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Abstract: Let G = (V, E) be a simple connected graph with vertex set V and edge set E, respectively.
The term “anti-reciprocal eigenvalue property” refers to a non-singular graph G for which, − 1

λ ∈ σ(G),
whenever λ ∈ σ(G), ∀λ ∈ σ(G). Here, σ(G) is the multiset of all eigenvalues of A(G). Moreover, if
multiplicities of eigenvalues and their negative reciprocals are equal, then that graph is said to have
strong anti-reciprocal eigenvalue properties, and the graph is referred to as a strong anti-reciprocal

graph (or (−SR) graph). In this article, a new family of graphs F(k,j)
n is introduced and the energy

of F(k, k
2 )

5 k ≥ 2 is calculated. Furthermore, with the help of F(k, k
2 )

5 , some families of (−SR) graphs
are constructed.

Keywords: graph energy; anti-reciprocal eigenvalue property; adjacency matrix; spectrum; flabellum
graph

MSC: 05C12; 05C90; 05C15; 05C62

1. Introduction

Spectral graph theory is concerned with the study of the eigenvalues associated with
various matrices for a graph and how the eigenvalues relate to the structural characteristics
of the graph. The spectrum of a graph is related to properties such as connectedness,
diameter, independence number, chromatic number, and regularity. Many scholars have
investigated the spectral characteristics of (adjacency matrices of) graphs; see [1–11]. Let G
be the graph, such that |V(G)| = n and

A(G) = [aij]n×n =

{
1, if i and j are adjacent;
0, otherwise,

be the adjacency matrix of graph G, which is square and symmetric; hence, its eigenvalues
are all real. A singular graph G is a graph for which |A(G)| = 0, otherwise, it is referred to
as non-singular. The characteristic polynomial P(G; λ) of graph G can be obtained from
A(G). The eigenvalues of A(G), or simply the eigenvalues of graph G, are the roots of this
polynomial. The spectrum (or the multiset of all eigenvalues) of graph G throughout the
text is defined as

σ(G) =

(
λ1 λ2 . . . λn
m1 m2 . . . mn

)
,

where λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G), and mi is the multiplicity of each λi for i = 1, 2, . . . , n.
It is well known that graph G is bipartite if and only if its nonzero eigenvalues are symmetric
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around 0. The sum of all absolute eigenvalues of graph G is called the energy of a graph,
denoted by E(G).

Definition 1 ([12]). The anti-reciprocal eigenvalue property (or property (−R)) is said to hold by
graph G if for each λ ∈ σ(G) there exists − 1

λ ∈ σ(G). The multiplicities of the eigenvalues and
their negative reciprocals may or may not be equal for graph G with property (−R); however, if
each eigenvalue and its negative reciprocal have the same multiplicities, graph G is said to satisfy a
strong anti-reciprocal eigenvalue (or property (−SR)).

Definition 2 ([13]). The reciprocal eigenvalue property (or property (R)) is said to hold by graph
G if for each λ ∈ σ(G) there exists 1

λ ∈ σ(G). The multiplicities of the eigenvalues and their
reciprocals may or may not be equal for graph G with property (R); however, if each eigenvalue and
its reciprocal have the same multiplicities, then that graph G is said to satisfy the strong reciprocal
eigenvalue (or property (SR)).

Note that if graph G is a bipartite graph, then properties (−SR) and (SR) are sym-
metric around 0. The adjacency matrix of a simple connected graph is symmetric. This
fact is useful for converting the adjacency matrix into a block matrix. Furthermore, this
block form of the adjacency matrix is useful for computing the characteristic polynomials
of the graph.

Graph G satisfying property (R) (respectively, property (SR)) is referred to as the
reciprocal graph (respectively, strong reciprocal graph), and abbreviated as the (R) graph
(respectively, (SR) graph). Graph G satisfying property (−R) (respectively, property
(−SR)) is referred to as an anti-reciprocal graph (respectively, strong anti-reciprocal graph),
and abbreviated as (−R) graph (respectively, (−SR) graph).

It is well known that graph G is bipartite if and only if, for each eigenvalue λ, there
exits −λ in the spectrum of G. In 1978, the authors investigated property (SR) for non-
singular trees in [14] and [15], respectively, but with different names, i.e., “symmetric
property” and “property C”, respectively. Later, Barik et al. [16] renamed this property as
property (SR) in 2006 and introduced property (R). They proved that properties (R) and
(SR) are equal in the case of nonsingular trees. Researchers investigated these properties
for weighted trees in [17] and a subclass of connected bipartite graphs (with a unique
perfect matching) in [18]. They showed that if we apply appropriate limitations on weight
functions, these two properties are equal; however, in general, these properties are not
the same, see [19]. Unicyclic graphs with property (SR) were studied in [20]. It is worth
noting that the study of reciprocal eigenvalue properties is strongly related to the concepts
of ‘matching’ and ‘corona product’, which are both widely studied disciplines.

Definition 3 ([21]). Consider two simple connected graphs, i.e., G1 and G2 of orders n1 and n2,
respectively. The corona product G1 ◦ G2 of graphs G1 and G2 is a graph constructed with the help
of one copy of graph G1 and n1-copies of G2 and then connecting each vertex of the ith copy of G2
with the ith vertex of G1, where 1 ≤ i ≤ n1.

In 2012, Lagrange [12] introduced the strong anti-reciprocal eigenvalue property for
graphs and investigated this property for zero-divisor graphs of finite commutative rings
with non-zero divisors. In [22], the authors investigated a family of graphs with a unique
perfect matching M, where the diagonal entries of the inverse of the adjacency matrix of
each graph were all zero. Moreover, it was proved that each non-corona graph in this class
did not satisfy the property (−SR), even for a single weight function w ∈W(G).

In 2017, Ahmad et al. investigated a class of weighted graphs(GM) with a unique
perfect matching M [23]. They proved that the weighted graph Gw of a graph G ∈ GM
satisfies property (−SR) for all w ∈W(G) if and only if G is a corona graph.

In [24], the authors raised the question of “whether non-corona graphs with the
property (−SR) exist?” and then answered this question by constructing seven types of
unweighted non-corona graphs that satisfy property (−SR). These constructions were later
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generalized by Barik et al. in [25] for unweighted graphs; in [26], the authors investigated
property (−SR) for the generalized families constructed in [25] with a specific weight
function. In [27], the authors investigated some new families of non-corona graphs with
property (−SR).

The study of graph theory has led to significant advancements in various fields,
ranging from computer science to social networks. However, there is a constant pursuit
to uncover new families of graphs that possess unique properties and offer fresh insights
into the underlying structures of complex networks. In this vein, a novel family of graphs,
called flabellum graphs, was introduced. By investigating and analyzing the properties
of flabellum graphs, such as their connectivity, energy, and degree sequences, the aim is
to contribute to the ever-growing body of knowledge in graph theory. Furthermore, the
construction of several families of (−SR) graphs can be facilitated using the flabellum
graph network. Additionally, by evaluating the energies associated with these graphs, we
are exploring the intricate relationship between their structural attributes and their physical
properties. The following concepts will be used in the next section.

Definition 4. The Dutch windmill graph D(k)
n , k ≥ 2, n ≥ 3, is the graph obtained by taking k

copies of the cycle Cn with a vertex in common.

Lemma 1 ([23]). A polynomial f (t) = ∑2n
j=0 ajtj is said to satisfy property (−SR) if and only if

a2n−j =


aj, if j and n have the same parity,

−aj, otherwise.
j = 0, 1, 2, . . . , 2n.

The following lemmas will be used to prove our main results.

Lemma 2 ([28]). Let A be an n× n matrix and 1 ≤ k < n. Then for any constant c,

det(A +

[
cIk O
O O

]
)

=|A|+ c ∑k
i=1 det(A[i]) + c2(k

2)∑k
i,j=1 det(A[i, j]) + · · ·+ ck(k

k)det(A[1, 2, · · · , k]).

Lemma 3 ([2]). Let A =

[
A11 A12
A21 A22

]
be a block matrix, where A11 and A22 are square

matrices. Then

det(A) =


det(A11)det(A22 − A21 A−1

11 A12), if A11 is invertible,

det(A22)det(A11 − A12 A−1
22 A21), if A22 is invertible.

Lemma 4 ([2]). Let A be a block matrix, i.e., A =

[
A11 A12
A21 A22

]
where A11 and A22 are square

matrices. Let A22 be an invertible square matrix. Then A is invertible if and only if the Schur
complement S of A22 is invertible, i.e., S = A11 − A12 A−1

22 A21 is invertible, and

A−1 =

 S−1 −S−1 A12 A−1
22

−A22 A21S−1 A−1
22 + A−1

22 A21S−1 A12 A−1
22

.

Remark 1 ([27]). Let f1(x) and f2(x) be two polynomials of degrees 2m and 2m− 2k, respectively.
If both polynomials satisfy property (−SR), then the polynomial f1(x)+ cxk f2(x) satisfies property
(−SR) for any constant c.
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2. Main Results

In this section, we introduce certain families of graphs known as flabellum graphs,
flabellum cycle graphs, flabellum complete graphs, and flabellum star graphs. Then with
the help of these new families of graphs, several families of graphs that are non-bipartite
and non-corona are constructed, and with the help of several algebraic techniques, we
prove that the graphs in these families are (−SR) graphs. Moreover, the energy of the

flabellum graph F(k, k
2 )

5 is calculated.

Definition 5. Consider the cycle graph Cn with k ≥ 2 copies, where each copy has a common
vertex known as the central vertex. In j copies of the cycle graph, we add an edge between the central
vertex and each vertex that is not adjacent to it, where 1 ≤ j ≤ k. This results in the flabellum graph
F(k,j)

n , which can be seen in Figure 1. The order and size of the flabellum graph are k(n− 1) + 1
and kn + (n− 3)j, respectively. For n = 3, the flabellum graph F(k,j)

3 is isomorphic to either the

Dutch windmill graph D(k)
3 or the friendship graph.

Figure 1. F(k,j)
n .

Theorem 1. Let F(k, k
2 )

5 be a graph, then

E(F(k, k
2 )

5 ) = (2k + 1)
√

5 + |1 +
√

5 + 12k
2

|+ |1−
√

5 + 12k
2

|.

Proof. Since the adjacency matrix of the graph F(k, k
2 )

5 is symmetric, it can be written in the
block form as follows:

A(F(k, k
2 )

5 ) =


0 1t

2k 1t
k 0t

k
12k I k

2
⊗ A(P4) O2k,k O2k,k

1k Ok,2k Ok,k Ik
0k Ok,2k Ik I k

2
⊗ A(P2)

.

Then
f (F(k, k

2 )
5 ; x) = det

(
xI − A(F(k, k

2 )
5 )

)

= det




x −1t
2k −1t

k 0t
k

−12k I k
2
⊗ (xI4 − A(P4)) O2k,k O2k,k

−1k Ok,2k xIk −Ik
0k Ok,2k −Ik I k

2
⊗ (xI2 − A(P2))


,

by Lemma 3, we obtain
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= det
(

I k
2
⊗ (xI2 − A(P2))

)
det


 x −1t

2k −1t
k

−12k I k
2
⊗ (xI4 − A(P4)) O2k,k

−1k Ok,2k xIk



−

 0t
k

O2k,k
−Ik

 (I k
2
⊗ (xI2 − A(P2))

)−1
 0t

k
O2k,k
−Ik

t 

=
(

f (P2; x)
) k

2
det


 x −1t

2k −1t
k

−12k I k
2
⊗ (xI4 − A(P4)) O2k,k

−1k Ok,2k xIk


−
[

O2k+1,2k+1 O2k+1,k
Ok,2k+1 c1Bk,k

])
,

where c1 = 1
x2−1 , B =


F O O · · · O
O F O · · · O
...

...
...

. . .
...

O O O · · · F


k,k

and F =

[
x 1
1 x

]
.

Then

f (F(k, k
2 )

5 ; x) =
(

f (P2; x)
) k

2
det


 x −1t

2k −1t
k

−12k I k
2
⊗ (xI4 − A(P4)) O2k,k

−1k Ok,2k xIk − c1Bk,k




=
(

x2 − 1
) k

2
det (xIk − c1Bk,k) det

([
x −1t

2k
−12k I k

2
⊗ (xI4 − A(P4))

]

−
[
−1t

k
O2k,k

](
xIk − c1Bk,k

)−1[
−1k Ok,2k

])

=
(

x2 − 1
) k

2
det (xIk − c1Bk,k) det

([
x −1t

2k
−12k I k

2
⊗ (xI4 − A(P4))

]

− c2


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


2k+1,2k+1

, where c2 = k(x−1)
x2−x−1 ,

=
(

x2 − 1
) k

2
det (xIk − c1Bk,k) det

([
x− c2 −1t

2k
−12k I k

2
⊗ (xI4 − A(P4))

])

=
(

x2 − 1
) k

2
(

f (P4; x)
) k

2
det (xIk − c1Bk,k) det (x− c2

−1t
2k

(
I k

2
⊗ (xI4 − A(P4))

)−1
12k

)
=
(

x2 − 1
) k

2
(

x4 − 3x2 + 1
) k

2
(

x4−3x2+1
x2−1

) k
2
(

x− c2 − c3

)
,

where c3 = k(2x+1)
x2−x−1 ,

=
(

x4 − 3x2 + 1
)k( x(x2−x−3k−1))

x2−x−1

)
= x(x2 + x− 1)k(x2 − x− 1)k−1(x2 − x− 3k− 1).

Then

E(F(k, k
2 )

5 ) = 1× |0|+ (k− 1)× | 1+
√

5
2 |+ (k− 1)× | 1−

√
5

2 |+ k× |−1+
√

5
2 |+ k× |−1−

√
5

2 |



Symmetry 2023, 15, 1240 6 of 18

+1× | 1+
√

5+12k
2 |+ 1× | 1−

√
5+12k
2 |

= (2k− 1)
√

5 + | 1+
√

5+12k
2 |+ | 1−

√
5+12k
2 |.

Remark 2. F(k, k
2 )

5 is very close to satisfying property (−SR).

Example 1. The graph F(6,3)
5 shown in Figure 2 is very close to satisfying the property (−SR).

Here, σ(F(6,3)
5 ) = {(0, 1), ( 1±

√
5

2 , 5), (−1±
√

5
2 , 6), ( 1±

√
77

2 , 1)}. Then E(F(6,3)
5 ) = 33.371.

Figure 2. F(6,3)
5 .

We will now define some generalized flabellum graphs, namely the flabellum complete
graph, flabellum cycle graph, and flabellum star graph.

Definition 6. Consider a complete graph Km and m copies of the flabellum graph F(k,j)
n . The

flabellum complete graph KmF(k,j)
n can be obtained by attaching a copy of the flabellum graph F(k,j)

n
to each vertex of the complete graph Km, as shown in Figure 3.

Figure 3. Flabellum complete graph KmF(k,j)
n .

Now, with the help of the flabellum complete graph KmF(k,j)
n , we construct four differ-

ent types of families of (−SR) graphs, namely, KF 1, KF 2, KF 3, and KF 4.
Family KF 1



Symmetry 2023, 15, 1240 7 of 18

Consider the flabellum complete graph KmF(2,1)
5 . The graph Θ1

m = K∗mF(2,1)
5 can be

obtained by adding a pendant edge to each vertex of Km. The family of all such graphs is
denoted by KF 1 and

KF 1 = {Θ1
m : m ∈ Z+}.

In the following theorem, it is established that each graph in the family KF 1 is a
(−SR) graph.

Theorem 2. Let Θ1
m ∈ KF 1, then Θ1

m is a (−SR) graph.

Proof. Let Θ1
m ∈ KF 1, then Θ1

m = K∗mF(2,1)
5 . The adjacency matrix of Θ1

m can be written as:

A(Θ1
m) =

[
A(Km ◦ K1) M⊗U t

Mt ⊗U I2m ⊗ A(P4)

]
,

where

U =

 16
0
0


and

M =

[
Im
Om

]
.

Then
f (Θ1

m; x) = det
(

xI − A(Θ1
m)
)

= det
([

xI2m − A(Km ◦ K1) −M⊗U t

−Mt ⊗U I2m ⊗ (xI4 − A(P4))

])
,

by Lemma 3, we obtain

= det
(

I2m ⊗ (xI4 − A(P4))
)

det
(

xI2m − A(Km ◦ K1)−M⊗U t(I2m ⊗ (xI4 − A(P4)))
−1Mt ⊗ U

)
=
(

f (P4; x)
)2m

det
(
(xI2m − A(Km ◦ K1) +

[
c Im Om
Om Om

])
,

where c = −6x
x2−x−1 . Now, by using Lemma 2

=
(

f (P4; x)
)2m[

det (xI2m − A(Km ◦ K1)) + ( −6x
x2−x−1 )∑m

i=1 det (xI2m − A(Km ◦ K1)[i])

+( −6x
x2−x−1 )

2(m
2 )∑m

i,j=1 det (xI2m−A(Km ◦K1)[i, j])+ . . .+( −6x
x2−x−1 )

m(m
m) det (xI2m−A(Km ◦

K1)[1, 2, . . . , m])
]

= ( f (P4;x))2m

(x2−x−1)m [ f0(x)− 6x2 f1(x) + 62x4 f2(x) + . . . + (−1)m6mx2m fm(x)], where

f0(x) = (x2 − x− 1)m det (xI2m − A(Km ◦ K1)),

and for i = 1, 2, . . . , m

fi(x) =
(x2 − x− 1)m−i

xi

k

∑
t1,t2,...,ti=1
t1≤t2≤...≤ti

(
m
i

)
det(xI2m − A(Km ◦ K1))[t1, t2, . . . , ti].

Here, ( f (P4;x))2m

(x2−x−1)m and f0(x) satisfy property (−SR). Moreover, det(xI2m−A(Km◦K1))[t1,t2,...,ti ]
xi

satisfies property (−SR) for i = 1, 2, . . . , k. Thus, the characteristic polynomial f (Θm; x)
satisfies property (−SR) from Remark 1. Hence, graph Θ1

m is a (−SR) graph.
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Example 2. Let Θ1
4 = K∗4 F(2,1)

5 ∈ KF 1, as shown in Figure 4. Then

σ(Θ1
4) =


−2.9811 −1.6180 −1.3737 −0.6180 −0.335 −0.2061

3 8 1 4 3 1

0.3354 0.6180 0.7279 1.6180 2.9811 4.8518

3 8 1 4 3 1

.

Therefore, graph Θ1
4 = K∗4 F(2,1)

5 is a (−SR) graph.

Figure 4. Θ1
4 = K∗4 F(2,1)

5 .

Using the Laplace expansion, we have the following Lemma.

Lemma 5. Let A be an n× n matrix, then for any constant c,

det

A + c


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


n,n

 = det(A) + cdet((A)[1]).

Here, (A)[1] is the submatrix of A, obtained by deleting the first row and first column.

Family KF 2:

Consider KmF(k, k
2 )

5 , where k is an even integer, then the graph K∗mF(k, k
2 )

5 can be obtained

by adding a pendant to each vertex of the complete graph Km of KmF(k, k
2 )

5 . The graph

Θ2
m = K∗;m−1

m F(k, k
2 )

5 can be obtained by removing m− 1 copies of the flabellum graph from

vertices of K∗mF(k, k
2 )

5 . The family of all such graphs is denoted by KF 2. The following result
shows that each graph in KF 2 is a (−SR) graph.

Theorem 3. Let Θ2
m ∈ KF 2. Then Θ2

m is a (−SR) graph.

Proof. Let Θ2
m ∈ KF 2, then Θ2

m = K∗;m−1
m F(2,1)

5 . The adjacency matrix of Θ2
m can be

written as:
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A(Θ2
m) =


A(Km ◦ K1) E2m,2k E2m,k O2m,k
E t

2m,2k I k
2
⊗ A(P4) O2k,k O2k,k

E t
2m,k Ok,2k Ok,k Ik

Ok,2m Ok,2k Ik I k
2
⊗ A(P2)

,

where
E =

[
e1 e1 · · · e1

]
.

Then
f (Θ2

m;x) = det
(

xI − A(Θ2
m)
)

= det




xI2m − A(Km ◦ K1) −E2m,2k −E2m,k O2m,k
−E t

2m,2k I k
2
⊗ (xI4 − A(P4)) O2k,k O2k,k

−E t
2m,k Ok,2k xIk −Ik

Ok,2m Ok,2k −Ik I k
2
⊗ (xI2 − A(P2))


,

by Lemma 3, we obtain

= det
(

I k
2
⊗ (xI2 − A(P2))

)
det

 xI2m − A(Km ◦ K1) −E2m,2k −E2m,k
−E t

2m,2k I k
2
⊗ (xI4 − A(P4)) O2k,k

−E t
2m,k Ok,2k xIk



−

 O2m,k
O2k,k
−Ik

 (I k
2
⊗ (xI2 − A(P2))

)−1
 O2m,k

O2k,k
−Ik

t 

=
(

f (P2; x)
) k

2
det


 xI2m − A(Km ◦ K1) −E2m,2k −E2m,k

−E t
2m,2k I k

2
⊗ (xI4 − A(P4)) O2k,k

−E t
2m,k Ok,2k xIk


−
[

O2m+2k O2m+2k,k
Ok,2m+2k c Bk,k

])
,

where c = 1
x2−1 , B =


F O O · · · O
O F O · · · O
...

...
...

. . .
...

O O O · · · F


k,k

and F =

[
x 1
1 x

]
.

Then

f (Θ2
m;x) =

(
f (P2; x)

) k
2

det

 xI2m − A(Km ◦ K1) −E2m,2k −E2m,k
−E t

2m,2k I k
2
⊗ (xI4 − A(P4)) O2k,k

−E t
2m,k Ok,2k xIk − cBk,k


=
(

x2 − 1
) k

2
det (xIk − cBk,k) det

([
xI2m − A(Km ◦ K1) −E2m,2k

−E t
2m,2k I k

2
⊗ (xI4 − A(P4))

]

−
[
−E2m,k
O2k,k

](
xIk − cBk,k

)−1
[
−E2m,k
O2k,k

]t
)

=
(

x2 − 1
) k

2
det (xIk − cBk,k) det

([
xI2m − A(Km ◦ K1) −E2m,2k

−E t
2m,2k I k

2
⊗ (xI4 − A(P4))

]

+ c2


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


, where c2 = − k(x−1)

x2−x−1 . LetH =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

,
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=
(

x2 − 1
) k

2
(

x4−3x2+1
x2−1

) k
2

det

([
xI2m − A(Km ◦ K1) + c2H −E2m,2k

−E t
2m,2k I k

2
⊗ (xI4 − A(P4))

])

=
(

x4 − 3x2 + 1
) k

2
(

f (P4; x)
) k

2
det (xI2m − A(Km ◦ K1) + c2 H

−E2m,2k(I k
2
⊗ (xI4 − A(P4)))

−1E t
2m,2k

)
=
(

x4 − 3x2 + 1
)k

det
(

xI2m − A(Km ◦ K1) + c2 H+ c3H
)

, where c3 = − k(2x+1)
x2−x−1 .

Let c = c2 + c3, then

=
(

x4 − 3x2 + 1
)k

det
(

xI2m − A(Km ◦ K1) + c H
)

,
from Lemma 5,

=
(

x4 − 3x2 + 1
)k(

det (xI2m − A(Km ◦ K1)) + c · x · det (xI2(m−1) − A(Km−1 ◦ K1))
)

=
(

x4 − 3x2 + 1
)k(

det (xI2m − A(Km))− 3kx2

x2−x−1 det (xI2(m−1) − A(Km−1))
)

=
(

x4 − 3x2 + 1
)k( (x2+x−1)m−2(x6−(m−1)x5−3kx4−4x4+3(mk−2k+m−1)x3+3kx2+4x2−mx+x−1)

x2−x−1

)
.

=
(

x2 + x − 1
)m+k−2(

x2 − x − 1
)k−1(

x6 − (m − 1)x5 − 3kx4 − 4x4 + 3(mk − 2k + m −

1)x3 + 3kx2 + 4x2 −mx + x− 1
)

.

Hence, f (Θ2
m; x) satisfies property (−SR). Consequently, graph Θ2

m is
a (−SR) graph.

Example 3. Let Θ2
5 = K∗;45 F(4,2)

5 ∈ KF 2, as shown in Figure 5. Then

σ(Θ2
5) =


−3.6465 −1.6180 −0.6180 −0.3652 −0.1925

1 7 3 1 1
0.2742 0.6180 1.6180 2.7375 5.1925

1 7 3 1 1

.

Therefore, graph Θ2
5 = K∗;45 F(4,2)

5 is a (−SR) graph.

Figure 5. Θ2
5 = K∗;45 F(4,2)

5 .

The family of (−SR) graphs KF 2 can be generalized as follows.
Family KF 3:
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Again, consider the flabellum complete graph KmF(k, k
2 )

5 (here, k is an even integer) and

let K∗mF(k, k
2 )

5 be the graph obtained by adding a pendant to each vertex of Km of KmF(k, k
2 )

5 .

The graph Θ3
m = K∗;m−k

m F(k, k
2 )

5 can then be obtained by removing 1 ≤ m− k ≤ m copies of

the flabellum graph from vertices of K∗mF(k, k
2 )

5 . The family of all such graphs is denoted by
KF 3. The following result shows that each graph in KF 3 is a property (−SR) graph.

Theorem 4. Let Θ3
m ∈ KF 3, then Θ3

m is a (−SR) graph.

Proof. Let Θ3
m ∈ KF 3, then Θ3

m = K∗;m−k
m F(2,1)

5 . The adjacency matrix of Θ3
m can be

written as:

A(Θ) =

[
A(Km ◦ K1) M⊗Vt

Mt ⊗V Ik ⊗ A(P4)

]
,

where

V =

 16
0
0

,

and

M =

[
Ij

Ok,j

]
.

Then
f (Θ3

m; x) = det
(

xI − A(Θ3
m)
)

= det
([

xI2m − A(Km ◦ K1) −M⊗Vt

−Mt ⊗V Ik ⊗ (xI4 − A(P4))

])
,

by Lemma 3, we obtain

= det
(

Ik ⊗ (xI4 − A(P4))
)

det
(

xI2m − A(Km ◦ K1)−M⊗Vt(Ik ⊗ (xI4 − A(P4))
−1Mt ⊗ V

)
=
(

f (P4; x)
)k

det
(
(xI2m − A(Km ◦ K1) +

[
c Ij,j Oj,2m−j

O2m−j,j O2m−j,2m−j

])
,

where c = −6x
x2−x−1 . Now, by using Lemma 2

=
(

f (P4; x)
)k[

det (xI2m − A(Km ◦ K1)) + ( −6x
x2−x−1 )∑

j
i=1 det (xI2m − A(Km ◦ K1)[i])

+ ( −6x
x2−x−1 )

2( j
2)∑

j
i,l=1 det (xI2m − A(Km ◦ K1)[i, l]) + . . . + ( −6x

x2−x−1 )
j(j

j) det (xI2m − A(Km ◦

K1)[1, 2, . . . , j])
]

= ( f (P4;x))k

(x2−x−1)j [ f0(x)− 6x2 f1(x) + 62x4 f2(x) + . . . + (−1)j6jx2j f j(x)],
where

f0(x) = (x2 − x− 1)j det (xI2m − A(Km ◦ K1)),

and for i = 1, 2, . . . , j

fi(x) =
(x2 − x− 1)j−i

xi

k

∑
t1,t2,...,ti=1
t1≤t2≤...≤ti

(
j
i

)
det(xI2m − A(Km ◦ K1))[t1, t2, . . . , ti].



Symmetry 2023, 15, 1240 12 of 18

Notice that ( f (P4;x))k

(x2−x−1)j and f0(x) satisfy property (−SR). Moreover,
det(xI2m−A(Km◦K1))[t1,t2,...,ti ]

xi
satisfies property (−SR) for i = 1, 2, . . . , k. Therefore, according

to Remark 1, the polynomial f (Θ3
m; x) satisfies property (−SR). Hence, graph Θ3

m is a
(−SR) graph.

Example 4. Let Θ3
5 = K∗;15 F(4,2)

5 ∈ KF 3, as shown in Figure 6. Then

σ(Θ2
5) =


−6.8176 −1.6180 −0.6180 −0.3177 −0.1255

1 19 15 1 1
0.1466 0.6180 1.6180 3.1469 7.9673

1 19 15 1 1

.

Hence, graph Θ3
5 = K∗;15 F(4,2)

5 is a (−SR) graph.

Figure 6. Θ3
5 = K∗;15 F(4,2)

5 .

The family KF 3 of (−SR) graphs can be generalized as follows.
Family KF 4:

Consider K∗mF(k, k
2 )

5 , which is the graph obtained by adding a pendant to each vertex of

Km of KmF(k, k
2 )

5 . The graph K∗;m−ν
m F(k, k

2 )
5 can then be obtained by removing ν ≤ m copies of

the flabellum graph from vertices of K∗mF(k, k
2 )

5 , where ν is any positive integer. The family of
these graphs is denoted by KF 4. We present the following theorem, which can be proven
using similar steps as in the proofs of previous theorems.

Theorem 5. Let K∗;m−ν
m F(k, k

2 )
5 ∈ KF 4 then K∗;m−ν

m F(k, k
2 )

5 is a (−SR) graph.

Definition 7. Consider a cycle graph Cm and m copies of the flabellum graph F(k,j)
n . The flabellum

cycle graph CmF(k,j)
n can be obtained by attaching a copy of the flabellum graph F(k,j)

n to each vertex
of the cycle graph Cm, as shown in Figure 7.

Now, with the help of the flabellum cycle graph CmF(k,j)
n , we construct different

families of strong anti-reciprocal graphs, namely, CF 1, CF 2, CF 3, and CF 4, which are
defined as follows:
Family CF 1:
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Consider the flabellum cycle graph CmF(2,1)
5 . The graph Γ1

m = C∗mF(2,1)
5 can be obtained

by adding a pendant edge to each vertex of Cm and the family of all such graphs is denoted
by CF 1 and

CF 1 = {Γ1
m : m ∈ Z+}.

Figure 7. Flabellum cycle graph CmF(k,j)
n .

Family CF 2:

Consider CmF(k, k
2 )

5 , where k is an even integer, then the graph C∗mF(k, k
2 )

5 can be ob-

tained by adding a pendant to each vertex of the cycle graph Cm of CmF(k, k
2 )

5 . The graph

Γ2
m = C∗;m−1

m F(k, k
2 )

5 can be obtained by removing m− 1 copies of the flabellum graph from

vertices of C∗mF(k, k
2 )

5 . The family of all such graphs is denoted by CF 2 and

CF 2 = {Γ2
m : m ∈ Z+}.

Family CF 3:

Again, consider the flabellum cycle graph CmF(k, k
2 )

5 (here, k is an even integer), and

let C∗mF(k, k
2 )

5 be the graph obtained by adding a pendant to each vertex of Cm of CmF(k, k
2 )

5 .

The graph Γ3
m = C∗;m−k

m F(k, k
2 )

5 can then be obtained by removing 1 ≤ m− k ≤ m copies of

the flabellum graph from vertices of C∗mF(k, k
2 )

5 . The family of all such graphs is denoted by
CF 3 and

CF 3 = {Γ3
m : m ∈ Z+}.

The proof of the following theorem is similar to the proofs of Theorems 2–4.

Theorem 6. Let ΓG
m ∈ {CF 1 ∪ CF 2 ∪ CF 2} then Γ1

m is a (−SR) graph.
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The family CF 3 can be generalized as follows.
Family CF 4:

Consider C∗mF(k, k
2 )

5 , which is the graph obtained by adding a pendant to each vertex of

Cm of CmF(k, k
2 )

5 . The graph C∗;m−ν
m F(k, k

2 )
5 can then be obtained by removing ν ≤ m copies of

the flabellum graph from vertices of C∗mF(k, k
2 )

5 , where ν is any positive integer. The family
of all such graphs is denoted by CF 4. The following theorem shows that the family CF 4 is
a family of (−SR) graphs.

Theorem 7. Let C∗;m−ν
m F(k, k

2 )
5 ∈ CF 4, then C∗;m−ν

m F(k, k
2 )

5 is a (−SR) graph.

Example 5. Let Γ1
5 = C∗5 F(2,1)

5 ∈ CF 1, as shown in Figure 8a. Then

σ(Γ1
5) =


−3.3820 −2.1196 −1.6180 −0.6180 −0.3542 −0.2818 −0.2360

2 2 11 5 2 2 1

0.2956 0.4717 0.6180 1.6180 2.8225 3.5478 4.2360

2 2 11 5 2 2 1

.

Therefore, graph Γ1
5 = C∗5 F(2,1)

5 is a (−SR) graph.

Example 6. Let Γ2
5 = C∗;45 F(4,2)

5 ∈ CF 2, as shown in Figure 8b. Then

σ(Γ2
5) =


−3.6508 −2.0952 −1.6180 −1.2442 −0.7376 −0.6180 −0.4825 −0.2245

1 1 4 1 1 3 1 1

0.2739 0.4772 0.6180 0.8036 1.3556 1.6180 2.0721 4.4525

1 1 4 1 1 3 1 1

.

Therefore, graph Γ2
5 = C∗;45 F(4,2)

5 is a (−SR) graph.

(a) (b)

Figure 8. (a) Γ1
5 = C∗5 F(2,1)

5 ; (b) Γ2
5 = C∗;45 F(4,2)

5 .

Example 7. Let Γ3
5 = C∗;15 F(4,2)

5 ∈ CF 3, as shown in Figure 9a. Then

σ(Γ3
5) =


−6.7612 −2.0952 −1.6180 −1.3249 −0.7376 −0.6180 −0.4785 −0.1298

1 1 16 1 1 15 1 1

0.1479 0.4772 0.6180 0.7547 1.3556 1.6180 2.0894 7.7024

1 1 16 1 1 15 1 1

.

Hence, this graph Γ3
5 = C∗;15 F(4,2)

5 is a (−SR) graph.
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(a) (b)

Figure 9. (a) Γ3
5 = C∗;15 F(4,2)

5 ; (b) Ω3
5 = S∗;15 F(4,2)

5

Definition 8. Consider a star graph Sm and m copies of the flabellum graph F(k,j)
n . The flabellum

star graph SmF(k,j)
n can be obtained by attaching a copy of the flabellum graph F(k,j)

n to each vertex
of the star graph Sm, as shown in Figure 10.

Figure 10. Flabellum star graph SmF(k,j)
n .

Now, with the help of the flabellum star graph SmF(k,j)
5 , we construct different families

of strong anti-reciprocal graphs in the following definitions.
Family SF 1:

Consider the flabellum star graph SmF(2,1)
5 . The graph Ω1

m = S∗mF(2,1)
5 can be obtained

by adding a pendant edge to each vertex of Sm and the family of all such graphs is denoted
by SF 1 and

SF 1 = {Ω1
m : m ∈ Z+}.

Family SF 2:

Consider SmF(k, k
2 )

5 , where k is an even integer, then the graph S∗mF(k, k
2 )

5 can be ob-

tained by adding a pendant to each vertex of the star graph Sm of SmF(k, k
2 )

5 . The graph
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Ω2
m = S∗;m−1

m F(k, k
2 )

5 can be obtained by removing m− 1 copies of the flabellum graph from

the vertices of S∗mF(k, k
2 )

5 . The family of all such graphs is denoted by SF 2 and

SF 2 = {Ω2
m : m ∈ Z+}.

Family SF 3:

Again, consider the flabellum star graph SmF(k, k
2 )

5 (here, k is an even integer), and let

S∗mF(k, k
2 )

5 be the graph obtained by adding a pendant to each vertex of Sm of SmF(k, k
2 )

5 . The

graph Ω3
m = S∗;m−k

m F(k, k
2 )

5 can then be obtained by removing 1 ≤ m− k ≤ m copies of the

flabellum graph from vertices of S∗mF(k, k
2 )

5 . The family of all such graphs is denoted by
SF 3 and

SF 3 = {Ω3
m : m ∈ Z+}.

The following theorem, which can be proved in a similar way to the proofs of Theorems 2–4,
reveals that the families SF 1, SF 2, and SF 3 are families of (−SR) graphs.

Theorem 8. Let ΩG
m ∈ {SF 1 ∪ SF 2 ∪ SF 3}, then ΩG

m is a (−SR) graph.

Example 8. Let Ω1
5 = S∗5 F(2,1)

5 ∈ SF 1, as shown in Figure 11a. Then

σ(Ω1
5) =


−3.3830 −2.4142 −1.6180 −0.8021 −0.6180 −0.3027 −0.2564

1 4 10 1 5 4 1

0.2955 0.4142 0.6180 1.2466 1.6180 3.3027 3.8992

1 4 10 1 5 4 1

.

Therefore, graph Ω1
5 = S∗5 F(2,1)

5 is a (−SR) graph.

Example 9. Let Ω2
5 = S∗;45 F(4,2)

5 ∈ SF 2, as shown in Figure 11b. Then

σ(Ω2
5) =


−3.5650 −2.2516 −1.6180 −1 −0.6180 −0.4211 −0.2289

1 1 4 3 3 1 1

0.2804 0.4441 0.6180 1 1.6180 2.3746 4.3675

1 1 4 3 3 1 1

.

Therefore, graph Γ2
5 = S∗;45 F(4,2)

5 is a (−SR) graph.

Example 10. Let Ω3
5 = S∗;15 F(4,2)

5 ∈ SF 3 as shown in Figure 9b. Then

σ(Ω3
5) =


−6.6867 −2.3845 −1.6180 −1 −0.6180 −0.4157 −0.1308

1 1 16 3 15 1 1

0.1495 0.4193 0.6180 1 1.6180 2.4050 7.6438

1 1 16 3 15 1 1

.

Therefore, graph Ω3
5 = S∗;15 F(4,2)

5 is a (−SR) graph.
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(a) (b)

Figure 11. (a) Ω1
5 = S∗5 F(2,1)

5 ; (b) Ω2
5 = S∗;45 F(4,2)

5 .

The family of (−SR) graphs SF 3 can be generalized as follows.
Family SF 4:

Consider S∗mF(k, k
2 )

5 , which is the graph obtained by adding a pendant edge to each

vertex of Sm in SmF(k, k
2 )

5 . The graph S∗;m−ν
m F(k, k

2 )
5 can then be obtained by removing ν ≤ m

copies of the flabellum graph from vertices of S∗mF(k, k
2 )

5 , where ν is any positive integer. The
family of all such graphs is denoted by SF 4. We obtain the following theorem, which can
be proved using similar steps as in the proofs of previous theorems.

Theorem 9. Let S∗;m−ν
m F(k, k

2 )
5 ∈ SF 4 then S∗;m−ν

m F(k, k
2 )

5 is a (−SR) graph.

Remark 3. All families can be generalized if we consider any connected graph instead of Km, Cm,
or Sm, and all of these generalized families are families of (−SR) graphs.

3. Conclusions

In spectral graph theory, the reciprocal eigenvalue properties are of great interest.
All corona graphs are (−SR) graphs. The novelty of this research lies in introducing several
families of graphs that satisfy property (−SR). Some new families of graphs, denoted as
the flabellum graph Fk,j

n , flabellum complete graph, flabellum cycle graph, and flabellum
star graph, are introduced. Moreover, with the help of these families, several families of

(−SR) graphs are constructed. Furthermore, the energy of the flabellum graph Fk, k
2

5 is
calculated.
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