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Abstract: The impact of neutrosophy has increased rapidly in many areas of science and technology
in recent years. Furthermore, numerous applications of the neutrosophic theory have become more
usual. We aim to use neutrosophy to enhance Dai-Liao conjugate gradient (CG) iterative method. In
particular, we suggest and explore a new neutrosophic logic system intended to compute the essential
parameter f required in Dai-Liao CG iterations. Theoretical examination and numerical experiments
signify the effectiveness of the introduced method for controlling ¢. By incorporation of the neu-
trosophy in the Dai-Liao conjugate gradient principle, we established novel Dai-Liao CG iterations
for solving large-scale unconstrained optimization problems. Global convergence is proved under
standard assumptions and with the use of the inexact line search. Finally, computational evidence
shows the computational effectiveness of the proposed fuzzy neutrosophic Dai-Liao CG method.

Keywords: neutrosophic logic systems; Dai-Liao conjugate gradient method; backtracking line
search; convergence; unconstrained optimization
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1. Introduction and Background Results

Numerous iterative methods have been developed for solving the large-scale uncon-
strained optimization problem

minimize f(x), x € R", 1)

in which f : R” — R is continuously differentiable function bounded below. Continuing
well-established notation, g = g(xx) = V f(xk) stands for the gradient vector of f at the
actual iterative point xx, and further y;_; = g — gr_1 and sy_1 = x; — x_1. Utilizing the
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di ye1 = —tgisg_1, t >0, ©)
Dai and Liao in [1] suggested the conjugate gradient (CG) iterations
Xe+1 = X + agdy, ®)
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in which xy is the last calculated iteration, x; 1 is the new iterative point, ay is a positive
step size parameter defined as the output of a proper inexact line search, and dy is a descent
direction. The search directions {d, k > 0} are generated by the recurrent rule

— k=0
d — gOI 7 4
= gt PR, k> 1, @
where ,B]kDL is the CG coefficient that describes the type of CG method according to the
general rule

DL _ gEkal ggsk—l
kK — 3T —t T ’ (5)
di (Y1 di Vi1

wherein t > 0is an appropriate scalar. The Dai-Liao (DL) method guarantees global conver-
gence for uniformly convex objective functions. These results have attracted considerable
attention, leading to the creation of several methods based on various patterns for defining
Bx- Most of these methods are developed by modifying the conjugate gradient parameter
,BIkDL [2-11]. For more details, see the survey on the DL family of nonlinear CG methods

in [12]. One of rules for defining By is denoted as ﬁ}:dHSDL and defined in [7] by

MHSDL __ 8zy/k—\1 ngk_l
k—1Yk-1 di 1Yk

[1gkll
lIgk—1l

Due to the large influence of the quantity ¢ on the numerical results generated by the
DL class of CG methods [13], one of the most common issues is the determination of an
appropriate value t. We can distinguish two research directions based on the previous
results in determining proper values of t in the DL-established CG iterations. The first line
of research consists of a group of DL methods that aim to find a suitable constant value for
t during iterations [1,2,6-8], while the second line consists of a group of DL methods that
propose a suitable control in recalculating t in each iteration. In this research, we prioritize
the second research stream: find values of ¢ that change appropriately across iterations. The

such that yy_; =g; — gr_1 and f > Ois as in (5).

quantity ¢ determined in the kth iterative step will be denoted by t,(cl), where i is a variant of
the algorithm for defining .

Some of the most important adaptive choices for the DL parameter t; will be presented
in the rest of this section. Hager and Zhang in [14,15] proposed the CG-DESCENT method,

which is classified into the group of the DL CG methods (5) defined by t = t,((l) and
2
1 _
t}({)ZZH%’k l” @)
Yi—15k-1

Dai and Kou in [16] proposed the DK method, which is based on the CG coefficient
DK of the form

T
pPK = M M+ lyk-1l? ~ Yio18k-1 8l sk_1 .
Vi 1dk1 Viisi—1 lIse-1ll? ) dl ye

In the equality (8), the parameter 7} is defined utilizing the self-scaling memoryless BEGS

method. It is also obvious from (8) that the DK method is involved in the DL CG class of

methods based on the particular value t = t,(f), which is defined by
T

lye-al®  Yr-1Sk-1

Viogsk1 skl

1 ©)
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Babaie-Kafaki and Ghanbari in [17] gave the subsequent two rules for computing ¢
in (5):

T
s _
(&) = Sha¥e lyk—1ll (10)
Ise-all>  llsk—all
e -1
(@) _ [1¥k—1
t, = . (11)
£ skl
Andrei in [18] originated a new DL class, denoted DLE, where t = t,((5> is defined by
T
s
t(S) k—1Yk—1 (12)

Ise—1l>
A special place in the DL iterations is occupied by the DL method, which is defined by
2
6 k—
(o = HTy 1] (13)
Sk_1¥k— 1
where v > % is a constant that is defined according to the sufficient descent condition

gt di<—clgl® Vk=>0, (14)

such that ¢ > 0 is a quantity independent of the cost function convexity and the line search
rule (for more details, see [19]).
Lotfi and Hosseini in [20] suggested the subsequent rule

i) = max{#7", £}, (15)
where :
o (Ul ) saset B g I Ik P
(7 ) — _15k—
tk = ’ (16)
gisk—1+ Tk1; il g1 7 k-1 1I?
Si_1Yk-1 -
I = C+ maxq ————0-,0 ¢ [|ge_1ll ", (17)
lIsk—1ll

and C, r are positive constants.
Ivanov et al. in [21] proposed a variant of the Dai-Liao CG method (6), known as the

Effective Dai-Liao (EDL) CG method, where t = tl(cg) is determined as

2
t,((g) _ Il gkl (18)
g
mox {1,471} + (max{0, 8T 1) 130

Experiments conducted in [21] confirm that EDL iterations outperform many existing CG
variants.

Our motivation is to explore principles of neutrosophy to determine the crucial pa-
rameter f in the Dai-Liao CG method. Numerical experience clearly shows improvements
in the behavior of the DL CG method based on the fuzzy parameter ¢ established in this
way. The justification for using the fuzzy values t; defined on the basis of neutrosophic
logic lies in the fact that there is neither a best value for that parameter nor a clear rule for
its determination. Our underlying motivation is based on the fact that the neutrosophic
logic system is an effective tool to use the behavior of the goal function through iterations
and thus avoid divergence or slow convergence. Effective tracking of changes in the objec-
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tive function value is enabled by properly defined if-then rules and suitable membership
functions.

The sections of the paper are arranged as follows. Introduction, basic details of
motivation, and a brief review of obtained results are presented in Section 1. Section 2
briefly describes the most important related results about neutrosophy, DL methods, and
motivation. A neutrosophic-based control for defining appropriate changeable values t;
is proposed in Section 3. Moreover, we present details of the FDL method in the same
section. The global convergence behavior of the FDL method is examined in Section 4. A
numerical comparison of the FDL method with the main standard DL methods is presented
in Section 5, and a comparison with some known variations of the DL class of methods is
also provided. Final conclusions are presented in the concluding section.

2. Related Results about Neutrosophy and Motivation

A fuzzy set theory utilizes a membership function (MF) Ty (A) € [0,1],A € A in the
universe A, which defines the degree of membership of A in ¥ C A [22]. An intuitionistic
fuzzy set (IFS) ¥ is based on membership and non-membership functions Ty (A), Fy(A) €
[0,1], A € A [23], which satisfy Ty(A),Fy(A) : A — [0,1] and are jointly correlated by
0 < Ty(A) + Fg(A) < 1. The IFS theory was extended in [24,25] by the neutrosophic
theory. The key innovation in Neutrosophy is based on the indeterminacy I(A). As a
consequence of such an approach, a phenomenon in a neutrosophic set is determined by
three individualistic MFs [24,25]: the truth-MF T(A), the indeterminacy-MF I(A), and the
falsity-MF F(A). Because of independence between the three MFs, the neutrosophic logic
is established on the symmetry involved in the ordered triple (T,1, F) and the inequality
0 <T+I+4F < 3. Clearly, T is the symmetric pole to its opposite pole F relative to I, which
represents the center of symmetry between T and F [26]. The same observation is valid
for refined neutrosophic sets that assume two refined indeterminacies I; and I, between
extremes T and F [27]. The MFs of a neutrosophic set ¥ satisfy Ty (A), Iy (A), Fg(A) :
A — [0,1], which is based on their independence and implies 0 < Ty (A) + Iy (A) +
F¢(A) < 3 and enables a symmetry between them. In [28], the authors originated a
neutrosophic-based multiple criteria decision making procedure which is established on
the introduced symmetry estimate. A complete overview of neutrosophic theory and
applications is available in the exhaustive collections of papers [29,30]. A useful application
of neutrosophic logic in natural language processing was discussed in [27].

The advantages of the NL approach over the FL and IFL in improving the gradient
descent method are discussed in [31].

It is obvious that there is no single solution for determining the parameter t; in DL
iterations (5). All previous solutions are based on specific rules. Moreover, it is clear that
there are infinite possibilities for new rules in defining t;. Our intention is to improve
the behavior of the DL class for solving unconstrained nonlinear optimization problems
with the support of an appropriate neutrosophic logic system. The indeterminacy and
uncertainty in predicting an optimal value of {; justify the utilization of fuzzy quantities
as well as neutrosophic principles in its determination. A specific convenience in the
application of neutrosophy to the determination of the DL parameter arises from the
restriction 0 < t; < 1. Moreover, the neutrosophic logic system is a suitable tool for using
the behavior of the objective function in determining required parameters with the help of
appropriately defined if-then rules and suitable membership functions.

Application of fuzzy logic controllers in defining some parameters in the development
of some recurrent neural network dynamical systems has been a popular topic in recent
years [32-36].

We expect that the symmetry principles involved in the basis of neutrosophic logic
(see [27,31] for more details) and tracking the prior values of the objective function will
lead to better numerical results. Such expectations were confirmed by the results obtained
through a series of numerical experiments.
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Neutrosophic logic was applied in [31] in regulating proper step sizes for a class of
accelerated gradient descent optimization methods. The approach in [31] assumes an
additional fuzzy parameter that stabilizes the behavior of an important class of gradient
descent family. Motivated by that approach, in this research, we apply neutrosophy to
enhance the performances of DL methods. Based on the review and analysis of the class of
DL methods, we propose a new method for determining t;. The proposed method defines
t as the output generated by an appropriate neutrosophic logic controller (NLC). Our idea
is to replace the classical parameter f in (5) by an adaptive neutrosophic logic parameter
vk, determined as the output of the NLC. Since 0 < #; < 1, we decided to define t; as the
value of vy, without additional parameters.

The principal results obtained in this paper are presented as follows.

(I)  We examine the application of NL in determining the value ¢ in the Dai-Liao CG
method (5).

(2) A theoretical analysis is conducted to confirm the global convergence of the proposed
method.

(3) A numerical comparison between the proposed FDL algorithm and other known DL
algorithms is provided.

3. Fuzzy Neutrosophic Dai-Liao Conjugate Gradient Method

The fuzzy neutrosophic Dai-Liao CG method is initially conceived as a modification
of the Dai-Liao CG method (3), where the search directions {d;} are calculated by the
recurrence rule

- k=0
d— 80, ’ 19
¢ { —g T B A, k21, 49

where the CG coefficient BiPL is defined by
T T

8 Yik-1 8k Sk—1

IISDL = di — Vk di ’ (20)
k—1Yk-1 k—1Yk—1

such that v is a proper fuzzy neutrosophic parameter. Our intention is to define v as a
function vg := v (Ag) of Ay := f(xx) — f(Xkr1). More precisely, v, (Ay) is defined subject to
the following constraint

0< y(Ay) < 1. e

It is know that v (Ag) = 0 reduces (2) into
df ye1 =0. (22)

Hence, Equation (22) can be considered as a reflection of the conjugacy condition, which, in
conjunction with (4), determines the HS parameter [37]

HS g}{}’k—l 23
‘Bk dz,l}’kfl )
Alternatively, for vx(Ax) = 1, Equation (2) is considered a conjugacy condition that
implicitly satisfies the quasi-Newton characteristics. For more details on these cases,
see [1,12].

The idea for defining a new parameter ¢, in the Dai-Liao CG method (5) comes from
the neutrosophic logic. According to this decision, we intend to define t; := vy (Ay) with
values inside the interval [0, 1] according to neutrosophic principles.

The generic layout of the fuzzy neutrosophic Dai-Liao CG method is given in the
diagram in Figure 1.

The input of the NLC presented in Figure 1 is Ay := f(xx) — f(x¢.1) and the output
is the desired step size v,. This means that our basic idea is to define v4 based on two
consecutive values of the objective function f. On the other hand, the backtracking line
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search is responsible for appropriate step lengths aj in (3), and then the descent direction
dy is defined by (19). Using vy, it is possible to compute BEPL in (20). Finally, (3) generates

a new iterative point xj 1.
( Input: f, Xp J

v
Ay frio 9w di, X |

Fuzzy neutrosophic Dai-Liao (FDL) >
Vi conjugate gradient method a

NLC Backtracking line search

v
( Output: f,x44)

Figure 1. The global structure of the fuzzy neutrosophic Dai-Liao CG method.

To develop the FDL method, it is necessary to plan three global steps: neutrosophica-
tion, neutrosophic inference engine, and de-neutrosophication (score function).

(1) Neutrosophication maps the input Ay := f(xx) — f(X¢,1) into neutrosophic ordered
triplets (T(Ax),1(Ax), F(Ag)). The MFs are defined to improve the CG iterative rule by
exploiting numerical experience. The sigmoid function with the slope defined by ¢ at
the crossover point A = ¢, is a proper choice for T:

T(A) =1/ (1+e 5r(87)), (24)
A proper choice for F is the following sigmoid function:
F(A) = 1/(1 4 1(A62)), (25)

The Gaussian function with the standard deviation ¢1 and the mean ¢, defines the

indeterminacy I:
_ (a—g)?

I(A)=e 21 . (26)

Then, the neutrosophication of A € R is defined as the transition A — (T(A),1(A),E(A)),
where the MFs are determined in (24)—(26).

(2) Neutrosophic inference between an input fuzzy set J and an output fuzzy set is based
on the subsequent “IF-THEN" regulations:

Ri:IfT=Sp = O={T, I F}
Ro:IfJ =Sy = O={T, 1, F}.

Fuzzy sets Sp and Sy point, respectively, to positive or negative errors. Applying
the unification ® = R; U R, we define O; = TJo R;, i = 1,2, where o denotes the
fuzzy transformation. In addition, for a fuzzy triple { = {T(A¢),I(Ax), F(Ag)}, itis
required x50.%() = Kgow, V k30w, = sup(ky Axp,), i = 1,2, where A and \/ denote
the (min, max, max) and (max, min, min) operator, respectively. In this research, the
centroid defuzzification method is utilized to generate a vector of crisp outputs {* € R3

as follows: e fD I Kk3op(2)d
B fg Kﬁc%(g)dg '
(3) De-neutrosophication is based on the transformation (T(Ag),I(Ax), F(Ar)) — v, € R,
resulting in a crisp value vy, proposed as

vp =2 — (T(Ag) +1(Ax) + F(Ag)). (27)
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The diagram in Figure 2 presents the NLC based on the neutrosophic control.

IF-THEN
Rules

:

Neutrosophic

Inference > | }—b

Engine

( . ) Conditions_ I
Input: A > Actions Output: v

Neutrosophication
De-Neutrosophication

Figure 2. The NLC design based on the neutrosophy.

The settings in the NLC employed in numerical testing are arranged in Table 1.

Table 1. Recommended parameters in NLC.

Set Membership Function 61 G2 Weight
Sigmoid function (24) 1 3 1

Input Sigmoid function (25) 1 1
Gaussian function (26) 120 0 1

Output Score function (27) - - 1

Our imperative requirement is 0 < v (Ag) < 1, requested in (21). The fulfillment of
those conditions is verified in Lemma 1.

Lemma 1. The inequality (21) holds for the given choice of the score function (27) and the parame-
ters given in Table 1.

Proof. To prove (21), we need to replace the MFs (24)—(26) in (27). After applying the
parameters from Table 1, we obtain

2
A

T(Ay) =1/ (1 + e*(A*B’)), F(Ay) =1/ (1 + eA*3), I(Ay) = e 2122,

Elementary calculation provides

A2

Ve(Ax) = 2 — (T(Ag) +1(Ay) + F(Ap)) = 1 — e~ 20, (28)

A careful analysis of the function (28) inside the interval Ay € (—oo,400) discovers
min v (Ag) = 0 and max v (Ag) = 1, which proves the inequality (21). [

Graphs of T(Ag),I(Ag), F(Ax) are displayed in Figure 3a. The fulfilment of the require-
ments (21) in the NLC output vy generated throughout the described de-neutrosophication
is illustrated in Figure 3b.

Remark 1. The objective function decreases with the flow of iterations and tends to the minimal
value, which means limy_,, Ay = 0, i.e., limy_,o, vk (Ay) = 0. Such behavior leads to vy — 0 as
the minimum of f approaches, so the impact of the proposed neutrosophic strategy decreases and
disappears, which agrees with our goal.

Remark 2. Obviously, larger values of Ay lead to increasing values vi(Ay) approaching 1, which
will be denoted as v (Ay) 1. In addition, based on the limit A, — 0, we anticipate smaller values
vk (Ag) approaching 0, i.e., vi(Ar) \ 0, in final iterations. As a result, vi(Ay) is suitable as an
adjustable regulator for the quantity t in the Dai-Liao CG method.
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Ak Ak
(a) MFs in Neutrosophication. (b) Graph of De-neutrosophication.

Figure 3. MFs of Neutrosophication (24)-(26) and de-neutrosophication (27) guided by the quantities
in Table 1.

The backtracking line search used in [38] begins at « =1 and generates further step
sizes, which ensure a decrease in the goal function in each iteration. Algorithm 1, restated
from [39], is used to define the principal step size aj in (3).

Algorithm 1 The backtracking line search.

Require: Objective function f(x), foregoing point X, the search direction dy, a real positive
constants 0 < ¢ < 1,and 0 < w < 0.5.
1. £=1.
2: While f(x; + ¢dy) > f(xg) + wlgfdy, do £ := (g.
3: Output: ag = 4.

Algorithm 2 of the FDL method is described as follows:

Algorithm 2 Fuzzy neutrosophic Dai-Liao (FDL) conjugate gradient method.

Require: A starting point xg and 0 < €, < 1.
1: Assignk = 0and dy = —go.

2. If
Hng <e and |f(xk+1) _f(xk)l <5,
T+ [f ()]

STOP;

else go to Step 3.
3: (Backtracking line search) Regulate a € (0, 1] utilizing Algorithm 1.
4: Calculate xg; 1 =x; + apdg.
5. Calculate gx 11, yk=8k+1 — 8k Sk =Xk+1 — Xk-
6: Calculate A := fr — fir1.
7. Calculate T(Ay), I(Ax), and F(Ay) as in (24)—(26).
8: Calculate vy := v (Ag) using (27).
9: Calculate ,B}:E% by (20).

10: Generate dy1=—gr+1 + ,8}:211“ d;.
11: Setk :=k+1, and go to Step 2.

4. Convergence Examination

The subsequent assumptions are necessary during the theoretical examination of FDL
iterations.
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Assumption 1. (1) The level set U = {x € R"| f(x) < f(xo)} of the iterative process (3) is
bounded.

(2) The objective f is continuously differentiable in a neighborhood P of U with the Lipschitz
continuous gradient g. Such supposition initiates the existence of a constant L > 0 which fulfills
the inequality

Ig(w) — g(¥)]| < LIu—v], ¥uveP. 29)

Assumption 1 provides the existence of quantities Y and -y that fulfil

Jlu—v|| <Y, VuveP (30)
and

lg(w)|| <7, YVueP. (31)
If Assumption 1 holds, given the uniform convexity of f, there exists 6 > 0, satisfying
(5(w) —8(v)) (u—v) 2 0llu—v[* Vuved, (32)

or, equivalently,

6

fw) = fV)+3W T (u=v)+ Slu—v|? Yuved (33)

From (32) and (33), it follows
st 1Yk—1 > Olsi_1] (34)
and o
FO1) = F(xe) = —g(x) sk + §H5k71”2' (35)
By (29) and (34), one concludes
Bllsk—11* < sg_yyk-1 < Llsg-1]%, (36)

and, further, 6 < L.
The inequality (36) implies

St_1Yk—1 = &k_1d}_1yx_1 > 0. (37)
Taking into account ax_1 > 0 and the last inequality, we conclude
di_1yx-1> 0. (38)

Lemma 2 ([40,41]). Let the constraints in Assumption 1 hold and the points {xy } be produced by
the iterations (3) and (4). Then, the following inequality is satisfied:

yo el (39)
0 lldll

Lemma 3. Observe the suggested fuzzy neutrosophic Dai—Liao CG method defined by (3), (19),
(20). If the search procedure enables (38) for all k > 0, it follows

grdi < —c|lgl|* (40)
for some, ¢ > 0.

Proof. In the initial stage, it follows gl dg=—||go||>. Using ¢ = 1, it can be concluded that
(40) is satisfied in the initial stage k = 0. Assume (40) for some k > 1. Applying the inner
product between the left- and right-hand sides of (19) and gz, it is concluded
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gide=—|lgll> + A" gr di1

T T
Bk Yk—-1 81 Sk—1
—||gk||2+< b — vk )g{dk—l

d]FE,1Yk71 d]FE,1Yk71
T T
8 Yk-1 8 Sk—1
B SO L @)
k—1Yk— k—1Yk—
T T
8 Yk-1 T X—18) di_q T
=—llgkll* + g dx1 — vk—7 ———gi d 1
dz_l}’k—l dg_ﬂ’k—l
T T 2
g Yk-1 T wp—1(grdi—1)
= —llgill®* + F———gidi1 — G
dl_ yia dl_ yi1

Using (21) in conjunction with (38) and a;_1 > 0, we conclude

, a1 (gt de—1)?

> 0. (42)
dE,1Yk71

Now, from (41) and (42), it follows

gEy:H

T
T 8cdk-1
dg_l Yik-1

grdi<—|lgel® +

(43)
_ —|Igkll*(df_yk-1)* + (8F yi—1) (&F dk—1) (d}_1yk—1)

(af_yk-1)?
Applying the inequality PTQ < 1(||P||? + ||Q||?) to the equality (43) with P =
%(d{flyk,l)gk and Q = ﬁ(ggdk,l)yk,l, it is obtained

~IlgelP@f yye1)?+ 3 (115l yye el + I V2(gldi1)ye 1 l?)
(a]_ yx—1)?
gl @ v )? + 3 (3T ye)?Igel? +2(8Tde 1) lyi 1 I?)
B (df_1yk-1)?
gkl v )+ 3Ty 1) el + (8T 1) lyxa ]2
a (dz_l}’k—l)z
(g7 di 1)y
(dg_1Yk—1)2
a2 (gTdi 1) ?llye
(tk—1d]_1yk-1)?
a2 el iy | e I )
(SE_1Yk—1)2

Nl l|? |11 1 lyx—1 12

grdi <

1
=—lgel® + ZHng2 +

1
<—lgxll* + 7 llgel® +

1
<—llgxll* + 3 llgel® +

1
<~ llgxll? + 1”ng2 +

02([sk—11*
< lgell? + %llgklf N ||gk||2|fl:1|<|;ﬂj”Z’k—1H2
< —llgxll* + }I||gk|\2 + %
< el + 7l + W

2 1 2 L2 2
=—|gll +1”ng +§|ngll

1 I? 2 3 IL? 2
—(1- - g et == (5 - 5= ) Il

The requirement (40) is satisfied for c = (% — %) in (44) and an arbitrary k > 0. O
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Theorem 1 confirms the global convergence of the FDL flow.

Theorem 1. Let the constraints in Assumption 1 be valid and f be uniformly convex. Under these
conditions, iterations {x; } generated by (3), (19), and (20) fulfill the limit relation

liminf ||gk|| =0. (45)
k—o00
Proof. Suppose the opposite. Since (45) is not valid, we conclude the existence of c; > 0,

satisfyin
e llgkll > c1, forall k. (46)

Squaring both sides of (19), one derives

ldill® = llgell® — 28 g di—1 + (BL7H)? [ de—a 12 (47)

Taking into account (20), we obtain

T T
8 Yik-1 81 Sk—1
zﬁl;Dngdk_lzz( TS TR )gzdk_l

dk_1Yk—1 dg_1Yk—1
T T
8kYk-1 7T X—18) s P T
=2 v —8dk1—Vk—r 8 dkl) (48)
(dzl}’kl d}_iyi
_ > ( - eldi 1 — e w1 (glde_1)? ) .
dLlkal dE,lykfl
Now, from (42), it follows
T
8k Yk-1 Kl Yi—
~2pPgla 1 <2 B gra, ) <ol8 el g,
f1YVk-1 ‘dkilyk,l‘
_ 2“k—1Hgk”2”Yk—l [l il
ap_1d]_ yr_1
_s gkl llyx—1lllIs—1ll (49)
SE,1Yk71
<9 |k 1* LlIsk—1 |1l
- 0|[sk—112
2L
= 2 gl
Now, an application of (20) initiates
FDL __ gEkal gESkfl . g;{kal - ng{SH
Pe =7 ~ kT = T
dk_1Yk—1 dk_1Yk—1 dk_1Yk—1
g{)’kq - nggskq _ \gEqu - ngESk71|
dl_iyi a_1d}_ yr_1
o |8EYk—1 - nggsk—1|
= Qk—1 T
Sk_1Yk-1
< s |8k Yk-1 — Vk8pSk—1| - |8k (Vk—1 — vksk—1)|
- 0|[sk—1112 T a4 [ldiq]? (50)

< lgill Uyl + vellse-11)
- Oog—1][di—1]12

< Nkl (Llse—all +ve)llse—1ll) _ [lgll (L + vie) [sk—1ll

- Ot [|dje_1 ||? Oovg—1[|di—1]?
_ gl (L + viag—1[|di—1 |
Oor—1lldx—1 ]2

(L + vi)llgell
0l|di_1||
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Further, (21) and (50) lead to

FDL (L+1)| gkl
P = glay | G

Using (49) and (51) in (47), we obtain
(L+1)gll?
02| di—1?

2L L+1)% gl
= el + 2 g + LIl

2
=1+ 5+ EE g 52

2L
Idel® < llgill® + =5 llll” + e ?

6 2
6+2L (L+1)? )
(22 + S5 s
_(@+20L)0+ (L+1)2, 5
= 02 I gll=-

Dividing both sides of (52) by ||g||* and utilizing (46), it can be decided

Igll* ~ 62 c’
gl 0 o
g2 = (6 +2L)0+ (L+1)%

ldil® _ (0+2L)0+ (L+1)* 1

(53)

The inequalities in (53) imply

i k||

4 62 . 2

E 01200+ (L+1)2 G4

Therefore, ||gk|| > c1 causes a contradiction with Lemma 2. [

5. Numerical Results

In current section, the numerical results obtained by the FDL method are analyzed
and compared with the numerical results generated by the EDL [21] and DL [1] methods.

All the algorithms were implemented in Matlab R2017a and executed on a 64-bit
Lenovo laptop (Intel Core i3 2.0 GHz, RAM 8 GB) with the Windows 10 operating system.
The implementation of the FDL method is based on Algorithm 2, while the implementation
of EDL and DL is based on algorithms given in [21] and [1], respectively.

The numerical testing is performed on 50 test functions collected in [42,43], with
dimensions in the range [100,20000]. All three tested methods start from the same initial
point xq for each test example. Each case is evaluated 10 times with progressively increased
dimensions n = 10%, 5 x 10%,10%,3 x 103, x10%,7 x 10,8 x 10%, 10%, 1.5 x 10*,and 2 x 10*.

The uniform terminating criteria for the observed DL, EDL, and FDL algorithms are

Lf (k1) = £ ()| 106 §— 10-16
T S0 €=107%0=107%,

We will evaluate the efficiency of the FDL method and compare it with the EDL and
DL methods under the backtracking search that uses the values w = 0.0001 and ¢ = 0.8.

Summary numerical results for DL, FDL, and EDL methods, performed on 50 test
functions, are shown in Table 2, where “Test function’, ‘Nitr’, ‘Nfe’, and “Tcpu’ represent
the name of the tested function, total number of iterative steps, total number of function
evaluations, and the running time, respectively. The best results between the DL, FDL, and
EDL methods in Table 2 are marked by bold text in shaded cells.

gkl <€ and
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Table 2. Summary of numerical results on unconstrained problems of DL, FDL, and EDL methods
for the Nitr, Nfe, and Tcpu.

DL FDL EDL

Test Function

Nitr/Nfe/Tcpu Nitr/Nfe/Tcpu Nitr/Nfe/Tcpu
Extended Penalty 1905/77,578 /32.438 1610/62,534/24.266 2304/82,602/39.344
Perturbed Quadratic 14,555/60,6750/379.359 10,800/440213/206.5 10,012/408,474/248.5
Raydan 1 4337/114,595/98.984 5497/122,843/76.813 4194/109,164/96.938
Raydan 2 1427/2864/3.188 67/144/0.281 2,572,540/5,145,090/894.453
Diagonal 1 5809/223,750/245.578 5488/212,491/227.781 4673/178,295/219.109
Diagonal 3 5247/196,745/423.766 4531/168,162/307.594 4596/171636/366.203
Hager 1742/31,516/103.672 1242/22,799/47.063 1940/33,206/98.766
Generalized Tridiagonal 1 2058/32,313/49.5 2160/32,033/27.5 2161/33285/44.703
Extended Tridiagonal 1 310/2932/8.391 182/2501/6.297 308/4129/12.766
Extended TET 1140/9840/11.031 619/5808/5.484 749 /6362 /5.969
Diagonal 5 1394/2798/6.938 60/130/0.609 3,053,907/6,107,824/3124.875
Extended Himmelblau 50/2431/1.016 51/2602/0.813 50/2413/0.938
Perturbed quadratic diagonal 1837/69,156/18.453 1261/36,785/13.875 2157/86,977 /34.797
Quadratic QF1 13,895/526,995/187.313 21,989/846,402/376.156 10,199/379,554/122.844
Extended quadratic penalty QP1 1080/17,440/9.922 1524/23,840/8.25 1157/18043/9.109
Extended quadratic penalty QP2 218/9479/11.047 112/5513/4.953 218/9194/8.906
Quadratic QF2 19,211/847,031/348.781 18,861/816,310/225.891 15,555/689,736/250.891
Extended quadratic exponential EP1 1254/3443/3.172 56/404/0.516 21,431/43,829/7.531
Extended Tridiagonal 2 22,468/998,473/549.484 3668/114,169/87.438 10989/510713/93.609
TRIDIA (CUTE) 33,278/1,647,913/967.234 40,156/1,977,068 /950.547 29,133/1,428,866/675.422
ARWHEAD (CUTE) 1624/81,625/44.875 1529/72,379/31.594 1219/57140/28.672
Almost Perturbed Quadratic 14,904/621,925/259.797 19,675/829,784 /357.359 13,201/543,372/188.047
LIARWHD (CUTE) 30/2705/1.281 30/2732/1.25 30/2739/1.438
POWER (CUTE) 532,442/44,419,504/16,742.672 580790/48609979/17435.609 629342/52,431,424/23,630.781
ENGVALI (CUTE) 2489/33,103/13.781 2400/32,299/10.719 1975/27,260/12.922
INDEF (CUTE) 21/1924/2.125 26/2238/2.5 30/2610/4.266
Diagonal 6 1583/3197/4.531 74/185/0.359 7,052,401/14105032/5037.219
DIXON3DQ (CUTE) 320,921/1775846,/1083.281 229,757/1,368,033/727.172 257,451/1,517,252/1045.328
COSINE (CUTE) 20/1600/1.891 20/1697/1.891 20/1700/2
BIGGSB1 (CUTE) 249,919/1,400,798 /832.375 259,475/1,549,293/810.766 236,612/1,389,720/945.672
Generalized Quartic 866/11,273/3.984 1099/8951/4.063 959/10,662/3.125
Diagonal 7 1453 /4564 /6.875 68/162/0.469 469,477 /940,686 /140.172
Diagonal 8 1371/3962/5.359 67/199/0.422 594,522 /1,193,760/195.094
Full Hessian FH3 2237/6202/7.125 52/513/0.688 767,988/1,537,759/188.469
Diagonal 9 3312/138,545/225.719 5344/217,150/224.906 4520/189,307 /260.453
HIMMELH (CUTE) 20/1690/4.797 20/1758/4.531 20/1760/4.891
FLETCHCR (CUTE) 303,212/10,189,775/5073.688  300,227/10011849/4704.125 289,670/9,702,961/4411.453
Extended BD1 (Block Diagonal) 1597/16,783/7.625 1227/15,639/5.875 1200/12,605/6.625
Extended Maratos 72/3366/1.188 50/2069/0.719 40/1975/0.75
Extended Cliff 234/2992/2.078 217/6000/4.891 950/13,187/6.188
Extended Hiebert 70/7215/1.938 70/7220/1.828 70/7228/1.859
NONDIA (CUTE) 33/3066/1.375 30/2829/1.266 32/3031/1.625
NONDQUAR (CUTE) 58/4652/18.047 45/3666/17.219 86/4989/19.016
DQDRTIC (CUTE) 3456/87,105/26.453 2327/59,047/16.406 3637/92315/34.953
Extended Freudenstein and Roth 1376/46,597/10.734 3390/111,830/28.516 2018/66,654/16.172
Generalized Rosenbrock 282,948/8,410,218/4125.516  280,440/8,335,396,/4088.547  281,792/8,373,946/4055.172
Extended White and Holst 76/5794/9.219 50/3171/7.281 59/4022/11.563
Extended Beale 118/6791/14.047 72/3118/5.906 181/4748/6.75
EG2 (CUTE) 507/29,388/47.547 697/48,512/119.875 811/39,769/122.469
EDENSCH (CUTE) 1694/23,160/89.453 2089/27,821/83.266 1684/22,731/116.844

To visually compare the performance of the opposed methods, we used the perfor-

mance profiles technique [44] on the numerical results corresponding to Nitr, Nfe, and Tepu
criteria generated by the DL, FDL, and EDL methods. An upper graph in a performance
profile corresponds to the method that shows better performance. The vertical axis of each
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performance profile in the figures indicates the percentage of test functions for which the
considered method is the winner between compared methods, whereby the right-hand side
corresponds to the percentage of successfully solved test functions.

Figures 4 and 5 plot the performance profiles for the data in Table 2. The graphs in
Figure 4 illustrate the performance profiles Nitr and Nfe for DL, FDL, and EDL iterations
based on the data from Table 2. In Figure 4a, it is noticeable that the DL, FDL, and EDL
methods can solve all the tested functions. Numerical experience shows that the FDL
method produces the best results in 54.0% (27 out of 50) of test functions compared with
DL (26.0% (13 out of 50)) and EDL (38.0% (19 out of 50)). From Figure 4a, the FDL graph
touches the top first, so FDL is the best relative to the other examined methods concerning
the Nitr criterion.

Figure 4b indicates that the FDL graph is the most efficient and successfully solves all
test cases. In addition, the obtained numerical results confirm that FDL performs well in
most cases. Specifically, FDL is the fastest because it solves about 48.0% (24 out of 50) of the
tested functions with the least Nfe compared to the DL and EDL methods. Meanwhile, DL
and EDL are superior in solving 22.0% (11 out of 50) and 30.0% (15 out of 50) test functions,
respectively. Hence, FDL is superior compared to the DL and EDL methods for the given
test functions.

=l d 1 43 i T §
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Figure 4. Performance profiles for DL, FDL, and EDL methods.
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Figure 5. Tcpu performance profiles for DL, FDL, and EDL methods.

Figure 5 shows Tcpu performance profile graphs of the DL, FDL, and EDL methods.
It is observable that DL, FDL, and EDL are able to solve all the tested functions. Further
examination leads to the conclusion that the FDL method is the best in 74.0% (thirty-seven
out of fifty) test cases compared to DL (12.0% (six out of fifty)) and EDL (16.0% (eight out
of fifty)). Analyzing the graphs in Figure 5, a clear conclusion is that the FDL graph first
achieves the top, which certifies its superiority in terms of Tcpu.
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The general conclusion from the results presented in Table 2 is that one of the methods
DL, FDL, and EDL is the absolute winner in thirty-two tested functions relative to all
three criteria (Nitr, Nfe, and Tcpu). Further analysis of these data leads to the following
conclusions:

e the DL method is an absolute winner in five cases;
. the FDL method is an absolute winner in twenty-one cases;
e the EDL method is an absolute winner in six cases.

In addition to these facts, the data contained in Table 2 show that the FDL method is
better in six cases than the other two methods in terms of Nitr. The FDL method is better in
three cases compared to DL and EDL in terms of Nfe. The FDL method achieves the best
results in sixteen test cases in terms of Tcpu.

The comparisons of the DL, FDL, and EDL methods are shown in Figures 4 and 5. As
can be noticed, FDL is superior compared to the DL and EDL methods with respect to three
criteria (iterations, function evaluations, and processor time). Moreover, the numerical
results in Table 2 indicate that the FDL method is the absolute winner. Thus, numerical
experiments indicate the effectiveness of the proposed FDL method.

6. Conclusions

In the current research, we propose a novel approach to determining the parameter
t in Dai-Liao CG iterations. The new approach is based on finding suitable values for a
non-negative parameter ¢ in the DL method using neutrosophic logic. An original strategy
in defining the Dai-Liao CG parameter ﬁ}:DL is suggested utilizing t := v (Ax) in (20), and
a novel fuzzy neutrosophic Dai-Liao (FDL) CG method is presented.

Numerical experiments and comparisons with some well-known CG methods and the
theoretical convergence analysis demonstrate the effectiveness of the proposed method.
The numerical testing and initiated comparison are based on standard performance profiles,
such as total number of iterations (Nitr), total number of function evaluations (Nfe), and
runtime (Tcpu). Analysis of the obtained numerical results revealed that the FDL method
is the most efficient.

We are assured that the proposed methods will serve as motivation for further investi-
gation in defining improvements of DL iterations guided by the neutrosophic logic.

Future scientific research in this area can continue in several directions. Previous
research has shown the effectiveness of the neutrosophic principle in scaled gradient
descent methods and the DL class of CG methods. The challenge is to apply such a
principle to other nonlinear optimization methods. On the other hand, there is a wide
range of possibilities for defining further neutrosophication and de-neutrosophication rules,
which can be considered in future research. Finally, there is a great opportunity to improve
the neutrosophic inference engine used in this research.

Author Contributions: Conceptualization, P.S.S. and B.D.I.; methodology, P.S.S., VN.K. and L. A K,;
software, B.D.I; validation, D.S., VN.K,, PS.S. and L.A K; formal analysis, D.S., PS.S., VN.K. and
D.K,; investigation, PS.S., D.S., VN.K. and L.A K,; resources, B.D.I. and D.K,; data curation, B.D.I.
and D.S.; writing—original draft, P.S.S., B.D.I. and D.S.; writing—review and editing, P.S.S., D.K. and
D.S,; visualization, B.D.I. and D.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (Grant No. 075-15-2022-1121).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data and code will be provided on request to authors.

Acknowledgments: Predrag Stanimirovic¢ is supported by the Science Fund of the Republic of Serbia
(No. 7750185, Quantitative Automata Models: Fundamental Problems and Applications—QUAM).



Symmetry 2023, 15,1217 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Dai, Y.-H,; Liao, L.-Z. New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 2001, 43,
87-101. [CrossRef]

2. Cheng, Y,; Mou, Q.; Pan, X,; Yao, S. A sufficient descent conjugate gradient method and its global convergence. Optim. Methods
Softw. 2016, 31, 577-590. [CrossRef]

3.  Livieris, L.E.; Pintelas, P. A descent Dai-Liao conjugate gradient method based on a modified secant equation and its global
convergence. Isrn Comput. Math. 2012, 2012, 435495. [CrossRef]

4. Peyghami, M.R.; Ahmadzadeh, H.; Fazli, A. A new class of efficient and globally convergent conjugate gradient methods in the
Dai-Liao family. Optim. Methods Softw. 2015, 30, 843-863. [CrossRef]

5. Yabe, H.; Takano, M. Global convergence properties of nonlinear conjugate gradient methods with modified secant condition.
Comput. Optim. Appl. 2004, 28, 203-225. [CrossRef]

6. Yao, S.; Qin, B. A hybrid of DL and WYL nonlinear conjugate gradient methods. Abstr. Appl. Anal. 2014, 2014, 279891. [CrossRef]

7. Yao,S.; Lu, X.; Wei, Z. A conjugate gradient method with global convergence for large-scale unconstrained optimization problems.
J. Appl. Math. 2013, 2013, 730454. [CrossRef]

8.  Zheng, Y.; Zheng, B. Two new Dai-Liao-type conjugate gradient methods for unconstrained optimization problems. J. Optim.
Theory Appl. 2017, 175, 502-509. [CrossRef]

9.  Zhou, W,; Zhang, L. A nonlinear conjugate gradient method based on the MBFGS secant condition. Optim. Methods Softw. 2006,
21,707-714. [CrossRef]

10.  Waziri, M.Y.; Ahmed, K.; Sabity, J. A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear
equations. Arab. ]. Math. 2020, 9, 443-457. [CrossRef]

11. Khoshsimaye-Bargard, M.; Ashrafi, A. A descent spectral Dai-Liao method based on the quasi-Newton aspects. Numer. Algor.
2023. [CrossRef]

12. Babaie-Kafaki, S. A survey on the Dai-Liao family of nonlinear conjugate gradient methods. RAIRO-Oper. Res. 2023, 57, 43-58.
[CrossRef]

13.  Andrei, N. Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization. Bull. Malays. Math. Sci.
Soc. 2011, 34, 319-330.

14. Hager, WW.,; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM ]. Optim.
2005, 16, 170-192. [CrossRef]

15. Hager, WW.,; Zhang, H. Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent. Acm Trans. Math.
Softw. 2006, 32, 113-137. [CrossRef]

16. Dai, Y.-H.; Kou, C.-X. A nonlinear conjugate gradient algorithm with an optimal property and an improved wolfe line search.
SIAM. J. Optim. 2013, 23, 296-320. [CrossRef]

17. Babaie-Kafaki, S.; Ghanbari, R. The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices. Europ. J. Oper.
Res. 2014, 234, 625-630. [CrossRef]

18.  Andrei, N. A Dai-Liao conjugate gradient algorithm with clustering of eigenvalues. Numer. Algor. 2018, 77, 1273-1282. [CrossRef]

19. Babaie-Kafaki, S. On the sufficient descent condition of the Hager-Zhang conjugate gradient methods. 4OR-Q J. Oper. Res. 2014,
12,285-292. [CrossRef]

20. Lotfi, M.; Hosseini, S.M. An efficient Dai-Liao type conjugate gradient method by reformulating the CG parameter in the search
direction equation. J. Comput. Appl. Math. 2020, 371, 112708. [CrossRef]

21. Ivanov, B.; Stanimirovi¢, P.S.; Shaini, B.I; Ahmad, H.; Wang, M.-K. A Novel Value for the Parameter in the Dai-Liao-Type
Conjugate Gradient Method. J. Funct. Spaces 2021, 2021, 6693401. [CrossRef]

22.  Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353. [CrossRef]

23. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96. [CrossRef]

24. Smarandache, F. A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth,
NM, USA, 1999.

25. Wang, H.; Smarandache, F; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4,
410-413.

26. Smarandache, F. Special Issue “New types of Neutrosophic Set/Logic/Probability, Neutrosophic Over-/Under-/Off-Set, Neu-
trosophic Refined Set, and their Extension to Plithogenic Set/Logic/Probability, with Applications”. Symmetry 2019. Available
online: https://www.mdpi.com/journal/symmetry/special_issues/Neutrosophic_Set_Logic_Probability (accessed on 30 April
2023).

27. Mishra, K.; Kandasamy, I.; Kandasamy, W.B.; Smarandache, F. A novel framework using neutrosophy for integrated speech and
text sentiment analysis. Symmetry 2020, 12, 1715. [CrossRef]

28. Tu, A.; Ye, ].; Wang, B. Symmetry measures of simplified neutrosophic sets for multiple attribute decision-making problems.

Symmetry 2018, 10, 144. [CrossRef]


http://doi.org/10.1007/s002450010019
http://dx.doi.org/10.1080/10556788.2015.1124431
http://dx.doi.org/10.5402/2012/435495
http://dx.doi.org/10.1080/10556788.2014.1001511
http://dx.doi.org/10.1023/B:COAP.0000026885.81997.88
http://dx.doi.org/10.1155/2014/279891
http://dx.doi.org/10.1155/2013/730454
http://dx.doi.org/10.1007/s10957-017-1140-1
http://dx.doi.org/10.1080/10556780500137041
http://dx.doi.org/10.1007/s40065-019-0264-6
http://dx.doi.org/10.1007/s11075-023-01506-z
http://dx.doi.org/10.1051/ro/2022213
http://dx.doi.org/10.1137/030601880
http://dx.doi.org/10.1145/1132973.1132979
http://dx.doi.org/10.1137/100813026
http://dx.doi.org/10.1016/j.ejor.2013.11.012
http://dx.doi.org/10.1007/s11075-017-0362-5
http://dx.doi.org/10.1007/s10288-014-0255-6
http://dx.doi.org/10.1016/j.cam.2019.112708
http://dx.doi.org/10.1155/2021/6693401
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
https://www.mdpi.com/journal/symmetry/special_issues/Neutrosophic_Set_Logic_Probability
http://dx.doi.org/10.3390/sym12101715
http://dx.doi.org/10.3390/sym10050144

Symmetry 2023, 15,1217 17 of 17

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.
43.

44.

Smarandache, F. (Ed.) Collected Papers (On Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics); Global
Knowledge Publishing House: Miami, FL, USA, 2022; Volume 11. Available online: http://fs.unm.edu/CP11.pdf (accessed on 30
April 2023).

Smarandache, F. (Ed.) Collected Papers (On Various Scientific Topics); Global Knowledge Publishing House: Miami, FL, USA, 2022;
Volume 13. Available online: http://fs.unm.edu/CP13.pdf (accessed on 30 April 2023).

Stanimirovi¢, P.S.; Ivanov, B.; Stanujki¢, D.; Katsikis, V.N.; Mourtas, S.D.; Kazakovtsev, L.A.; Edalatpanah, S.A. Improvement of
Unconstrained Optimization Methods Based on Symmetry Involved in Neutrosophy. Symmetry 2023, 15, 250. [CrossRef]

Dai, J.; Chen, Y.; Xiao, L, Jia, L.; He, Y. Design and analysis of a hybrid GNN-ZNN model with a fuzzy adaptive factor for matrix
inversion. IEEE Trans. Ind. Inform. 2022, 18, 2434-2442. [CrossRef]

Deng, Y.; Ren, Z.; Kong, Y.; Bao, F,; Dai, Q. A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans.
Fuzzy Syst. 2017, 25, 1006-1012. [CrossRef]

Jia, L.; Xiao, L.; Dai, J.; Cao, Y. A novel fuzzy-power zeroing neural network model for time-variant matrix Moore-Penrose
inversion with guaranteed performance. IEEE Trans. Fuzzy Syst. 2021, 29, 2603-2611. [CrossRef]

Jia, L.; Xiao, L.; Dai, J.; Qi, Z.; Zhang, Z.; Zhang, Y. Design and Application of an Adaptive Fuzzy Control Strategy to Zeroing
Neural Network for Solving Time-Variant QP Problem. IEEE Trans. Fuzzy Syst. 2021, 29, 1544-1555. [CrossRef]

Katsikis, V.N.; Stanimirovi¢, P.S.; Mourtas, S.D.; Xiao, L.; Karabasevi¢, D.; Stanujki¢, D. Zeroing neural network with fuzzy
parameter for computing pseudoinverse of arbitrary matrix. IEEE Trans. Fuzzy Syst. 2022, 30, 3426-3435. [CrossRef]

Hestenes, M.R ; Stiefel, E.L. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 1952, 49, 409-436.
[CrossRef]

Andrei, N. An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms
2006, 42, 63-73. [CrossRef]

Stanimirovi¢, P.S.; Miladinovié¢, M.B. Accelerated gradient descent methods with line search. Numer. Algorithms 2010, 54, 503-520.
[CrossRef]

Cheng, W. A two-term PRP-based descent method. Numer. Funct. Anal. Optim. 2007, 28, 1217-1230. [CrossRef]

Zoutendijk, G. Nonlinear Programming, Computational Methods. In Integer and Nonlinear Programming; Abadie, J., Ed.; Springer:
Amsterdam, The Netherlands, 1970; pp. 37-86

Andrei, N. An unconstrained optimization test functions collection. Adv. Model. Optim. 2008, 10, 147-161.

Bongartz, I.; Conn, A.R.; Gould, N.; Toint, P.L. CUTE: Constrained and unconstrained testing environments. ACM Trans. Math.
Softw. 1995, 21, 123-160. [CrossRef]

Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201-213.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://fs.unm.edu/CP11.pdf
http://fs.unm.edu/CP13.pdf
http://dx.doi.org/10.3390/sym15010250
http://dx.doi.org/10.1109/TII.2021.3093115
http://dx.doi.org/10.1109/TFUZZ.2016.2574915
http://dx.doi.org/10.1109/TFUZZ.2020.3005272
http://dx.doi.org/10.1109/TFUZZ.2020.2981001
http://dx.doi.org/10.1109/TFUZZ.2021.3115969
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1007/s11075-006-9023-9
http://dx.doi.org/10.1007/s11075-009-9350-8
http://dx.doi.org/10.1080/01630560701749524
http://dx.doi.org/10.1145/200979.201043
http://dx.doi.org/10.1007/s101070100263

	Introduction and Background Results
	Related Results about Neutrosophy and Motivation
	Fuzzy Neutrosophic Dai–Liao Conjugate Gradient Method
	Convergence Examination
	Numerical Results
	Conclusions
	References

