Iq
t βtµ(v)

)
dv (66)

=


∆q

t
Γ(q+2) , 0 ≤ k = µ ≤ M2 − 1
∆q

t ((µ−k+1)q+1−2(µ−k)q+1+(µ−k−1)q+1)
Γ(q+2) , 0 ≤ k < µ ≤ M2 − 1

0, 0 ≤ µ < k ≤ M2 − 1

. (67)

If we assume that sµ = (µ + 1)q+1 − 2µq+1 + (µ− 1)q+1, and µ = 1, 2, ..., M2 − 1, and the
proof is completed.

One can see that

R = R
M2

∑
k=0

βtk(t) = RORβt(t) (68)

where OR =
(
1 1 . . . 1

)
is 1× M2 matrix since ∑M2−1

k=0 βtk(t) = 1. Theorem 6 and
Equations (60) and (68) yield

O∗I O∗I WDq
t βt(t) + ν1O∗I O∗I Wβt(t)− ν1O∗I O∗I RORβt(t) + O∗I O∗I WV2Oqβt(t)

+ν3O∗I O∗I WOqOqβt(t) = O∗I O∗I GOqβt(t)

−WOqβt(t) + O∗I ΛOqβt(t)−O∗I WOqβt(t). (69)

Apply Theorem 6 one more time on Equation (69) to obtain

O∗I O∗I Wβt(t)−O∗I O∗I ROROqβt(t) + ν1O∗I O∗I WOqβt(t)− ν1O∗I O∗I ROROqβt(t)

+O∗I O∗I WV2OqOqβt(t) + ν3O∗I O∗I WOqOqOqβt(t) = O∗I O∗I GOqOqβt(t)

−WOqOqβt(t) + O∗I ΛOqOqβt(t)−O∗I WOqOqβt(t). (70)

Since {βtj}M2−1
0 are linearly independent, then

O∗I O∗I W −O∗I O∗I ROROq + ν1O∗I O∗I WOq − ν1O∗I O∗I ROROq

+O∗I O∗I WV2OqOq(t) + ν3O∗I O∗I WOqOqOq = O∗I O∗I GOqOq

−WOqOq + O∗I ΛOqOq −O∗I WOqOq. (71)

Since

w(1, t) =
M1−1

∑
i=0

M2−1

∑
k=0

wi,kβxi(1)βtk(t) = 0, (72)

then

βx(1)∗V = 0. (73)

Hence, we solve the algebraic system

O∗I O∗I W −O∗I O∗I ROROq + ν1O∗I O∗I WOq − ν1O∗I O∗I ROROq

+O∗I O∗I WV2OqOq(t) + ν3O∗I O∗I WOqOqOq = O∗I O∗I GOqOq

−WOqOq + O∗I ΛOqOq −O∗I WOqOq (74)

βx(1)∗V = 0 (75)
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using Mathematica for the unknowns, which are the matrix W and the vector(
λ0 λ1 . . . λM2

)
. (76)

4. Analytical Solution of a Class of Two-Dimensional Fractional
Integro-Differential Equations

This section is devoted to studying the solution of a class of two-dimensional fractional
IDEs analytically. First, The Laplace transform is used to find an analytical solution for the
following class of fractional IDEs of the form

D2qr(t) + α1Dqr(t) + α2r(t) + α3 Iqr(t) = 0 (77)

with
r(0) = β1, Dqr(0) = β2 (78)

where α1, α2, α3, β1, β2 are constants, and 1
2 < q ≤ 1.

Theorem 7. The solution to the problem (77) and (78) is given as follows.

1. If z3 + α1z2 + α2z + α3 = 0 has one real root λ and two complex roots µ ± iν, then the
solution is

r(t) = c1Eq(λtq) + (c2 + µc3)sinq((µ + iν)tq) + c3cosq((µ + iν)tq). (79)

2. If z3 + α1z2 + α2z + α3 = 0 has three distinct real roots λ1, λ2, and λ3, then

r(t) = c1Eq(λ1tq) + c2Eq(λ2tq) + c3Eq(λ3tq). (80)

3. If z3 + α1z2 + α2z + α3 = 0 has three real roots λ1 = λ2 = λ, and λ3 6= λ, then

r(t) = c1Eq(λtq) +
c2tq

q
Eq,q(λtq) + c3Eq(λ3tq). (81)

4. If z3 + α1z2 + α2z + α3 = 0 has three real roots λ1 = λ2 = λ3 = λ, then

r(t) = c1Eq(λtq) +
c2tq

q
Eq,q(λtq) + c3Eq(λtq) ∗ (t2q−1GEq(λtq)) (82)

where * means the convolution.

Proof. We take the Laplace transform for both sides of Equation (77) to obtain

s2qR(s)− s2q−1r(0)− sq−1Dqr(0) + α1

(
sqR(s)− sq−1u(0)

)
+ α2R(s) +

α3

sq R(s) = 0 (83)

which can be rewritten as

s2qR(s)− β1s2q−1 − β2sq−1 + α1

(
sqR(s)− β1sq−1

)
+ α2R(s) +

α3

sq R(s) = 0. (84)

Simple calculation implies that

R(s) =
β1s3q−1 + (β2 + α1β1)s2q−1

s3q + α1s2q + α2sq + α3
(85)

or

R(s) = sq−1 β1s2q + (β2 + α1β1)sq

s3q + α1s2q + α2sq + α3
. (86)
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Let z = sq. Then,

β1s2q + (β2 + α1β1)sq

s3q + α1s2q + α2sq + α3
=

β1z2 + (β2 + α1β1)z
z3 + α1z2 + α2z + α3

. (87)

Now, we have four cases to consider.

1. If z3 + α1z2 + α2z + α3 = 0 has one real root λ and two complex roots µ± iν, then
simple calculations yield to

R(s) =
c1sq−1

sq − λ
+

sq−1(c2 + c3sq)

(sq − µ− iν)(sq − µ + iν)

=
c1sq−1

sq − λ
+

sq−1(c2 + c3sq)

(sq − µ)2 + ν2

=
c1sq−1

sq − λ
+

(c2 + c3µ)sq−1

(sq − µ)2 + ν2
+

c3sq−1(sq − µ)

(sq − µ)2 + ν2
(88)

where

c1 =
λ(β2 + (α1 + λ)β1)

(µ− λ)2 + ν2 , c2 =
(µ2 + ν2)(β2 + (α1 + λ)β1)

(µ− λ)2 + ν2 , (89)

c3 = β1 −
λ(β2 + (α1 + λ)β1)

(µ− λ)2 + ν2 . (90)

Using Theorem 2, we obtain

r(t) = c1Eq(λtq) + (c2 + µc3)sinq((µ + iν)tq) + c3cosq((µ + iν)tq). (91)

2. If z3 + α1z2 + α2z + α3 = 0 has three distinct real roots λ1, λ2, and λ3, then

R(s) =
c1sq−1

sq − λ1
+

c2sq−1

sq − λ2
+

c3sq−1

sq − λ3
(92)

where

c1 = −λ1(α1β1 + β2 + λ1β1)

(λ2 − λ1)(λ1 − λ3)
, c2 =

λ2(α1β1 + β2 + λ2β1)

(λ2 − λ1)(λ2 − λ3)
(93)

c3 =
α1β1λ3 + β2λ3 + β1λ2

3)

(λ1 − λ3)(λ2 − λ3)
. (94)

Using Theorem 2, we obtain

r(t) = c1Eq(λ1tq) + c2Eq(λ2tq) + c3Eq(λ3tq). (95)

3. If z3 + α1z2 + α2z + α3 = 0 has three real roots λ1 = λ2 = λ, and λ3 6= λ, then

R(s) =
c1sq−1

sq − λ
+

c2sq−1

(sq − λ)2 +
c3sq−1

sq − λ3
(96)

where

c1 = β1 −
α1β1λ3 + β2λ3 + β1λ2

3
(λ− λ3)2 , c2 =

α1β1λ + β2λ + β1λ2

λ− λ3
(97)

c3 =
α1β1λ3 + β2λ3 + β1λ2

3
(λ− λ3)2 . (98)
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Using Theorem 2, we obtain

r(t) = c1Eq(λtq) +
c2tq

q
Eq,q(λtq) + c3Eq(λ3tq). (99)

4. If z3 + α1z2 + α2z + α3 = 0 has three real roots λ1 = λ2 = λ3 = λ, then

R(s) =
c1sq−1

sq − λ
+

c2sq−1

(sq − λ)2 +
c3sq−1

sq − λ

1
(sq − λ)2 . (100)

Using Theorem 2, we obtain

r(t) = c1Eq(λtq) +
c2tq

q
Eq,q(λtq) + c3Eq(λtq) ∗ (t2q−1GEq(λtq)) (101)

where

c1 = β1, c2 = (α1 + 2λ)β1 + β2, c3 = (α1λ + λ2)β1 + β2λ. (102)

Now, we generalize the idea to study the two-dimensional fractional IDEs. The
solution to this class is given in the following theorem.

Theorem 8. Let ν1, ν2, and ν3 be constants. Then, the solution to the following fractional IDE

wxx(x, t) + D2q
t w(x, t) + ν1Dq

t w(x, t) + wx(x, t) + ν2w(x, t) + ν3 Iq
t w(x, t) = 0 (103)

with
w(0, t) = w(1, t) = 0, t ≥ 0 (104)

is given by

w(x, t) =
∞

∑
n=1

zn(x)rn(t) =
∞

∑
n=1

e
−1
2 xrn(t) sin(nπx) (105)

where {rn(t)} are given as follows

1. If α3 + ν1α2 +
(

ν2 − 4n2π2+1
4

)
α + ν3 = 0 has one real root ξn and two complex roots

µn ± iνn, then

rn(t) = anEq(ξntq) + (bn + µncn)sinq((µn + iνn)tq) + cncosq((µn + iνn)tq). (106)

2. If α3 + ν1α2 +
(

ν2 − 4n2π2+1
4

)
α + ν3 = 0 has three distinct real roots ξ1n, ξ2n, and ξ3n,

then
rn(t) = anEq(ξ1ntq) + bnEq(ξ2ntq) + cnEq(ξ3ntq). (107)

3. If α3 + ν1α2 +
(

ν2 − 4n2π2+1
4

)
α + ν3 = 0 has three real roots ξ1n = ξ2n = ξn, and

ξ3n 6= ξn, then

rn(t) = anEq(ξntq) + bn
tq

q
Eq,q(ξntq) + cnEq(ξ3ntq). (108)

4. If α3 + ν1α2 +
(

ν2 − 4n2π2+1
4

)
α + ν3 = 0 has three real roots ξ1n = ξ2n = ξ3n = ξn, then

rn(t) = anEq(ξntq) + bn
tq

q
Eq,q(ξntq) + cnEq(ξntq) ∗ (t2q−1GEq(ξntq)). (109)
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Proof. Following the idea of the separation of variables, we assume that

w(x, t) = z(x)r(t). (110)

Then, substitute Equation (110) into Equation (103) and divide both sides by z(x)r(t) to
obtain

z′′(x) + z′(x)
z(x)

= −D2q
t r(t) + ν1Dq

t r(t) + ν2r(t) + ν3 Iq
t r(t)

r(t)
= λ (111)

where λ is a constant. The boundary conditions in Equation (104) yield to

z(0) = z(1) = 0. (112)

Hence, we obtain the following eigenvalue problem

z′′(x) + z′(x)
z(x)

= λ, z(0) = z(1) = 0. (113)

Thus, the auxiliary equation is
α2 + α− λ = 0 (114)

which implies that

α =
−1±

√
1 + 4λ

2
. (115)

Three cases should be considered when λ is either equal to, less than, or greater than −1
4 .

These three cases give the following eigenvalues and eigenfunctions

zn(x) = e
−1
2 x sin(nπx), λn = −4n2π2 + 1

4
, n ∈ N. (116)

Hence, Equation (111) gives

D2q
t r(t) + ν1Dq

t r(t) +
(

ν2 −
4n2π2 + 1

4

)
r(t) + ν3 Iq

t r(t) = 0 (117)

Using Theorem 7, we obtain

1. If α3 + ν1α2 +
(

ν2 − 4n2π2+1
4

)
α + ν3 = 0 has one real root ξn and two complex roots

µn ± iνn, then

rn(t) = anEq(ξntq) + (bn + µncn)sinq((µn + iνn)tq) + cncosq((µn + iνn)tq). (118)

2. If α3 + ν1α2 +
(

ν2 − 4n2π2+1
4

)
α + ν3 = 0 has three distinct real roots ξ1n, ξ2n, and

ξ3n, then
rn(t) = anEq(ξ1ntq) + bnEq(ξ2ntq) + cnEq(ξ3ntq). (119)

3. If α3 + ν1α2 +
(

ν2 − 4n2π2+1
4

)
α + ν3 = 0 has three real roots ξ1n = ξ2n = ξn, and

ξ3n 6= ξn, then

rn(t) = anEq(ξntq) + bn
tq

q
Eq,q(ξntq) + cnEq(ξ3ntq). (120)

4. If α3 + ν1α2 +
(

ν2 − 4n2π2+1
4

)
α + ν3 = 0 has three real roots ξ1n = ξ2n = ξ3n = ξn,

then

rn(t) = anEq(ξntq) + bn
tq

q
Eq,q(ξntq) + cnEq(ξntq) ∗ (t2q−1GEq(ξntq)). (121)
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Therefore, Equations (116) and (118)–(121) give

w(x, t) =
∞

∑
n=1

zn(x)rn(t) =
∞

∑
n=1

e
−1
2 xrn(t) sin(nπx) (122)

where {rn(t)}∞
n=1 are given in Equations (118)–(121).

If we have initial conditions, then we use the Fourier series expansions to find the
{an}, {bn}, and {cn}.

5. Illustrative Examples

In this section, we discuss several examples to explain the previous discussion. The
first example will be about Theorem 7. We find the exact solution to the one-dimensional
fractional IDEs with constant coefficients. Then, we will discuss the behavior of the solution
when q approaches one.

Example 1. Consider the following one-dimensional fractional IDE of the form

D2qr(t) + α1Dqr(t) + α2r(t) + α3 Iqr(t) = 0 (123)

with
r(0) = 1, Dqr(0) = 1. (124)

We will consider four cases:

1. If α1 = −3, α2 = 4, and α3 = −2, then the roots of z3 + α1z2 + α2z + α3 = 0 are 1, 1± i.
Using the first part of Theorem 7, c1 = −1, c2 = −2 and c3 = 2. Then, the solution of
Equations (123) and (124) will be

rq(t) = −Eq(tq) + 2 cosq((1 + i)tq). (125)

Then,

lim
q→1

rq(t) = lim
q→1

(−Eq(tq) + 2 cosq((1 + i)tq)) (126)

= −et + 2etcost, (127)

which is the solution of

r′′(t)− 3r′(t) + 4r(t)− 2
∫ t

0
r(s)ds = 0, r(0) = r′(0) = 1. (128)

Note that

lim
q→1

Eq(λtq) = eλt, lim
q→1

cosq((µ + iν)tq)) = eµt cos(νt), (129)

lim
q→1

sinq((µ + iν)tq)) = eµt sin(νt). (130)

2. If α1 = −6, α2 = 11, and α3 = −6, then the roots of z3 + α1z2 + α2z + α3 = 0 are 1, 2, 3.
Using the second part of Theorem 7, we obtain the result that c1 = −2, c2 = 6, and c3 = −3.
Then, the solution of Equations (123) and (124) will be

rq(t) = −2Eq(tq) + 6Eq(2tq)− 3Eq(3tq). (131)

Then,

lim
q→1

rq(t) = lim
q→1

(−2Eq(tq) + 6Eq(2tq)− 3Eq(3tq)) (132)

= −2et + 6e2t − 3e3t, (133)
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which is the solution of

r′′(t)− 6r′(t) + 11r(t)− 6
∫ t

0
r(s)ds = 0, r(0) = r′(0) = 1. (134)

3. If α1 = −4, α2 = 5, and α3 = −2, then the roots of z3 + α1z2 + α2z + α3 = 0 are 1, 1, 2.
Using the third part of Theorem 7, c1 = 3, c2 = 2 and c3 = −2. Then, the solution of
Equations (123) and (124) will be

rq(t) = 3Eq(tq) +
2tq

q
Eq,q(tq)− 2Eq(2tq). (135)

Then,

lim
q→1

rq(t) = lim
q→1

(3Eq(tq) +
2tq

q
Eq,q(tq)− 2Eq(2tq)) (136)

= 3et + 2tet − 2e2t, (137)

which is the solution of

r′′(t)− 4r′(t) + 5r(t)− 2
∫ t

0
r(s)ds = 0, r(0) = r′(0) = 1. (138)

4. If α1 = −3, α2 = 3, and α3 = −1, then the roots of z3 + α1z2 + α2z + α3 = 0 are 1, 1, 1.
Using the fourth part of Theorem 7, we find that c1 = 1, c2 = 0, and c3 = −1. Then, the
solution of Equations (123) and (124) will be

rq(t) = Eq(tq)− Eq(tq) ∗ (t2q−1GEq(tq)). (139)

Then,

lim
q→1

rq(t) = lim
q→1

(Eq(tq)− Eq(tq) ∗ (t2q−1GEq(tq)) (140)

= et − et ∗ tet = et − 1
2

t2et (141)

which is the solution of

r′′(t)− 3r′(t) + 3r(t)−
∫ t

0
r(s)ds = 0, r(0) = r′(0) = 1. (142)

Note that

lim
q→1

GEq(tq)) =
∞

∑
j=0

(j + 1)tj

Γ(j + 2)
=

∞

∑
j=0

(j + 1)tj

(j + 1)!
= et. (143)

Now, we will show how we can implement Theorem 8.

Example 2. Consider the following two-dimensional fractional IDE of the form

wxx(x, t) + D2q
t w(x, t)− 3Dq

t w(x, t) + wx(x, t) + 3w(x, t)− Iq
t w(x, t) = 0 (144)

with
w(0, t) = w(1, t) = 0, t ≥ 0 (145)

and
w(x, 0) = e

−1
2 x sin(πx), Dqw(x, 0) = e

−1
2 x sin(2πx), 0 ≤ x ≤ 1. (146)
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Theorem 8 gives the result that the solution of Equations (144)–(146) has the following form

w(x, t) =
∞

∑
n=1

e
−1
2 xrn(t)sin(nπx) (147)

where rn(t) satisfies the equation

D2q
t rn(t)− 3Dq

t rn(t) +
(

3− 4n2π2 + 1
4

)
rn(t)− Iq

t rn(t) = 0. (148)

The initial conditions in Equation (146) give

rn(0) =

{
1, n = 1
0, n > 1

, Dqrn(0) =

{
1, n = 2
0, n = 1 or n > 2

. (149)

Simple calculations imply that the equation z3 − 3z2 +
(

3− 4n2π2+1
4

)
z− 1 = 0 has one real root

λn = − γn

12 3
√

2
− 12 3

√
2

γn
+ 1, (150)

and two complex roots

µn ± iνn = 1 +
6 3
√

2
γn

+
γn

24 3
√

2
± i

(
6 3
√

2
√

3
γn

− a
8 3
√

2
√

3

)
(151)

where

γn =
3

√
−1728π2n2 +

√
(−1728π2n2 − 432)2 − 11943936− 432. (152)

for n > 2, β1,n = rn(0) = 0, and β2,n = Dqrn(0) = 0. Using the first part of Theorem 8, we have

rn(t) = 0, n > 2. (153)

for n = 1, β1,1 = r1(0) = 1, and β2,1 = Dqrn(0) = 0. Using the first part of Theorem 8, we have

c1 = 0.127535, c2 = 0.0790346, c3 = 0.872465. (154)

Thus,

r1(t) = 0.127535Eq(3.61971tq)− 0.191303 sinq((−0.309854 + 1.46532i)tq) (155)

+0.872465 cosq((−0.309854 + 1.46532i)tq). (156)

For n = 2, β1,1 = r1(0) = 0 and β2,1 = Dqrn(0) = 1. Using the first part of Theorem 8, we have

c1 = 0.123247, c2 = 0.210087, c3 = −0.123247. (157)

Thus,

r2(t) = 0.123247Eq(4.7046tq) + 0.31513 sinq((−0.852301− 2.70057i)tq) (158)

−0.123247 cosq((−0.852301− 2.70057i)tq). (159)

Therefore, the solution of the Problem (144)–(146) is given by

wq(x, t) = e
−1
2 x sin(πx)r1(t) + e

−1
2 x sin(2πx)r2(t). (160)

In the next two examples, we will test our numerical approach described in Section 3.
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Example 3. Consider the following two-dimensional fractional IDE of the form

wxx(x, t)+ D7/4
t w(x, t)− 2D7/8

t w(x, t)+wx(x, t)+ 3w(x, t)− 4I7/8
t w(x, t) = g(x, t) (161)

with
w(0, t) = w(1, t) = 0, t ≥ 0 (162)

and
w(x, 0) = e

−1
2 x sin(3πx), Dqw(x, 0) = 0, 0 ≤ x ≤ 1 (163)

where

g(x, t) =

(11− 4π2
)

t7/4 −
8t7/8Γ

(
11
4

)
Γ
(

15
8

) −
16t21/8Γ

(
11
4

)
Γ
(

29
8

) + 4Γ
(

11
4

) sin(πx) (164)

+
1
4

e−
x
2

− 16t7/8

Γ
(

15
8

) − 36π2 + 11

 sin(3πx). (165)

Then, the exact solution is

w(x, t) = t7/4e−
x
2 sin(πx) + e−

x
2 sin(3πx). (166)

Here, we use M1 = M2 = 40. Then, the absolute error is defined by

ε(x, t) =| w(x, t)− w40,40(x, t) | . (167)

The absolute errors for different values of x and t are reported in Table 1.

Table 1. The absolute errors for different values of x and t for Example 3.

x ε(x, 0.25) ε(x, 0.5) ε(x, 0.75)

0 0 0 0

0.2 3.12 ∗ 10−14 3.00 ∗ 10−14 3.74 ∗ 10−14

0.4 3.94 ∗ 10−14 3.28 ∗ 10−14 3.81 ∗ 10−14

0.6 4.11 ∗ 10−14 3.50 ∗ 10−14 3.99 ∗ 10−14

0.8 4.38 ∗ 10−14 3.85 ∗ 10−14 4.17 ∗ 10−14

1 4.97 ∗ 10−14 3.22 ∗ 10−14 4.31 ∗ 10−14

We also compute the L2-error, which is given by

εL2 =

√∫ 1

0

∫ 1

0
| w(x, t)− w40,40(x, t) |2 dxdt = 2.84 ∗ 10−13. (168)

In addition, the graphs of the exact and approximate solutions for t = 0.2, 0.4, 0.6, 0.8, 1 are given
in Figure 1. The dot points are the approximate solutions, and the solid lines are the exact solutions.
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Figure 1. The exact and approximate solutions for t = 0.2, 0.4, 0.6, 8, 1.

We discuss another example with ν2(t) is a non-constant function.

Example 4. Consider the following two-dimensional fractional IDE of the form

wxx(x, t) + D2q
t w(x, t)− Dq

t w(x, t) + wx(x, t) + (tq + 1)w(x, t)− Iq
t w(x, t) = g(x, t) (169)

with
w(0, t) = w(1, t) = 0, t ≥ 0 (170)

and
w(x, 0) = e

−1
2 x sin(5πx), Dqw(x, 0) = 0, 0 ≤ x ≤ 1 (171)

where

g(x, t) =
4e−

x
2 tq(Γ(2q + 1) sin(2πx) + Γ(3q + 1) sin(3πx)− sin(5πx))

4Γ(q + 1)
(172)

+
e−

x
2
(
4Γ(2q + 1)2 sin(2πx)

(
t3q − Γ(3q + 1)

)
− 4t2qΓ(3q + 1)2 sin(3πx)

)
4Γ(2q + 1)Γ(3q + 1)

(173)

+
e−

x
2
(
Γ(4q + 1)

(
−t2q(4tq − 16π2 + 3

)
sin(2πx)

)
− 4t4qΓ(3q + 1) sin(3πx)

)
4Γ(4q + 1)

(174)

+
e−

x
2 t3q((4tq − 36π2 + 3

)
sin(3πx) +

(
4tq − 100π2 + 3

)
sin(5πx)

)
4Γ(4q + 1)

. (175)

Then, the exact solution is

w(x, t) = −e−
x
2 t2q sin(2πx) + e−

x
2 t3q sin(3πx) + e−

x
2 sin(5πx). (176)

Here, we use M1 = M2 = 40. Then, the absolute error for the fractional derivative of order q is
defined by

εq(x, t) =| w(x, t)− w40,40(x, t) | . (177)

The absolute errors for different values of x and t are reported in Table 2.
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Table 2. The absolute errors for different values of x and t for Example 4.

x ε 3
4
(x, 0.25) ε 3

4
(x, 0.5) ε 3

4
(x, 0.75)

0 0 0 0

0.2 4.23 ∗ 10−14 4.51 ∗ 10−14 4.11 ∗ 10−14

0.4 4.79 ∗ 10−14 4.72 ∗ 10−14 4.38 ∗ 10−14

0.6 4.91 ∗ 10−14 4.89 ∗ 10−14 4.83 ∗ 10−14

0.8 5.34 ∗ 10−14 5.21 ∗ 10−14 5.32 ∗ 10−14

1 5.80 ∗ 10−14 5.42 ∗ 10−14 5.55 ∗ 10−14

We also compute the L2-error, which is given by

εL2(q) =

√∫ 1

0

∫ 1

0
| w(x, t)− w40,40(x, t) |2 dxdt. (178)

The L2- errors for different values of q are reported in Table 3.

Table 3. The L2- errors for different values of q for Example 4.

q εL2(q)
3
4 4.23 ∗ 10−13

7
8 4.48 ∗ 10−13

8
9 4.51 ∗ 10−13

10
11 4.42 ∗ 10−13

Additionally, the graphs of the exact and approximate solutions for t = 0.2, 0.4, 0.6, 0.8, 1 for
q = 9

10 are given in Figure 2. The dot points are the approximate solutions, and the solid lines are
the exact solutions.
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-1.0
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0.5

1.0

1.5

t=0.2

t=0.4

t=0.6

t=0.8

t=1

Figure 2. The exact and approximate solutions for t = 0.2, 0.4, 0.6, 8, 1.

We also show the graph of exact and approximate solutions at t = 0.5 for different values of q
in Figure 3.



Symmetry 2023, 15, 1263 21 of 22

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

q=0.6

q=0.8

q=1

Figure 3. The exact and approximate solutions at t = 0.5 for different values of q.

6. Conclusions

This article is divided into two main parts. In the first part, we use OMM to numerically
explore the 2D fractional IDE. We derive a numerical approach and present a proof of
these operational matrices. We test the numerical method on some examples to show its
efficiency. Results are shown in Examples 1 and 2. We use various methods to measure the
errors of the approximation, such as absolute and L2 errors. In addition, we explore the
effect of derivative order. Note the following when using these two examples:

1. The absolute error for different values of x and t is on the order of 10−14, which is
very small, as seen in Tables 1 and 2.

2. The L2 error is also on the order of 10−13 and is very small, as shown in Table 3.
3. Approximate and exact solutions for various values of t agree, as shown in Figures 1 and 2.
4. As shown in Figure 3, the approximate solution for the derivative order q converges

to the solution for q = 1.

Part 2 examines the exact solutions for 1D and 2D fractional IDEs. We use the fractional
Laplace transform to generate these exact solutions. All homogeneous cases are considered.
We provide two examples for two purposes. First, we show how the results obtained are
implemented, especially the exact solution for some 1D and 2D IDE classes. We then show
that the exact fractional solution converges to the exact solution of the ordinary derivative
as the order of the fractional derivative approaches one. These results are reported in
Examples 3 and 4. Note that this work uses sequential Caputo derivative. It helps us
fluently implement numerical and analytical approaches. In this paper, we show that our
approach works efficiently for these types of problems. This can be generalized to other
types of fractional IDEs and other scientific and engineering applications.
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