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Abstract: A weak f -contact structure, introduced in our recent works, generalizes the classical
f -contact structure on a smooth manifold, and its characteristic distribution defines a totally geodesic
foliation with flat leaves. We find the splitting tensor of this foliation and use it to show positive
definiteness of the Jacobi operators in the characteristic directions and to obtain a topological ob-
struction (including the Adams number) to the existence of weak f -K-contact manifolds, and prove
integral formulas for a compact weak f -contact manifold. Based on applications of the weak f -contact
structure in Riemannian contact geometry considered in the article, we expect that this structure will
also be fruitful in theoretical physics, e.g., in QFT.
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1. Introduction

After many results in classical mechanics related to contact transformations, the
famous Boothby-Wang fibration of 1958 marked the beginning of the theory of contact
manifolds [1]. Important examples of contact manifolds are the principal circle bundles and
the tangent sphere bundles, e.g., [2]. The growing interest in Riemannian contact geometry
is associated with its important role in differential equations, differential geometry and
topology, as well as in physics, e.g., geometrical optics, classical and quantum mechanics,
thermodynamics, integrable systems and control theory.

A framed f -structure on a (2n + s)-dimensional Riemannian manifold is defined by
a (1,1)-tensor f of constant rank 2n, which satisfies f 3 + f = 0, and linearly independent
vector fields {ξi}1≤i≤s spanning ker f —the characteristic distribution, see [3–10]. This
higher dimensional analog of almost contact (s = 1) and almost complex (s = 0) structures
appears naturally when studying hypersurfaces of almost contact manifolds, see [11], and
submanifolds of almost complex manifolds [12]. Moreover, many space-time manifolds
can be endowed with framed f -structures, see [13]. The importance of the tensor field f
stems from the fact that its existence is equivalent to the reduction of the structure group of
the manifold to U(n)×O(s), see [3].

An interesting case occurs when ker f is parallelizable or is defined by a homomor-
phism of an s-dimensional Lie algebra g to the Lie algebra of all vector fields on M, i.e., M
admits a g-foliation, see [14]. In the presence of a compatible metric, such g-foliations are
totally geodesic foliations spanned by Killing vector fields, e.g., [15]. For a 1-dimensional
Lie algebra, a g-foliation is generated by a nonvanishing vector field, and we get contact
metric manifolds as well as K-contact and Sasakian ones, see [2].

The f -K-contact structure (i.e., an f -contact structure, whose characteristic vector
fields generate 1-parameter groups of isometries), see [16], generalizes the K-contact
structure of [3] (i.e., s = 1), both structures can be regarded as intermediate between
a framed f -structure and S-structure (Sasaki structure when s = 1). In [17], conditions are
found under which a given compact f -K-contact manifold is a mapping torus of such a
manifold of lower dimension. Various symmetries of contact and framed f -manifolds are
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studied, e.g., in [18], and sufficient conditions are considered when an f -contact manifold
carries a canonical metric, such as Einstein-type or constant curvature, or admits a local
decomposition (splitting), in [4,19,20].

The characteristic distribution ker f of an f -contact structure defines a totally geo-
desic foliation. Such foliations have simple extrinsic geometry, i.e., vanishing second
fundamental form of the leaves, and appear on (sub)manifolds with degenerate differential
forms and curvature-like tensors, e.g., [21]. The splitting tensor (or, co-nullity tensor) of a
foliation is a useful tool to study totally geodesic foliations, and to obtain integral formulas,
e.g., [21]. Integral formulas are a powerful tool for proving global results in analysis
and geometry. There are series of integral formulas for two orthogonal complementary
distributions (beginning with Reeb’s formula for foliations of codimension one), which
involve the Newton transformations of splitting tensor and certain components of the
curvature tensor, and are used to solve many problems (see, surveys in [21–23]): (i) the
existence and characterizing of foliations, whose leaves have a given geometric property,
such as being totally geodesic, totally umbilical or minimal; (ii) prescribing the higher mean
curvatures of the leaves of a foliation; (iii) minimizing functionals such as volume and
energy defined for tensor fields on a foliated manifold.

In [24,25] the study of “weak” contact structures on a smooth (2n + s)-dimensional
manifold (i.e., the complex structure on the characteristic distribution is replaced with a
nonsingular skew-symmetric tensor) was initiated. These structures generalize an f -contact
structure and its satellites, and allow a new look at the Riemannian classical theory and find
its new applications, for example, to build manifolds with Killing vector fields and totally
geodesic foliations, (well known examples are flows on the sphere, linear flow on the torus,
see Figure 1), to produce Riemannian manifolds with positive ξ-sectional curvature, and to
investigate Einstein-type metrics.

Figure 1. Examples of Killing and geodesic vector fields.

In [25], we retracted weak structures with positive partial Ricci curvature onto the
subspace of classical structures of the same type. In [24], we proved that the S-structure
is rigid, i.e., our weak S-structure is the S-structure, and a metric weak f -structure with
parallel tensor f is the weak C-structure. The characteristic distribution of the weak
f -contact structure (and its particular case—the weak f -K-contact structure) is integrable
and defines a totally geodesic foliation. The splitting tensor of a totally geodesic folia-
tion is important in studying c-nullity foliations of Riemannian manifolds M (given by
{X ∈ TM : RX,Y = c(X ∧Y)}) and relative nullity foliations of Riemannian submanifolds
(given by {X ∈ TM : β(X, ·) = 0}, where β is the second fundamental form), e.g., [26], and
in integral formulas for foliations and Riemannian almost product manifolds, see [21].

The article continues our study [24,25] of the geometry of weak f -contact manifolds.
Our achievement is the generalization of some results on f -contact manifolds to the case of
weak f -contact manifolds and demonstration of the usefulness of this weak structure for
the study of totally geodesic foliations, Killing vector fields and the corresponding splitting
tensors on Riemannian manifolds. The proofs use the properties of new tensors, as well as
the constructions required in the classical case.

The article is organized as follows. In Section 2, following the introductory Section 1, we
recall some results regarding framed weak f -manifolds. Section 3 contains the main results
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and consists of three parts. In Section 3.1, we study the geometry of weak f -contact manifolds
and show that they are endowed with totally geodesic foliations with flat fibers (Proposition 2).
In Section 3.2, we find the splitting tensor for the characteristic foliation of weak f -contact
manifolds (Theorem 1), and use it to show positive definiteness of the Jacobi operators
in the characteristic directions, or, equivalently, that the ξ-sectional curvature is positive
(Theorem 2) and to obtain a topological obstruction, including the Adams number, to the
existence of weak f -K-contact manifolds (Theorem 3), and prove integral formulas for
compact weak f -contact manifolds (Proposition 4).

2. Preliminaries

Here, we recall the basics of the weak f -contact structure (see [24,25]) as a higher
dimensional analog of the weak almost contact structure.

Aframed weak structure on a smooth manifold M2n+s is the set ( f , Q, ξi, ηi), where
f is a (1, 1)-tensor, Q is a nonsingular (1, 1)-tensor, ξi (1 ≤ i ≤ s) are characteristic vector
fields, which form the characteristic distribution, and ηi are dual 1-forms, satisfying

f 2 = −Q + ∑ i ηi ⊗ ξi, ηi(ξ j) = δi
j, Q ξi = ξi. (1)

Thus, f 3 + f Q = 0. The forms ηi are linearly independent and determine a smooth 2n-
dimensional contact distribution D :=

⋂
i ker ηi (the collection of subspaces

Dm = {X ∈ Tm M : ηi(X) = 0, 1 ≤ i ≤ s} for m ∈ M). We assume that D is f -invariant,

f X ∈ D (X ∈ D), (2)

as in the theory of framed f -structure [3,9], where Q = id—the identity map of TM. For a
framed weak f -structure on a smooth manifold M, the tensor f has rank 2n and

f ξi = 0, ηi ◦ f = 0, ηi ◦Q = ηi, [Q, f ] = 0;

thus, D = f (TM). By (1) and (2), the distribution D is invariant for Q: Q(D) = D.
Let g be a compatible (or, associated) Riemannian metric on M2n+s( f , Q, ξi, ηi), i.e.,

g( f X, f Y) = g(X, Q Y)−∑ i ηi(X) ηi(Y), X, Y ∈ XM. (3)

Then ( f , Q, ξi, ηi, g) is called a weak metric structure on M, and M( f , Q, ξi, ηi, g) is
called a weak metricmanifold. Putting Y = ξi in (3) and using Q ξi = ξi, we get

ηi(X) = g(X, ξi) (i = 1, . . . , s).

In particular, ker f and D are additionally orthogonal distributions.
For a weak metric f -structure, the contact distribution D is nowhere integrable, since

for a nonzero X ⊥ ker f we get

g([X, f X], ξi) = 2 dηi( f X, X) = g( f X, f X) > 0.

For a weak metric f -structure, the tensor f is skew-symmetric (the same for a metric
f -structure) and Q is self-adjoint, see [25].

Remark 1. There exists a compatible metric on any framed f -manifold, e.g., [3]. A framed weak
f -manifold admits a compatible metric if f in (1)–(2) has a skew-symmetric representation, i.e., for
any x ∈ M there exist a neighborhood Ux ⊂ M and a frame {ei} on Ux, for which f has a
skew-symmetric matrix, see [25]. By (3), we get g(X, Q X) = g( f X, f X) > 0 for any nonzero
vector X ⊥ ker f ; thus, the tensor Q is positive definite.
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A framed (weak) f -structure is called normal if the following tensor is zero:

N(1)(X, Y) = [ f , f ](X, Y) + 2 ∑ i dηi(X, Y) ξi, X, Y ∈ XM,

where the Nijenhuis torsion [ f , f ] of f is given by

[ f , f ](X, Y) = f 2[X, Y] + [ f X, f Y]− f [ f X, Y]− f [X, f Y], X, Y ∈ XM, (4)

and the exterior derivative of a differential form ηi is given by

dηi(X, Y) =
1
2
{X(ηi(Y))−Y(ηi(X))− ηi([X, Y])}, X, Y ∈ XM. (5)

Recall the following formulas with the Lie derivative £Z in the Z-direction:

(£Z f )X = [Z, f X]− f [Z, X] (X, Y ∈ XM), (6)

(£ξi g)(X, Y) = ξi(g(X, Y))− g([ξi, X], Y)− g(X, [ξi, Y]). (7)

The following tensors N(2)
i , N(3)

i and N(4)
ij are well known, see [3,9] and (5):

N(2)
i (X, Y) = (£ f X ηi)(Y)− (£ f Y ηi)(X) = 2 dηi( f X, Y)− 2 dηi( f Y, X),

N(3)
i (X) = (£ξi f )X = [ξi, f X]− f [ξi, X],

N(4)
ij (X) = (£ξi η j)(X) = ξi(η

j(X))− η j([ξi, X]) = 2 dη j(ξi, X).

For s = 1, these tensors reduce to certain tensors on (weak) almost contact manifolds:

N(2)(X, Y) = (£ f X η)Y− (£ f Y η)X, N(3) = £ξ f , N(4) = £ξ η.

Remark 2. Let M2n+s( f , Q, ξi, ηi) be a framed weak f -manifold. Consider the product manifold
M̄ = M2n+s ×Rs, where Rs is a Euclidean space with a basis ∂1, . . . , ∂s, and define tensors f̄ and
Q̄ on M̄ putting

f̄ (X, ∑ i ai∂i) = ( f X−∑ i aiξi, ∑ j η j(X)∂j),

Q̄(X, ∑ i ai∂i) = (QX, ∑ i ai∂i).

Hence, f̄ (X, 0) = ( f X, 0), Q̄(X, 0) = (QX, 0) for X ⊥ ker f , f̄ (ξi, 0) = (0, ∂i),
Q̄(ξi, 0) = (ξi, 0) and f̄ (0, ∂i) = (−ξi, 0), Q̄(0, ∂i) = (0, ∂i). Then, it is easy to verify that
f̄ 2 = −Q̄. The tensors N (1), N (2)

i , N (3)
i and N (4)

ij appear when we derive the integrability con-
dition [ f̄ , f̄ ] = 0 (vanishing of the Nijenhuis torsion of f̄ ) and express the normality condition
N (1) = 0 of a framed weak f -structure on M.

3. Results

In Section 3.1, we introduce the weak f -contact structure and its important case—the
weak f -K-contact structure, which generalize the f -contact and f -K-contact structures, and
show that the distribution ker f is integrable and defines a totally geodesic foliation with
flat leaves. In Section 3.2, we derive the splitting tensor of such structures and give its
applications. In Section 3.3, we study integral formulas involving the splitting tensor on
weak f -contact manifolds.

3.1. Geometry of Weak f -Contact Manifolds

The following definition is a copy of the classical definition, for example, [16].
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Definition 1. A weak f -contact structure is a weak metric f -structure satisfying

Φ = dη1 = . . . = dηs, (8)

(thus, dΦ = 0), where Φ(X, Y) = g(X, f Y) (X, Y ∈ XM) is called the fundamental 2-form.
A weak f -contact structure is called a weak f -K-contact structure if each characteristic vector field
ξi is Killing, i.e., £ξi g = 0, see (7). A normal weak f -contact manifold is called a weak S-manifold.

The relationships between the different classes of weak manifolds (considered in this
article) can be summarized in the well-known diagram for classical structures:

∣∣∣∣ framed weak
f -manifold

∣∣∣∣ metric−→
∣∣∣∣metric weak

f -manifold

∣∣∣∣ Φ=dηi

−→
∣∣∣∣ weak

f -contact

∣∣∣∣ ξi - Killing−→
∣∣∣∣ weak

f -K-contact

∣∣∣∣.
For s = 1, we get the following diagram:∣∣∣∣weak almost

contact

∣∣∣∣ metric−→
∣∣∣∣ weak almost

contact metric

∣∣∣∣ Φ=dη−→
∣∣∣∣weak contact

metric

∣∣∣∣ ξ - Killing−→
∣∣∣∣ weak

K-contact

∣∣∣∣.
Remark 3.

(a) In [5], an f -contact manifold was called an almost S-manifold. Analogously, in [24], a
weak f -contact manifold was called a weak almost S-manifold. For s = 1, a weak (almost)
S-manifold is a weak (almost) Sasakian manifold, see [3].

(b) For a weak f -contact manifold, the tensors N(2)
i and N(4)

ij vanish; moreover, N(3)
i vanishes if

and only if ξi is a Killing vector field, see ([24], Theorem 2.2).

The (1,1)-tensor Q̃ = Q− id is useful for weak f -contact manifolds. Note that Q̃ = 0
is true for f -contact manifolds. We get [Q̃, f ] = 0 and Q̃ ξi = 0.

Remark 4. The Levi-Civita connection ∇ of a Riemannian metric g is given by

2 g(∇XY, Z) = X g(Y, Z) + Y g(X, Z)− Z g(X, Y)

+ g([X, Y], Z) + g([Z, X], Y)− g([Y, Z], X),

and has the properties, for example, [21,27],

X g(Y, Z) = g(∇X Y, Z) + g(Y,∇X Z) (metric compatible),

[X, Y] = ∇XY−∇YX (without torsion).

Proposition 1 (see Corollary 2.1 in [24]). For a weak f -contact structure, we get

g((∇X f )Y, Z) = 1
2 g(N(1)(Y, Z), f X) + g( f X, f Y) η(Z)− g( f X, f Z) η(Y)

+ 1
2 N(5)(X, Y, Z),

(9)

where η = ∑ i ηi, and a skew-symmetric with respect to Y and Z tensor N(5)(X, Y, Z) is given by

N(5)(X, Y, Z) = ( f Z) (g(X, Q̃Y))− ( f Y) (g(X, Q̃Z))

+ g([X, f Z], Q̃Y)− g([X, f Y], Q̃Z) + g([Y, f Z]− [Z, f Y]− f [Y, Z], Q̃X).

Only one new tensor N(5) (vanishing at Q̃ = 0), which supplements the sequence of
well-known tensors N (i), i = 1, 2, 3, 4, is needed to study the weak f -contact structure. For
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a weak metric f -structure, the tensor N(5) is more complicated, see ([24], Proposition 2.3).
For a weak f -contact structure, we find particular values of the tensor N(5):

N(5)(X, ξi, Z) = −N(5)(X, Z, ξi) = g(N(3)
i (Z), Q̃X),

N(5)(ξi, Y, Z) = g([ξi, f Z], Q̃Y)− g([ξi, f Y], Q̃Z),
N(5)(ξi, ξ j, Y) = N(5)(ξi, Y, ξ j) = 0.

(10)

A distribution D̃ ⊂ TM is called totally geodesic if ∇XY +∇YX ∈ D̃ for any vector
fields X, Y ∈ D̃ – this is the case when any geodesic of M that is tangent to D̃ at one point
is tangent to D̃ at all its points, e.g., ([21], Section 1.3.1). An integrable (i.e., tangent to a
foliation) and totally geodesic distribution determines a totally geodesic foliation.

The Riemannian curvature tensor is given by the expression, see [27],

RX, Y Z = ∇X∇Y Z−∇Y∇X Z−∇[X,Y] Z.

Proposition 2. For the weak f -contact structure, the characteristic distribution ker f is tangent
to a totally geodesic foliation with flat leaves (that is Rξi , ξ j ξk = 0).

Proof. We need to prove the following equality (from which Rξi , ξ j ξk = 0 follows):

∇ξi ξ j = 0, 1 ≤ i, j ≤ s. (11)

Taking X = ξi in (9) and using (10)2, we get

2 g((∇ξi f )Y, Z) = g([ξi, f Z], Q̃Y)− g([ξi, f Y], Q̃Z), 1 ≤ i ≤ s. (12)

Then, taking Y = ξ j in (12), we get f∇ξi ξ j = 0, that is∇ξi ξ j is orthogonal to D. Also,

ηk([ξi, ξ j]) = −2 dηk(ξi, ξ j) = −2 g(ξi, f ξ j) = 0;

hence, [ξi, ξ j] = 0, i.e., ∇ξi ξ j = ∇ξ j ξi. From g(ξ j, ξk) = δjk, using the covariant derivative
with respect to ξi and the above equality, we get ∇ξi ξ j ∈ D. Thus, (11) is true. By (11),
the distribution ker f is integrable (i.e., [X, Y] = ∇X Y−∇Y X belongs to D for any vector
fields X, Y from D) and totally geodesic (i.e., ∇X Y +∇Y X belongs to D for any vector
fields X, Y from D) with flat leaves.

Remark 5. (i) Proposition 2 was proved in ([24], Section 2) for some special cases of weak f -contact
manifolds. The proof that ∇ξi ξ j is orthogonal to D requires some calculations with the tensor N(5).
(ii) By (8) we get g([X, ξi], ξk) = 2 dηk(ξi, X) = 2 Φ(ξi, X) = 0. Using this and (11) gives the
following equality for the weak f -contact structure:

g(∇X ξi, ξk) = g(∇ξi X, ξk) = −g(∇ξi ξk, X) = 0, X ∈ TM, 1 ≤ i, k ≤ s. (13)

3.2. The Splitting Tensor of a Weak f -Contact Manifold

For a weak f -contact manifold, the splitting tensor (or, co-nullity tensor) C : ker f ×
D → D is defined by

Cξ(X) = −P(∇X ξ), X ∈ D, ξ ∈ ker f , ‖ξ‖ = 1,

where P : TM→ D is the orthoprojector. Since ker f defines a totally geodesic foliation, see
Proposition 2, then the distributionD is totally geodesic if and only if Cξ is skew-symmetric,
and D is integrable if and only if Cξ is symmetric.

Thus, Cξ ≡ 0 if and only if D is integrable and defines a totally geodesic foliation; in
this case, by de Rham Decomposition Theorem, the manifold splits (is locally the product
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of Riemannian manifolds defined by distributions D and ker f ), e.g., [21]. The self-adjoint
shape operator Aξ and the skew-symmetric operator Tξ , on D are given by

Aξ = (1/2)(Cξ + C ∗ξ ), Tξ = (1/2)(Cξ − C ∗ξ ), (14)

where ∗ is the conjugation of a (1,1)-tensor. Thus, the splitting tensor is decomposed as

Cξ = Aξ + Tξ (15)

into the sum of skew-symmetric and self-adjoint tensors dual to (1,2)-tensors: the second
fundamental form and the integrability tensor, respectively [21]. If D is integrable (tangent
to a foliation), then Cξ = Aξ , and if D is totally geodesic, then Cξ = Tξ .

The tensors N(3)
i are important for f -contact manifolds. Therefore, we define for a

weak f -contact manifold the tensor field h = (h1, . . . , hs), where

hi = (1/2) N(3)
i = (1/2) £ξi f .

By Remark 3b, hi = 0 if and only if ξi is a Killing vector field. Next, we calculate
(£ξi f )X = ∇ξi ( f X)−∇ f X ξi − f (∇ξi X−∇X ξi)

= (∇ξi f )X−∇ f X ξi + f∇X ξi.
(16)

Taking X = ξi in (16) and using ∇ξi ξ j = 0 and (∇ξi f ) ξ j =0, see (12) with Y = ξ j,
we get

hi ξ j = 0 (i, j = 1, . . . , s). (17)

Proposition 3. For a weak f -contact manifold M2n+s( f , Q, ξi, ηi, g), the tensor hi and its conju-
gate h∗i satisfy

(hi − h∗i )X = (1/2) N(5)(ξi, X, ·), X ∈ XM, (18)

hi f + f hi = −(1/2) £ξi Q̃, (19)

hiQ−Q hi = (1/2)[ f , £ξi Q̃ ]. (20)

Proof. The equalities (18) and (19) were proved in [24]. Using (1), (17) and (19),

hiQ−Q hi = hi f 2 − f 2 hi = hi f 2 − f (−hi f − (1/2) £ξi Q)

= hi f 2 + (−hi f − (1/2) £ξi Q) f + (1/2) f (£ξi Q) = (1/2) [ f (£ξi Q)− (£ξi Q) f ],

and taking into account that £ξi Q = £ξi Q̃, we get (20).

Proposition 3 generalizes the following well-known properties of f -contact mani-
folds: the linear operator hi is self-adjoint and anti-commutes with f . Also, for f -contact
manifolds, the equality ∇ ξi = − f − f hi holds, see [5]; thus, their splitting tensor is

Cξi = f + f hi (i = 1, . . . , s).

Since hi = 0 for f -K-contact manifolds, their splitting tensor has the view Cξi = f and
is skew-symmetric. Some of these properties are generalized in the following proposition,
the proof of which requires some calculations with the tensor N(5).

Theorem 1. The splitting tensor of a weak f -contact manifold M2n+s( f , Q, ξi, ηi, g) has the
following view:

Cξi = f + Q−1 f h∗i (i = 1, . . . , s). (21)

For a weak f -K-contact manifold we get the following skew-symmetric splitting tensor:

Cξi = f (i = 1, . . . , s). (22)
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Proof. From Proposition 1 with Y = ξi, we find

g((∇X f )ξi, Z) =
1
2

g(N(1)(ξi, Z), f X)− g( f Z, f X) +
1
2

N(5)(X, ξi, Z). (23)

Note that 1
2 N(5)(X, ξi, Z) = g(hiZ, Q̃X), see (10). From (4) with Y = ξi and (6), we get

[ f , f ](X, ξi) = f 2[X, ξi]− f [ f X, ξi] = f (£ξi f )X. (24)

Using (3) and (24), we calculate

g(N(1)(ξi, Z), f X) = g([ f , f ](ξi, Z), f X) = g((£ξi f )Z, f 2X)
= −g((£ξi f )Z, QX) + ∑ j η j(X) η j((£ξi f )Z).

(25)

Using (16), we get

2 g((∇ξi f )Z, ξ j) = N(5)(ξi, Z, ξ j) = 0. (26)

From (16) and (26), using (13), we get

g((£ξi f )X, ξ j) = −g(∇ f X ξi, ξ j)
(13)
= 0. (27)

Using f ξi = 0, gives (∇X f ) ξi = − f ∇X ξi. Thus, combining (23), (25) and (27),
we find

g( f ∇X ξi, Z) = g(X, QZ) + g(hiZ, X)−∑ j η j(X) η j(Z). (28)

Replacing Z by f Z in (28) and using (1) and f ξi = 0, we achieve

g(Q∇X ξi, Z) = g(( f Q + hi f )Z, X) = −g(( f Q + f h∗i )X, Z),

that is QCξi = f Q + f h∗i , see (21). This, under assumption hi = 0, implies (22).

For a weak f -K-contact manifold, using the property hi = h∗i = 0 in Proposition 3, we
obtain the following equalities for i = 1, . . . , s:

£ξi Q̃ = 0, N(5)(ξi, · , ·) = 0. (29)

The following corollary generalizes the known properties of f -contact manifolds.

Corollary 1. Let a weak f -contact manifold M2n+s( f , Q, ξi, ηi, g) satisfy (29a), then

trace hi = 0 (i = 1, . . . , s);

if, in addition, (29b) holds, then the components of Cξi in (15) are as follows: Tξi = f and
Aξi = Q−1 f hi for i = 1, . . . , s.

Proof. By the assumptions, from Proposition 3 we get:

hi = h∗i , hi f + f hi = 0, Q hi = hiQ (i = 1, . . . , s).

If hiX = λX, then using hi f = − f hi, we get hi f X = −λ f X. Thus, if λ is an eigenvalue
of hi, then −λ is also an eigenvalue of hi; hence, trace hi = 0. Since f is skew-symmetric
and Q−1 f hi is self-adjoint, by (21) and the equality (29), we prove the claim.

If a plane contains unit vectors ξ ∈ ker f and X ∈ D, then its sectional curvature
is called ξ-sectional curvature. The ξ-sectional curvature of an f -contact manifold is the
mixed sectional curvature of an almost product manifold (M, g; ker f ,D), see [21]. Recall that
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a Riemannian manifold (M, g) equipped with complementary orthogonal distributions
(D1,D2) is called a Riemannian almost product manifold, e.g., [21].

The Jacobi operator Rξ (ξ ∈ ker f , ‖ξ‖ = 1) is defined as R ξ : X → RX, ξ ξ, e.g., [21].
We generalize the property of an f -K-contact manifold that the ξ-sectional curvature is
constant and equal to 1, or, equivalently, R ξi (X) = X (X ∈ D), see [17]. Again, the proof
requires some calculations with the tensor N(5).

Theorem 2. For a weak f -K-contact manifold, the ξ-sectional curvature is positive, or, equivalently,
the Jacobi operator Rξ (ξ ∈ ker f , ‖ξ‖ = 1) is positive definite on D.

Proof. By (10), using N(3)
i = 0, we get

N(5)( · , ξi, ·) = 0 (i = 1, . . . , s). (30)

By (9) with Y = ξi, using (30), we get

g((∇X f ) ξi, Z) = g( f 2X, Z) (i = 1, . . . , s).

Hence, (∇X f ) ξi = f 2X. From this and

0 = ∇X ( f ξi) = (∇X f ) ξi + f∇X ξi (i = 1, . . . , s),

we obtain the equality f∇X ξi = − f 2X. Since f is non-degenerate on D, we get

∇X ξi = − f X (i = 1, . . . , s). (31)

Using (31), we derive some components of the curvature tensor,

RZ, X ξi = ∇Z(∇X ξi)−∇X(∇Z ξi)−∇[Z,X] ξi)

= ∇X( f Z)−∇Z( f X) + f ([Z, X]) = (∇X f )Z− (∇Z f )X.
(32)

Note that (∇XΦ)(Y, Z) = −g((∇X f )Y, Z). Using condition dΦ = d2ηi = 0, we get

(∇XΦ)(Y, Z) + (∇YΦ)(Z, X) + (∇ZΦ)(X, Y) = 0. (33)

From (32), using (33) and skew-symmetry of Φ, we get

g(Rξi , X Y, Z) = g(RY, Z ξi, X) = (∇Z Φ)(X, Y) + (∇Y Φ)(Z, X)
= −(∇X Φ)(Y, Z) = g((∇X f )Y, Z).

(34)

By (34) with Y = ξi, using f ξi = 0 and (31), we find

Rξi ,X ξi = (∇X f ) ξi = − f∇X ξi = f 2X (i = 1, . . . , s). (35)

By (35), g(Rξi (X), X) = g(− f 2X, X) = g( f X, f X) > 0 for any X 6= 0.

The maximal number of point-wise linearly independent vector fields on a sphere Sn−1 is
denoted by ρ(n)− 1. The topological invariant ρ(n), called the Adams number, is

ρ((odd) 24b+c) = 8b + 2c for any integers b ≥ 0, 0 ≤ c ≤ 3,

see Table 1, and the inequality ρ(n) ≤ 2 log2 n + 2 is valid, for example, ([21], Section 1.4.4).
There are not many theorems in differential geometry that use ρ(n). Applying the Adams
number, we obtain a topological obstruction to the existence of weak f -K-contact manifolds.
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Table 1. The number of vector fields on the (n− 1)-sphere.

n− 1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

ρ(n)− 1 1 3 1 7 1 3 1 8 1 3 1 7 1 3 1

Theorem 3. For a weak f -K-contact manifold M2n+s( f , Q, ξi, ηi, g) we have s < ρ(2n).

Proof. For the weak f -contact structure, the following Riccati equation is true, e.g., [21]:

∇ξ Cξ + (Cξ)
2 + Rξ = 0 (ξ ∈ ker f ).

Since Cξ is skew-symmetric for a weak f -K-contact manifold, i.e., Cξ = Tξ and Aξ = 0,
see (14), and Rξ is self-adjoined, the Riccati equation splits into two equations on D:

∇ξ Tξ = 0 (the skew-symmetric part), (Tξ)
2 = −Rξ (the self-adjoint part).

By this and Theorem 2, we get Cξ(Y) 6= 0 for any ξ 6= 0 and Y 6= 0. Note that a
skew-symmetric linear operator Tξ can only have zero real eigenvalues. Thus, for any
point x ∈ M, the following continuous vector fields, Cξi (Y), where ‖Y‖ = 1 and 1 ≤ i ≤ s,
are tangent to the unit sphere S2n−1 ⊂ (ker f )x. If s ≥ ρ(2n), then these vector fields
are linearly dependent at some point Ỹ ∈ S2n−1 with weights λi, i.e., ∑i λiCξi (Ỹ) = 0.
Then the co-nullity tensor has a real eigenvector Cξ(Ỹ) = λ Ỹ, where ξ = ∑i λi ξi 6= 0 and
λ = 〈Cξ(Ỹ), Ỹ〉 = 0, which is a contradiction. Thus, the inequality s < ρ(2n) holds.

3.3. Integral Formulas on Closed Weak f -Contact Manifolds

The integral formulas we are considering in this section are obtained by applying the
Divergence Theorem to the appropriate vector fields.

The elementary symmetric functions of any 2n-by-2n matrix C are the coefficients of
ti in the following equality, e.g., ([21], p. 57): ∑ 2n

i=0 σi ti = det(id + t C). The Newton
transformations Tr(C) of a 2n-by-2n matrix C are defined as, e.g., [21]:

Tr(C) = ∑r
j=0(−1)jσr−j(ξ)Cj = σr id− σr−1C + . . . + (−1)rCr.

For example, T0(C) = id and T2n(C) = 0 (by the Cayley–Hamilton Theorem).
For a weak f -K-contact manifold, by the skew symmetry C∗ξ = −Cξ (the distribu-

tion D is totally geodesic), we get ∑ 2n
i=0 σi(ξ) ti = ∑ 2n

i=0 σi(ξ) (−t)i for all t ∈ R; thus,
σ2j−1(ξ) = 0 (i > 0) and σ2j(ξ) of Cξ are given by ∑ n

j=0 σ2j(ξ) t2j = det(id + t Cξ).
Let S⊥ = {ξ ∈ ker f : ‖ξ‖ = 1} be the unit sphere bundle with the Sasaki metric and

the volume form ω⊥. The natural projection π : S⊥ → M is a Riemannian submersion
with totally geodesic fibers F—unit spheres {S⊥q }q∈M. Thus, the volume form of S⊥ is
decomposed as, see [27],

d vol(S⊥) = d vol(F) d vol(M),

and the differentiating along M commutes with the integration on the fibers S⊥q .

Proposition 4. For the weak f -contact structure ( f , Q, ξi, ηi, g) on a closed manifold M2n+s, the
following integral formulas are true:∫

ξ∈S⊥

{
(r + 2) σr+2(ξ)− trace (Tr(Cξ) Rξ)

}
d ω⊥ = 0, r ≥ 0. (36)

Proof. The characteristic distribution of a weak f -contact manifold defines a totally geodesic
foliation. Thus, (36) follows from the result of ([28], Corollary 4.1).
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Remark 6. The integrals over S⊥q when s > 1 can be reduced to sums. To show this, let
λ = (λ1, . . . , λs) and y = (y1, . . . , ys). Then, see, for example, [28],

Iλ :=
∫
‖y‖=1

yλ d ωs−1 =
2

Γ
( s

2 + 1
2 ∑i≤s λi

) ∏ i≤s
1
2
(1 + (−1)λi ) Γ

(1 + λi
2

)
,

where yλ = ∏ i≤s yλi
i , and Γ is the Gamma function. For example,

I0,...0 =
2 πs/2

Γ(s/2)
= Vol(S s−1

1 ), I2λ1,0,...0 = 2 π
s−1

2
Γ(1/2 + λ1)

Γ(s/2 + λ1)
.

For s = 1 we integrate in (36) not over S⊥, but over M. The following formula is
similar to the result in ([28], Example 5.7) for geodesic vector fields.

Corollary 2. For the weak contact structure ( f , ξ, η, g) on a closed manifold M2n+1, we get∫
M

{
(r + 2) σr+2(ξ)− trace (Tr(Cξ)Rξ)

}
d vol = 0, r ≥ 0. (37)

Remark 7. Using the equality Ric(ξ, ξ) = trace Rξ , we reduce (37) for r = 0 to the integral
formula

∫
M
(
2 σ2(ξ) − Ric(ξ, ξ)

)
d vol = 0. For a weak K-contact manifold, the integrand in

the above formula vanishes. Indeed, by (35), we get Ric(ξ, ξ) = trace f 2. On the other hand,
trace Cξ = 0 and 2 σ2(ξ) = (trace Cξ)

2 − trace C2
ξ = − trace f 2.

The mixed scalar curvature of a Riemannian almost product manifold is the function

Smix = ∑a,i g(REa ,Ei Ea, Ei),

where {Ei, Ea} is an adapted orthonormal frame, i.e., {Ea} ⊂ D1 and {Ei} ⊂ D2. Let bi
and Hi be the second fundamental form and the mean curvature vector, and Ti be the
integrability tensor of the distribution Di. The following formula [29],

Smix = div(H1 + H2)− ‖b1‖2 − ‖b2‖2 + ‖H1‖2 + ‖H2‖2 + ‖T1‖2 + ‖T2‖2 (38)

(see also (36) for r = 0), has many applications in Riemannian geometry, see [21], and
counterparts in Kähler and Sasakian geometries, see [30].

Proposition 5. For the weak f -contact structure ( f , Q, ξi, ηi, g) on a closed manifold M2n+s with
conditions (29), the following integral formula is true:∫

M

{
∑ i

(
Ric(ξi, ξi) + ‖Q−1 f hi‖2 − (trace Q−1 f hi)

2 )− s ‖ f ‖2
}

d vol = 0. (39)

Proof. According to (38), set D1 = D and D2 = ker f . Then b2 = H2 = T2 = 0 and

b1(X, Y) = ∑ i g(Q−1 f hiX, Y) ξi, H1 = ∑ i trace (Q−1 f hi) ξi, T1(X, Y) = g( f X, Y) ξ,

where ξ = ∑ i ξi. For a weak f -contact manifold we have Smix = ∑ i Ric(ξi, ξi). Thus, (39) is
the counterpart of (38) integrated on a closed Riemannian manifold using the Divergence
Theorem and Corollary 1.

4. Conclusions

It was shown that the weak f -contact structure, in particular, its splitting tensor, is
a useful tool for studying totally geodesic foliations, Killing vector fields, positiveness
of ξ-sectional curvature and other topics of extrinsic geometry of foliations [21]. Some
results for f -contact structure have been extended to certain weak structures and can be
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generalized for such structures with indefinite metrics (see [4] for Q = id). Integral for-
mulas for closed Riemannian manifolds equipped with distributions have counterparts
in weak f -contact geometry; the concepts of contact holomorphic distribution and har-
monic morphism, see [30], can be applied to weak f -contact manifolds to produce more
integral formulas and Bochner-type results. Based on applications of the weak f -contact
structure in contact geometry considered in the article, we expect that this structure will
also be fruitful in physics, e.g., in QFT. In conclusion, we pose several questions. Is the
condition “the ξ-sectional curvature is positive” sufficient for a weak f -contact manifold to
be weak f -K-contact? Does a weak f -contact manifold of dimension greater than 3 have
some positive ξ-sectional curvature? Is a compact weak f -K-contact Einstein manifold an
S-manifold? When is a given weak f -K-contact manifold a mapping torus (see [17]) of a
manifold of lower dimension? When does a weak f -contact manifold equipped with a
Ricci-type soliton structure carry a canonical (for example, with constant sectional curvature
or Einstein-type) metric? One could answer these questions by generalizing some deep
results on f -contact manifolds for weak f -contact manifolds.
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