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Abstract: The temperature distribution in a conductive-radiative rectangular profiled annular fin
with internal heat generation is scrutinized in the present investigation. The nonlinear variation of
thermal conductivity and heat transfer coefficient governed by the power law is considered. The ana-
lytical approximation for the non-dimensional temperature profile is obtained using the differential
transform method (DTM)-Pade approximant. The nondimensionalization of the governing energy
equation using dimensionless terms yields a nonlinear ordinary differential equation (ODE) with
corresponding boundary conditions. The resulting ODE is analytically solved with the assistance
of the DTM-Pade approximant procedure. Furthermore, the impact of thermal parameters on the
temperature field and thermal stress is elaborated with graphs. The important results of the report
divulge that temperature distribution greatly enhances with an augmentation of the heat generation
parameter, but it gradually reduces with an increment in the magnitude of the thermogeometric and
radiative-conductive parameter.

Keywords: extended surface; annular fin (AF); thermal distribution; thermal stress; DTM

1. Introduction

Heat transfer science is among the most significant and widely used engineering
subjects. Enhancing this process to achieve a higher heat transmission rate has become
one of the most important factors necessary for the substantial advancement of modern
technology. Heat transfer fluids (HTF), namely nanofluids, and hybrid nanofluids, may
be used in manufacturing processes to achieve the maximum heat transfer rate. This is
one of the well-known methods used to improve heat transfer. Many investigators have
researched heat transmission’s physical and chemical mechanisms in the flow of various
liquids through diverse geometries. Numerous researchers have addressed heat transfer
involving nanofluids, hybrid nanofluids, and non-Newtonian fluid flow. Rashid et al. [1]
addressed the transfer mechanism of heat in the flow of nanoliquid past a cylinder. By
considering the inclined effect of the magnetic field, Abbas et al. [2] described the transfer
of heat on hybrid nanoliquid stream in cylindrical geometry. Kumar et al. [3] probed the
characteristic of heat transfer on the flow behavior of carbon nanotubes. Bilal et al. [4] con-
sidered the chemical effect for investigating heat transfer features on a nanoliquid stream
through a parallel plate. Alharbi et al. [5] studied the impact of induction on the heat
transfer of nanoliquid incorporating tri-nanoparticles. With the consideration of entropy
production, Rasool et al. [6] illustrated the transfer of heat on the flow of nanoliquid includ-
ing carbon nanotubes in a cavity. The radiative mode of heat transmission was studied
by Rasool et al. [7] in the presence of rate-type nanoliquid. The studies described above
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show that the major use of nanofluids is to accomplish heat transfer rates by modifying the
thermal conductivity.

On the other side, excessive air-side thermal resistance must be reduced to augment
the thermal performance of air-cooled heat exchangers. As a result, extended surfaces are
extensively used in air-side heat exchangers and greatly develop the heat transmission rate
by expanding the surface area and promoting turbulent airflow mixing. Consequently, to
accurately separate the development of the temperature interface layer from the leading
edge, highly interrupted surfaces are frequently encountered in enhanced surfaces. Fins
are extended surfaces utilized in a wide range of engineering systems to increase the heat
transmission rate. As a result, many researchers have proposed analytical and numerical
approaches to the heat transfer phenomenon in extended surfaces/fins. Recently, the
transport of heat and temperature distribution through differently structured fins has been
examined. Gouran et al. [8] described the production of internal heat and the convective
transfer of heat in the straight fin. They concluded that fin cooling performance improves
in the presence of radiative heat transport. With the application of the spectral collocation
technique, Weera et al. [9] explored the nature of thermal dispersion in the permeable
dovetail extended surface. They noticed that using fins with a non-uniform cross-sectional
area and convective heat transfer at the fin tip is effective for enhanced heat transmission.
Din et al. [10] inspected the impact of entropy and scrutinized the transmission of heat
through the permeable exponential profiled extended surface. Their finding indicates
that radiation has a greater influence on heat transmission in the fin. Kumar et al. [11]
performed a simulation calculation to debrief the thermal discrepancy in the straight fin.
Their foremost results emphasized the significance of nonlinear temperature-dependent
thermal conductivity in analyzing thermal dispersion in the fin. Abdulrahman et al. [12] in-
vestigated the heat transport mechanism in a permeable exponential fin wetted with hybrid
nanoliquid. In their research, they revealed that the wet surface condition with hybrid nano-
liquid would effectively impact the temperature dispersion and rate of heat transmission.

Thermal equipment generally requires an efficient transfer of heat from one form of
energy to another. Fins are expanded surfaces that strengthen heat transmission between
a solid and an adjacent fluid. Because of their compactness and significant thermal per-
formance, annular fins with constant thickness are widely used in numerous engineering
fields. Electronic cooling, aerospace industries, vehicle radiators, internal combustion
engines, compact heat exchangers, electrical components, and so on are their common
applications. As a result, one of the most considerable purposes is to explore heat trans-
mission through an annular fin (AF). In several circumstances, engineers neglected the
coupled thermomechanical consequences developed throughout heat transfer provoked
by an inhomogeneous temperature gradient. In this perspective, thermal stresses play
a prominent part in various mechanical phenomena, such as crack propagation, creep,
and fatigue, which can shorten a material’s life expectancy. As a consequence, taking into
account thermal stresses is critical for avoiding material degradation, and it is something
that ought not to be neglected while designing. Many researchers have examined thermal
stress and temperature dispersal through AN in view of these considerations. The thermal
stress aspects and the temperature response of an annular fin were examined by Mallick
and Das [13]. They observed that the Biot number affects the stress and temperature
distributions. Using the pseudospectral technique, Darvishi et al. [14] probed the energy
transfer of a hyperbolic profiled annular fin. Their research has shown that thermal con-
ductivity rises with temperature, which improves both the fin’s temperature distribution
and efficiency. Kundu and Lee [15] explicated the radiation phenomenon and the impact of
internal heat production in an annular stepped fin by employing the differential transform
method (DTM). Their study reveals that porous fins better transfer heat than solid fins.
Using the homotopy perturbation method (HPM), the thermal stress behavior and tem-
perature dispersal in an annular fin were reviewed by Mallick et al. [16]. Their study did
not discuss the radiative impact on stress and temperature distribution. The thermal stress
aspects and behavior of temperature attributes of a rectangular profiled annular fin with
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temperature-dependent thermal properties were scrutinized by Kumar et al. [17]. They
observed that the impact of the discussed thermal parameters on fin efficiency varies greatly
in multi-boiling heat transfer instances. Various thermophysical properties, such as the
material’s thermal conductivity, heat transfer coefficient, geometry, and so on, influence the
temperature distribution within the fin. The concept of constant thermophysical parameters
has been used in most fin analytical investigations. This consideration greatly reduces the
mathematical difficulties of solving the heat transfer issue, providing a simpler explicit
analytical solution. The thermal conductivity, however, differs from the local temperature
difference in reality. Since variable thermal conductivity is considered, the governing heat
transfer equation has quite strong nonlinearity. Several researchers have explored these
equations’ numerical and semi-analytical solutions by considering the power law thermal
properties. Mosayebidorcheh et al. [18] researched the thermal attribute of a fin with power
law temperature-dependent thermal properties and solved the energy equation by employ-
ing the DTM scheme. Kader et al. [19] considered the nonlinear thermal properties for
scrutinizing a straight fin’s heat transmission and efficacy. Using the variational iteration
method (VIM), the energy transference in an extended surface having diverse profiles was
debriefed by Ndlovu and Moitsheki [20] with the consideration of nonlinearly varying
thermal conductivity. Sun and Li [21] examined the convective heat transfer phenomenon
within a straight longitudinal fin by ignoring the radiation mode of heat transfer. They
used the generalized power law thermal conductivity and discussed heat dissipation for
various special cases.

A powerful semi-exact method is the differential transform method (DTM), which is
notable for its ease of use and functionality in solving nonlinear differential equations. This
technique differs significantly from the conventional higher-order Taylor series method-
ology. The Taylor series procedure is computationally complex for higher orders. The
DTM is an alternative algorithm for detecting an analytic Taylor series solution to nonlinear
equations. This technique can be implemented directly to nonlinear differential equations
without the requirement for discretization, so it is unaffected by discretization inconsis-
tencies. Kundu et al. [22] utilized the procedure of DTM to predict thermal dispersal
through an exponential profiled fin and conferred the effect of parameters on fin efficiency.
Lin and Chen [23] employed the DTM technique to obtain the analytical approximation
for the annular fin of the hyperbolic profile. They compared the result of DTM with the
double-decomposition method (DDM) and concluded that DTM gives more accurate re-
sults than DDM without any linearization. The closed-form solution for an annular disc
extended surface in the presence of heat production was probed by Kundu [24] using the
DTM approach. The closed-form-based series solutions for the velocity and temperature
profile of the hybrid nanofluid flow were presented by Christopher et al. [25] via the DTM
procedure. Alhejaili et al. [26] inspected heat transference features of a radiant longitudinal
fin using the DTM algorithm.

As disclosed in the above-mentioned literature, many researchers performed an in-
vestigation of heat transfer through the different profiled fins using analytical techniques
to solve the heat equation. Since heat loss from the fin surface to the environment via
convection and radiation impacts local temperature variations, numerous studies have
been published to assess the thermal dispersal through a fin of various profiles in the
involvement of these phenomena. However, very few investigations can be found in
examining the convection and radiation phenomena and the distribution of temperature
variance in an annular fin. In this context, the thermal stresses and temperature dispersal in
a conductive-radiative annular fin are examined by considering the nonlinear temperature-
dependent thermal conductivity and heat transfer coefficient. Also, the proposed study
fills the research gap of deriving the analytical solutions for several cases of power index
of thermal conductivity and heat transfer coefficient using the DTM-Pade approximant
method. Furthermore, the variations in the temperature field are expounded graphically
for the impact of several non-dimensional parameters and the power index of thermal
conductivity. The novelty of the current thermal analysis can be summarized as follows:
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• Thermal distribution through an AF with radiation impact using nonlinear thermal
conductivity and coefficient of heat transfer.

• Analysis of thermal stress in the AF with radiative and convective heat transfer
mechanisms.

• Presenting the analytical solution for the nonlinear equation of the considered AF
problem.

• A simulation approach for thermal distribution and stress analysis using ANSYS
software.

2. Formulation of the Problem

Consider an axisymmetric thin AF constructed of a homogenous isotropic substance
with an inner radius ri, outer radius r0, and uniform thickness δ∗, as shown in Figure 1.
For designing the governing equations of an annular fin, the following conventions
are assumed:

• The fin is positioned on a cylinder-shaped prime surface with temperature Tb, and T∞
denotes the surrounding fluid temperature during the heat dissipation.

• The fin’s tip is presumed to be insulated, so the heat dissipation is inconsequential at
its tip.

• The thermal properties of the fin are taken to be temperature-dependent nonlinearities.
• Heat is transferred from AF to its surroundings by convection and radiation.
• Since the fin’s thickness is assumed to be much less than other dimensions, the heat

conduction arises only in the radial direction.
• Since the fin is considered to be thin, the temperature dispersal within the fin does not

depend on the axial direction.
• It is presumed that the coefficient of convective heat transfer varies with temperature.
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The governing differential equation for one-dimensional heat transference with con-
vection and radiation is specified as (see Ranjan et al. [27]):

qr − qr+dr = 2πh∗r(T − T∞)dr− 2πq∗(T)δ∗rdr + 2πεradσstr
(

T4 − T4
∞

)
dr (1)

where the surface emissivity εrad is presumed to be constant.
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Equation (1) can be written as:

−dq
dr
− 2πh∗r(T − T∞) + 2πq∗(T)δ∗r− 2πεradσstr

(
T4 − T4

∞

)
= 0 (2)

The q is addressed using Fourier’s conduction law as follows:

q = −k∗(T)Ac
dT
dr

and Ac = 2πδ∗r (3)

k∗(T) and h∗(T) are the power functions, whereas q∗(T) is linearly dependent on
temperature and are given as:

k∗(T) = k0

[
T−T∞
Tb−T∞

]m
,

q∗(T) = q0[1 + c(T − T∞)],

h∗(T) = h0

[
T−T∞
Tb−T∞

]n
.

 (4)

The power index m of k∗(T) elucidates the variance of k∗(T) as a function of tempera-
ture. For example, if m = 0, k∗(T) is constant, while if m = 1, k∗(T) fluctuates as a linear
function of temperature, and when m = 2, k∗(T) has a parabolic or nonlinear dependency
on temperature. On the other side, the constant n depends on the heat transfer mechanism
and may fluctuate between −6.6 and 5. For instance, n = −3 indicates the transition
boiling. Film boiling and convection occur for n = 0 and n = 1. n = 2 and n = 3 signify
the nucleate boiling and radiation mode of heat transference, respectively.

The subsequent energy balance equation is derived by substituting Equation (3) into
Equation (2):

δ∗
d
dr

[
k∗2πr

dT
dr

]
− 2πh∗r(T − T∞) + 2πq∗δ∗r− 2πrεradσst

(
T4 − T4

∞

)
= 0 (5)

The corresponding boundary conditions (BCs) for Equation (5) are:

r = a : T = Tb,
r = b : dT

dr = 0.

}
(6)

For simplification, the non-dimensional variables mentioned below are presented:

R = b
a , θ = T−T∞

Tb−T∞
, γ = c(Tb − T∞), Nt = T∞

Tb−T∞
, ξ = r−a

a ,

ψ2 = h0a2

k0δ∗ , Nr = εradσsta2(Tb−T∞)3

k0δ∗ , µ = q0a2

k0(Tb−T∞)
.

 (7)

Equation (4) is substituted in Equation (5), and the resulting equation is reduced to a
dimensionless form by using Equation (7), which is given as:

θm d2θ

dξ2 +
θm

(1 + ξ)

dθ

dξ
+ mθm−1

(
dθ

dξ

)2
− ψ2θn+1 + µ(1 + γθ)− Nr

(
(Nt + θ)4 − Nt4

)
= 0 (8)

Also, Equation (6) takes the below dimensionless form:

ξ = 0 : θ = 1,
ξ = R− 1 : θ′ = 0.

}
(9)

If m 6= 0, Equation (8) exhibits nonlinear behavior, and when both m 6= 0 and n 6= 0, the
problem indicates multi-nonlinearity. The linear relationship is interpreted in Equation (8)
for m = n = 0. In this investigation, the exponent index of k∗(T) and h∗(T) is taken to
be m > 0 and n > 0 because k∗(T) is supposed to be positive in most practical situations.
Heat transport attributes are examined in several investigations with constant and linear
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temperature variance k∗(T). The nonlinear function of thermal conductivity is presented in
Vitanov et al. [28], Mhlongo et al. [29], and Abbasbandy and Shivanian [30].

3. Preliminary Results of DTM

Taylor’s series can be denoted as (see Kundu et al. [22]):

f (l) =
∞

∑
ϑ=0

(ς− ς0)
ϑ

ϑ!

[
dϑ f (ς)

dxϑ

]
ς=ς0

(10)

The differential transformation of the ϑth derivative of a function f (ς) is defined by
(see Wang et al. [31]):

F(ϑ) =
1
ϑ!

[
dϑ f (ς)

dxϑ

]
ς=ς0

(11)

and the inverse differential transformation is signified as:

f (ς) =
∞

∑
ϑ=0

F(ϑ)(ς− ς0)
ϑ (12)

Pade approximant is an effective strategy for approximating a polynomial function in
terms of rational polynomial functions of a particular order. The fundamental properties of
this methodology are mentioned in Dogonchi et al. [32] and Sowmya et al. [33]. The major
fundamentals of DTM are specified in Table 1.

Table 1. Properties of DTM.

Original Function Transformed Function
ϕ(u) = z1(u)± z2(u) Φ(ϑ) = Z1(ϑ)± Z2(ϑ)

ϕ(u) = i z(u) Φ(ϑ) = iZ(ϑ), where i is the constant.

ϕ(u) = d z(u)
du Φ(ϑ) = (ϑ + 1)Z(ϑ + 1)

ϕ(u) = d pz(u)
du Φ(ϑ) = (ϑ + 1)(ϑ + 2) . . . (ϑ + n)Z(ϑ + p)

ϕ(u) = ui Φ(ϑ) = δ(ϑ− i) =
{

1, ϑ = i
0, ϑ 6= i

}
ϕ(u) = z1(u)z2(u) Φ(ϑ) =

ϑ
∑

r=0
Z1(r)Z2(ϑ− r)

ϕ(u) = z1(u)z2(u) . . . .
. . . . . . zs−1(u)zs(u)

Φ(ϑ) =
ϑ
∑

ϑs−1=0

ϑs−1=0
∑

ϑs−2=0
. . . .

ϑ3

∑
ϑ2=0

ϑ2

∑
ϑ1=0

Z1(ϑ1) Z2(ϑ2 − ϑ1) . . . Zs−1(ϑs−1 − ϑs−2)Zs(ϑ− ϑs−1)

4. Applications of DTM-Pade Method

Case 1: Linear thermal conductivity with nucleate boiling mode of heat transfer (m = 1
and n = 2).

Taking the differential transform of Equations (8) and (9), we obtain:
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u
∑

ω=0
Θ[u−ω](ω + 1)(ω + 2)Θ[ω + 2] + 1

1+δ[s−1]

u
∑

ω=0
(u−ω + 1)Θ[u−ω + 1]

ω

∑
s=0

Θ[ω− s]+

u
∑

ω=0
(u−ω + 1)Θ[u−ω + 1](ω + 1)Θ[ω + 1]− ψ2

u
∑

ω=0

ω

∑
s=0

Θ[s]Θ[ω− s]Θ[u−ω]−

Nr


4Nt3Θ[u] + 6Nt2

u
∑

ω=0
Θ[ω]Θ[u−ω] + 4Nt

u
∑

ω=0
Θ[u−ω]

ω

∑
s=0

Θ[s]Θ[ω− s]+

u
∑

ω=0

ω

∑
s=0

s
∑

w=0
Θ[w]Θ[s− w]Θ[ω− s]Θ[u−ω]


+µδ[u] + γµ Θ[u] = 0



(13)

Θ[0] = 1,
Θ[1] = B,

}
(14)

where Θ[u] is the differential transform of θ(ξ).
Recursively evaluating the Θ[u] from Equation (13) yields the following series solution:

θ(ξ) = Θ[0] + Θ[1]ξ + Θ[2]ξ2 + Θ[3]ξ3 + Θ[4]ξ4 (15)

where Θ[i], i = 1, 2, 3, 4, have the forms:

Θ[2] = 2NrNt3 + 3NrNt2 − 1
2

B2 + 2NrNt− 1
2

γµ +
1
2

ψ2 − 1
2

B +
1
2

Nr− 1
2

µ, (16)

Θ[3] = − 4
3 BNrNt3 − BNrNt2 + 1

2 B3 1
3 γµB + 1

2 B2 + 1
6 NrB + 1

2 Bµ + 1
6 γµ− 2

3 NrNt3 − NrNt2−
2
3 NrNt + 1

6 µ− 1
6 ψ2 + 1

12 B− 1
6 Nr,

}
(17)

Θ[4] = 3
8 B2ψ2 + 5

12 B2Nr− 3
4 B2µ + 1

6 Nr2Nt + 1
6 ψ2B + 1

24 ψ2Nr + 1
8 ψ2µ + 1

12 BNr− 5
12 Bµ + 1

24 Nr2 + 1
12 Nrµ−

1
8 µ2 − 4

3 Nr2Nt6 − 3Nr2Nt5 − 17
6 Nr2Nt4 − 7

6 Nr2Nt3 − 1
8 B4 − 5

8 B3 − 5
24 B2 − 1

16 B− 1
12 γ2µ2 − 5

24 γµ2−
1
6 B5γµ− 5

24 B2γµ + 1
12 γµψ2 − 1

4 γµB + 1
24 γµNr + 2

3 NrNt3γµ + 3
4 NrNt2γµ + 1

3 NrNtγµ− 1
24 B4γµ+

13
6 NrNt3B2 − 1

3 NrNt3ψ2 + 4
3 NrNt3B + 5

6 NrNt3µ + 5
2 NrNt2B2 − 1

4 NrNt2ψ2 + 3
2 NrNt2B + NrNt2µ+

3
2 B2NrNt + 2

3 NrNtB + 1
2 NrNtµ.


(18)

and so on. where B is the constant to be determined using Equation (9).
For determining the B value, the Pade approximant is implemented into Equation (18).

For ψ = 0.1, µ = 0.1, Nt = 0.1, Nr = 0.1, γ = 1, we have found B = −0.27478. So, the
solution of Equation (8) is:

θ(ξ) = 1− 0.2747898495 ξ + 0.07784019410 ξ2 + 0.00420937640 ξ3+
0.02344500766 ξ4 + . . . . . . .,

(19)

Case 2: Nonlinear thermal conductivity with radiation mode of heat transfer (m = 2
and n = 3).

The analytical solution for nonlinear thermal conductivity with radiation mode of heat
transfer (m = 2 and n = 3) is derived.

Taking the differential transform of Equation (8), we obtain:



Symmetry 2023, 15, 1204 8 of 28

u
∑

ω=0
Θ[u−ω]

ω
∑

s=0
(s + 1)(s + 2)Θ[s + 2]Θ[ω− s] + 1

1+δ[w−1]

u
∑

ω=0
(u−ω + 1)Θ[u−ω + 1]

ω
∑

s=0
Θ[ω− s]

s
∑

w=0
Θ[s− w]+

2
u
∑

ω=0
Θ[u−ω]

ω
∑

s=0
(s + 1)Θ[s + 1](ω− s + 1)Θ[ω− s + 1]− ψ2

u
∑

ω=0
Θ[u−ω]

ω
∑

s=0

s
∑

w=0
Θ[w]Θ[s− w]Θ[ω− s]−

Nr


4Nt3Θ[u] + 6Nt2

u
∑

ω=0
Θ[ω]Θ[u−ω] + 4Nt

u
∑

ω=0
Θ[u−ω]

ω
∑

s=0
Θ[s]Θ[ω− s]+

u
∑

ω=0

ω
∑

s=0

s
∑

w=0
Θ[w]Θ[s− w]Θ[ω− s]Θ[u−ω]


+µδ[u] + γµ Θ[u] = 0,



(20)

Recursively evaluating the Θ[u] from Equation (20) yields the following series solution:

θ(ξ) = Θ[0] + Θ[1]ξ + Θ[2]ξ2 + Θ[3]ξ3 + Θ[4]ξ4 (21)

where Θ[i], i = 1, 2, 3, 4, have the forms:

Θ[2] = 2NrNt3 + 3NrNt2 − B2 + 2NrNt− 1
2

γµ +
1
2

ψ2 − 1
2

B +
1
2

Nr− 1
2

µ, (22)

Θ[3] = − 10
3 BNrNt3 − 4BNrNt2 + 5

3 B3 − 2BNrNt + 5
6 γµB− 1

3 ψ2B + B2 − 1
3 BNr + Bµ+

1
6 γµ− 2

3 NrNt3 − NrNt2 − 2
3 NrNt + 1

6 µ− 1
6 ψ2 + 1

12 B− 1
6 Nr

}
(23)

Θ[4] = 5
3 NrNt3γµ + 9

4 NrNt2γµ + 4
3 NrNtγµ− 10

3 B4 − 1
12 ψ4 − 25

12 B2γµ + 7
24 γµψ2 + 7

24 γµNr + 1
2 BNr + 1

2 ψ2B− 5
6 Bµ−

5
24 γ2µ2 − 11

24 γµ2 − 5
2 B3 − 5

12 B2 − 1
16 B + 3BNrNt3 + 4BNrNt2 + 7

3 BNrNt− 3
4 γµB− 10

3 Nr2 Nt6 − 9Nr2 Nt5 − 34
3 Nr2 Nt4−

49
6 Nr2 Nt3 − 7

2 Nr2 Nt2 + 4
3 B2ψ2 + 4

3 B2 Nr− 5
2 B2µ− 5

6 Nr2 Nt− 1
6 ψ2 Nr + 1

3 ψ2µ− 1
12 Nr2 + 1

3 Nrµ− 1
4 µ2 + 25

3 NrNt3B2−

7
6 NrNt3ψ2 + 11

6 NrNt3µ + 21
2 NrNt2B2 − 3

2 NrNt2ψ2 + 5
2 NrNt2µ + 6B2 NrNt− 5

6 NrNtψ2 + 3
2 NrNtµ


(24)

and so on.
For determining the B value, apply Pade approximant to Equation (24). For ψ = 0.1,

µ = 0.1, Nt = 0.1, Nr = 0.1, γ = 1, we have found B = −0.54053. So, the solution of
Equation (8) is

θ(ξ) = 1 − 0.5405345009ξ − 0.0437102963 ξ2 − 0.07494578964 ξ3

− 0.0083211651 ξ4 + . . . . . . .
(25)

5. Thermal Stress Formulation

A comprehensive thermal stress investigation is essential for effectively modeling a
fin and selecting a suitable material to strengthen its performance and life span. In regard
to this, numerous investigators have examined the stress behavior of an annular fin using
the classical theory of elasticity. Mallick and Das [13] and Mallick et al. [16] explain the
fundamentals of the thermal stress of a convective annular fin. Motivated by these works,
the thermal stress variation for a radiative annular fin has been examined in this inspection.
Therefore, the fundamental properties of thermal stress are not necessary to describe here.
The solutions to the closed-form stress fields are given in the aforementioned studies i.e.,

σr = −
α∗E
r2

r∫
a

(T − T∞) ξ dξ +
α∗E

b2 − a2

(
1− a2

r2

) b∫
a

(T − T∞) ξ dξ (26)
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and

σφ = −α∗E(T − T∞) +
α∗E
r2

r∫
a

(T − T∞) ξ dξ +
α∗E

b2 − a2

(
1 +

a2

r2

) b∫
a

(T − T∞) ξ dξ (27)

These expressions are reduced to their non-dimensional form as:

σr
∗ = − α∗

ξ1
2a2 (Tb − T∞)

ξ1∫
1

θaξ1adξ1 +
α∗

b2 − a2 (Tb − T∞)

(
1− 1

ξ1
2

) R∫
1

θaξ1adξ1 (28)

and

σφ
∗ = −α∗(Tb − T∞)θ +

α∗

ξ1
2a2 (Tb − T∞)

ξ1∫
1

θaξ1adξ1 +
α∗

b2 − a2 (Tb − T∞)

(
1 +

1
ξ1

2

) R∫
1

θaξ1adξ1 (29)

With the aid of dimensionless parameters (Sowmya et al. [34]):

σr
∗ =

σr

E
, σφ

∗ =
σφ

E
, ξ1 =

r
a

, R =
b
a

, θ =
T − T∞

Tb − T∞
and χ = α∗(Tb − T∞) (30)

Using χ and R, Equations (28) and (29) are denoted as:

σr
∗ = − χ

ξ1
2

ξ1∫
1

θ ξ1dξ1 +
χ
(
ξ1

2 − 1
)

(R2 − 1)ξ1
2

R∫
1

θ ξ1dξ1 (31)

and

σφ
∗ = −χθ +

χ

ξ1
2

ξ1∫
1

θ ξ1dξ1 +
χ
(
ξ1

2 + 1
)

(R2 − 1)ξ1
2

R∫
1

θ ξ1dξ1 (32)

The ξ and ξ1 are related as ξ1 = ξ + 1 and, thus, yields:

σr
∗ = − χ

(ξ + 1)2

ξ∫
0

θ (ξ + 1)dξ +
χ
(
ξ2 + 2ξ

)
(R2 − 1)(ξ + 1)2

R−1∫
0

θ (ξ + 1)dξ (33)

σφ
∗ = −χθ +

χ

(ξ + 1)2

ξ∫
0

θ (ξ + 1)dξ +
χ
(
ξ2 + 2ξ + 2

)
(R2 − 1)(ξ + 1)2

R−1∫
0

θ (ξ + 1)dξ (34)

6. Numerical Procedure

Many investigations have focused on the numerical and analytical solutions to the
thermal modeling of the fins under several operational conditions. However, the majority
of the solutions that have been developed are centered around the presumption of constant
thermal properties. Also, the heat transmission coefficients change with temperature. As
the heat transfer coefficient varies as a function of temperature, a power law is generally
responsible for this change. Furthermore, the thermal conductivity of the fin is temperature-
dependent. In this case, the differential equations describing the thermal changes of the fin
under diverse situations become strictly nonlinear. The existing literature has numerous
techniques for tackling the nonlinear fin problem. The techniques used include HPM [16],
DTM [23], the collocation method [35], the Adomian decomposition method [36], the
Akbari-Ganji method [37], the Legendre wavelet collocation method (LWCM), the least
square method (LSM) and the moment method (MM) [38]. In the present investigation,
numerical calculations are performed using the Runge-Kutta Fehlberg fourth-fifth order
(RKF-45) technique. This method numerically solves Equations (8) and (9). The resulting
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equations have a two-point boundary and are higher-order. This is accomplished by
transforming the provided ODEs and BCs into a first-order initial value problem, as
shown below:

θ = H, θ′ = H∗, θ′′ = H′ = H∗∗ (35)

H∗∗ = − 1
(Hm)

 − Hm

(1+ξ)
H∗ −m H m−1(H∗)2 + ψ2Hn+1−

µ(1 + γ H) + Nr
(
(Nt + H)4 − Nt4

)  (36)

and reduced boundary conditions are:

H(0) = 1, H∗(1) = 0 (37)

A detailed description of this scheme is as follows:

β1 = hG(xβ, yβ) (38)

β2 = hG(xβ +
1
4

h, yβ +
1
4

β1), (39)

β3 = hG(xβ +
3
8

h, yβ +
3

32
β1 +

9
32

β2), (40)

β4 = hG(xβ +
12
13

h, yβ +
1932
2197

β1 −
7200
2197

β2 +
7296
2197

β3), (41)

β5 = hG(xβ + h, yβ +
439
216

β1 − 8β2 +
3680
513

β3 −
845
4104

β4), (42)

β6 = hG (xβ +
1
2

h, yβ −
8

27
β1 + 2β2 −

3544
2565

β3 +
1859
4104

β4 −
11
40

β− 5). (43)

The Runge-Kutta fourth-order approach has been utilized to determine an approxi-
mate solution:

yβ+1 = yβ +
25

216
β1 +

1408
2565

β3 +
2197
4101

β4 −
1
5

β5. (44)

Employing the Runge-Kutta fifth-order technique, the value of the solution is improved:

zβ+1 = yβ +
16

135
β1 +

6656
12825

β3 +
28561
56430

β4 −
9
50

β5 +
2

55
β6. (45)

For calculations, a step size of 0.1 is chosen, with a 10−6 error tolerance and the solution
we obtain is more credible, and this technique has a quicker convergence rate of about 10−6.

7. Simulation of Thermal Distribution and Stress Analysis

The thermal analysis in an AF is performed using ANSYS WORKBENCH with a
steady-state thermal module, which can execute a wide range of engineering modeling
scenarios, such as stress, vibration, thermo-electric, and thermal simulations. ANSYS R19.2
has been used to analyze the system with 17,392 nodes and 3342 elements. ANSYS is a low-
cost way to examine the effectiveness of products or operations in a simulated environment.
An annular fin fitted to a cylindrical surface is considered with dimensions of inner radius
4.5 m, outer radius 16 m, and thickness 1.2 m. Some fundamental presumptions are outlined
below for analyzing the fin temperature distribution.

• In the x-direction, one-dimensional heat conduction is considered, and stress is caused
by the temperature gradient.

• Over the entire fin surface, the coefficient of convective heat transfer is constant and
homogeneous, which is taken as 35 Wm−1 K−1.

• Radiation from the fin surface is considered with an emissivity of 0.83.
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• The ambient temperature is taken as 298.15 K.
• Heat generation of 1853 Wm−3 is taken in the fin.

8. Results and Discussions

The heat transfer equation (Equation (1)) is formulated by taking into account heat
generation and surface emissivity. The power law k∗(T) and h∗(T) are considered in this
inspection, and the heat equation is non-dimensionalized using suitable non-dimensional
variables as explained in Section 2. Using the preliminary results of DTM (see Section 3),
the analytical solutions for various values of power-index thermal properties are presented
in Section 4. In Section 5, the non-dimensional representation of the stress field components
is derived with the help of dimensionless terms. In this section, the non-dimensional
temperature gradient (θ) variation and the behavior of thermal stress components (σr

∗ and
σφ
∗) with the upshot of several non-dimensional parameters, namely heat generation µ,

radiative-conductive Nr, thermogeometric ψ, and temperature ratio Nt are elucidated with
the aid of graphs. Maple 17 (version: 813486) software is used to plot the graphs by setting
the physical parameters values as µ = 0.8, γ = 0.1, ψ = 0.5, n = 2 or 3, m = 1 or 2, Nt = 0.1,
and Nr = 0.5. The upshot of each thermal parameter on the thermal profile is illustrated
via figures by varying the associated parameter while retaining the values of the other
parameters. Furthermore, the graphs drawn for the solutions obtained by the DTM-Pade
display the closer convergence with the numerical method (NM), and this confirms the
validation of the obtained results. The solid lines in the graph indicate the solution of
DTM-Pade approximant, whereas the dotted lines are for the numerical method. Validation
of the current result with NM is examined in Figure 2. The proposed DTM approach shows
closer convergence with NM, and these two methods differ by an absolute maximum error
of 0.02 %. Also, Table 2 is constructed for validating the present DTM-Pade approximant
results of an annular fin temperature profile with available literature when µ = 0, γ= 0,
ψ= 0.3 , Nt = 0, Nr = 0, n = 0 and m = 0. The computational error is determined by
using Error = |θDTM − θnum|. The variations in θ of an annular fin for the various values
of power exponent of k∗(T) and h∗(T) are revealed in Figures 3–7. The values of the power
exponent are taken to be m = 1, n = 2 (linear thermal conductivity with nucleate boiling)
in the first case and m = 2, n = 3 (nonlinear thermal conductivity with radiation) in the
second case. To scrutinize the thermal deviations with the implications of non-dimensional
physical parameters for the particular case, the graphs are plotted and assembled separately.
In particular, the labels (a) and (b) followed by the label Figure represent the graphs for
both cases i.e., m = 1, n = 2 and m = 2, n = 3 respectively.

Table 2. Comparison of θ(ξ) for available literature and present DTM-Pade approximant when
µ = 0, γ= 0, ψ= 0 .3, Nt = 0, Nr = 0, n = 0 and m = 0.

Non-Dimensional
Radius

ξ

Mallick et al.
HPM [39]
(β = 0)

Present DTM-Pade Error = |θDTM−θHPM|

0 1.0000 1.0000 0
0.1 0.9355 0.9449 0.0094
0.2 0.8820 0.8962 0.0142
0.3 0.8379 0.8536 0.0157
0.4 0.8018 0.8168 0.0151



Symmetry 2023, 15, 1204 12 of 28

Symmetry 2023, 15, 1204 13 of 30 
 

 

thermogeometric parameter. This Figure manifests that the convective heat transmission 
rate through the fin intensifies as the thermogeometric variable rises, due to which the 
temperature in the fin diminishes. The result indicates that the ratio of convective to con-
ductive heat transmission at the fin’s base has a significant impact on temperature varia-
tion. Figure 4a,b reveal the impact of the radiation-conduction parameter on θ  of an AF 
for each case of the power index of ( )*k T  and ( )*h T , respectively. The existence of the 
radiation process provokes energy loss from the fin to the surrounding environment, and 
cooling occurs as a result of the heat loss. As a consequence, increasing the radiative-con-
ductive parameter strengthens the cooling process, causing the temperature to signifi-
cantly drop. 

 
Figure 2. Graphical comparison of the present result against numerical result. Figure 2. Graphical comparison of the present result against numerical result.

Symmetry 2023, 15, 1204 14 of 30 
 

 

 
Figure 3. (a,b): Influence of ψ  on θ  for m = 1, n = 2 and m = 2, n = 3. 

Figure 3. Cont.



Symmetry 2023, 15, 1204 13 of 28

Symmetry 2023, 15, 1204 14 of 30 
 

 

 
Figure 3. (a,b): Influence of ψ  on θ  for m = 1, n = 2 and m = 2, n = 3. Figure 3. (a,b) Influence of ψ on θ for m = 1, n = 2 and m = 2, n = 3.

Symmetry 2023, 15, 1204 15 of 30 
 

 

 
Figure 4. (a,b): Influence of Nr  on θ  for m = 1, n = 2 and m = 2, n = 3. 

The dimensionless temperature ratio parameter perceived in the non-dimensional 
heat equation (Equation (7)) is also accountable for the variations of heat transmission, 
and the impact of this parameter on θ  of the AF is demonstrated in Figure 5a,b with the 
consideration of both the cases. In particular, Figure 5a is for the case 1m =  and 2n =
, in which the temperature field decreases with an improvement in the scale of Nt . Sim-
ilar behavior of temperature profile is perceived for the case 2m =  and 3n = , as re-
vealed in Figure 5b. Figure 6a,b are designed to analyze the impact of μ  on θ  for each 
case. The temperature profile of the fin augments with an improvement in heat generation 
number in both cases. The variation in the thermal response of an annular fin for heat 

Figure 4. Cont.



Symmetry 2023, 15, 1204 14 of 28

Symmetry 2023, 15, 1204 15 of 30 
 

 

 
Figure 4. (a,b): Influence of Nr  on θ  for m = 1, n = 2 and m = 2, n = 3. 

The dimensionless temperature ratio parameter perceived in the non-dimensional 
heat equation (Equation (7)) is also accountable for the variations of heat transmission, 
and the impact of this parameter on θ  of the AF is demonstrated in Figure 5a,b with the 
consideration of both the cases. In particular, Figure 5a is for the case 1m =  and 2n =
, in which the temperature field decreases with an improvement in the scale of Nt . Sim-
ilar behavior of temperature profile is perceived for the case 2m =  and 3n = , as re-
vealed in Figure 5b. Figure 6a,b are designed to analyze the impact of μ  on θ  for each 
case. The temperature profile of the fin augments with an improvement in heat generation 
number in both cases. The variation in the thermal response of an annular fin for heat 

Figure 4. (a,b) Influence of Nr on θ for m = 1, n = 2 and m = 2, n = 3.

Symmetry 2023, 15, 1204 17 of 30 
 

 

 
Figure 5. (a,b): Influence of N t  on θ  for m = 1, n = 2 and m = 2, n = 3. 

Figure 5. Cont.



Symmetry 2023, 15, 1204 15 of 28

Symmetry 2023, 15, 1204 17 of 30 
 

 

 
Figure 5. (a,b): Influence of N t  on θ  for m = 1, n = 2 and m = 2, n = 3. Figure 5. (a,b) Influence of Nt on θ for m = 1, n = 2 and m = 2, n = 3.

Symmetry 2023, 15, 1204 18 of 30 
 

 

 
Figure 6. (a,b): Influence of μ  on θ  for m = 1, n = 2 and m = 2, n = 3. 

Figure 6. Cont.



Symmetry 2023, 15, 1204 16 of 28

Symmetry 2023, 15, 1204 18 of 30 
 

 

 
Figure 6. (a,b): Influence of μ  on θ  for m = 1, n = 2 and m = 2, n = 3. Figure 6. (a,b) Influence of µ on θ for m = 1, n = 2 and m = 2, n = 3.

Symmetry 2023, 15, 1204 19 of 30 
 

 

 
Figure 7. (a,b): Influence of γ  on θ  for m = 1, n = 2 and m = 2, n = 3. 

Figure 7. Cont.



Symmetry 2023, 15, 1204 17 of 28

Symmetry 2023, 15, 1204 19 of 30 
 

 

 
Figure 7. (a,b): Influence of γ  on θ  for m = 1, n = 2 and m = 2, n = 3. Figure 7. (a,b) Influence of γ on θ for m = 1, n = 2 and m = 2, n = 3.

The thermogeometric parameter has its influence on θ of a convective-radiative AN
and is shown in Figure 3. The nature of θ with the upshot of thermogeometric parameter for
the case m = 1 and n = 2 is displayed in Figure 3a, whereas Figure 3b is for the case m = 2
and n = 3. In both cases, θ varies decreasingly for a higher magnitude of the thermogeo-
metric parameter. This Figure manifests that the convective heat transmission rate through
the fin intensifies as the thermogeometric variable rises, due to which the temperature
in the fin diminishes. The result indicates that the ratio of convective to conductive heat
transmission at the fin’s base has a significant impact on temperature variation. Figure 4a,b
reveal the impact of the radiation-conduction parameter on θ of an AF for each case of
the power index of k∗(T) and h∗(T), respectively. The existence of the radiation process
provokes energy loss from the fin to the surrounding environment, and cooling occurs as a
result of the heat loss. As a consequence, increasing the radiative-conductive parameter
strengthens the cooling process, causing the temperature to significantly drop.

The dimensionless temperature ratio parameter perceived in the non-dimensional
heat equation (Equation (7)) is also accountable for the variations of heat transmission,
and the impact of this parameter on θ of the AF is demonstrated in Figure 5a,b with
the consideration of both the cases. In particular, Figure 5a is for the case m = 1 and
n = 2, in which the temperature field decreases with an improvement in the scale of
Nt. Similar behavior of temperature profile is perceived for the case m = 2 and n = 3,
as revealed in Figure 5b. Figure 6a,b are designed to analyze the impact of µ on θ for
each case. The temperature profile of the fin augments with an improvement in heat
generation number in both cases. The variation in the thermal response of an annular
fin for heat generation variable γ is explicated in Figure 7a,b by considering the different
power index values of k∗(T) and h∗(T). Both the Figures signify that enhancement in the
magnitude of γ leads to the increase of θ. By increasing the magnitude of this parameter,
the heat generation within the fin is significantly enhanced. The temperature profile
increases as the heat generation develops because the fin must disseminate greater heat
to the surrounding environment. Figures 8–13 show changes in σr

∗ and σφ
∗ as a result of

various thermophysical parameters. Figure 8a,b indicate the deviance in σr
∗ and σφ

∗ for
the different magnitudes of m. Here, σr

∗ drops as the power index of thermal conductivity
improves, whereas σφ

∗ is considerably less near the base and is sharp at the fin’s tip.
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Figure 9a,b highlight the consequence of the thermogeometric parameter on σr
∗ and σφ

∗,
respectively. As the magnitude of thermogeometric parameter rises, σr

∗ decreases, while
σφ
∗ drops significantly at the base and improves at the fin’s tip. In the stress distribution

components, the same pattern can be noticed as a consequence of Nr and Nt, as exemplified
in Figures 10a,b and 11a,b. Figure 12a,b indicate the consequence of µ on the radial and
tangential stress, correspondingly. σr

∗ varies considerably according to the scale of µ, and
stronger radial stress is associated with a lesser µ value. σφ

∗ is greater at the initial stage
and then declines after it reaches zero as a result of an increase in µ. Similar behavior is
perceived for higher values of the heat generation parameter, as indicated in Figure 13a,b.
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Simulated computational analyses have been used to achieve the temperature distri-
bution along the AF. The inner radius of 4.5 m, the outer radius of 16 m, and the thickness
of 1.2 m are the values selected for this calculation. The base’s temperature is kept at
Tb = 593 K and h∗ = 35 Wm−2K−1. With an emissivity of 0.83, radiation from the fin sur-
face is taken into account. The heat is expelled to the surrounding environment, which is at
T∞ = 298.15 K. The tip temperature is taken as Ttip = 264 K. In determining the tempera-
ture distribution and the thermal stresses affected, the material property is essential. Table 3
lists the properties of the material used in this analysis. The temperature distribution of the
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AF can be calculated using ANSYS. Figures 14–16 show the temperature changes of the
AN under the specified operating settings. The inner radius temperature is assumed to be
Tb = 593 K, and the fin’s tip is supposed to be insulated. The maximum temperature will
be 593 K at the fin base, and the minimum temperature occurs at the fin’s tip is given by
264 K, whereas the average thermal value is 380.28 K. This indicates that the fin’s thermal
distribution takes place in the decreasing behavior from fin base to tip, as seen in Figure 14.
The variation in the von-Mises stress (VMS) by imposing the obtained thermal conditions of
Figure 14 is denoted in Figure 15. By this analysis, it is noted that a maximum VMS value of
9.8083× 108 Pa is observed at the base and minimum VMS is 1.4157× 108 Pa at the surface,
while the average VMS value is given as 2.6386× 108 Pa. Similarly, the normal stress is
discussed for the annular fin via Figure 16. The maximum stress has occurred at the fin’s tip
with 4.0074× 107 Pa, whereas the minimum stress value of −9.7258× 108 Pa is at the fixed
support of the fin. The average stress is given by the value −2.1542× 108 Pa. Furthermore,
the grid independence test is performed for unequally spaced grids, as shown in Table 4,
in which the grid elements are ranged from 1072 to 3342, and the average temperature
and percentage difference are also calculated. This tabulated information illustrates that
the temperature is increasing steadily while the percentage change in absolute value is
reducing for considered grid elements.

Table 3. Material properties of structural steel.

Density 7850 kg m−3

Thermal Conductivity 45 Wm−1 K−1

Young’s Modulus Pa 2× 1011

Poisson’s Ratio 0.3
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Table 4. Grid independence verification.

Grid Points Temperature % abs Change
1072 372.64 0.584888
2334 378.91 0.058697
3342 380.28 -

9. Conclusions

The current assessment elucidates the temperature dispersal in an annular extended
surface with convective and radiative influence utilizing the DTM-Pade. Consequently,
the proposed scheme yields an analytical approximant for the considered fin problem.
This examination reveals that the DTM-Pade treatment is the easiest strategy for handling
extremely nonlinear ODEs and provides very precise results. The following are the main
insights derived from this research:
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• Increased thermogeometric parameter values result in a decreased thermal distribution.
• As the magnitude of a non-dimensional radiation-conduction parameter is increased,

the temperature distribution within the fin decreases. Also, the temperature dispersion
within the fin declines as the non-dimensional temperature ratio parameter is raised.

• The thermal dispersal within the fin enhances for augmented values of µ.
• σr

∗ drops as the power index of thermal conductivity heightens, whereas σφ
∗ is

considerably less near the base and more at the fin’s tip. The magnitude of ψ, Nr, and
Nt parameters all exhibit a similar trend in the stress distribution fields.

• σr
∗ varies significantly with the impact of µ, and stronger σr

∗ is related to a lower µ
value. With an increase in this parameter, the σφ

∗ is initially high, then diminishes
after it reaches zero.

• The stress variation caused by thermal loading for an annular fin is addressed in
this article by providing the analytical and simulation approach, in addition to the
thermal distribution in the fin. The analytical solution is achieved using DTM, and
the simulation is carried out using ANSYS software. According to the simulation
approach, the maximum temperature is seen at the base of the fin, while the minimum
temperature is spotted at the tip of the fin. The same temperature behavior can
be observed in the discussed Figures obtained through numerical and analytical
techniques. Thermal stress behaves similarly; thus, the current research establishes
scientific importance.

• Annular fins have a wide range of uses, including compact heat exchangers, air-
cooled motorcycle engines, double-pipe heat exchangers, refrigeration equipment,
and electrical cooling apparatus. Since the proposed study focuses on the convective-
conductive-radiative heat transfer mechanism through an annular fin, it is more
advantageous in the realm of the aforementioned application sector.
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Nomenclature

Nt Temperature ratio parameter δ∗ Thicknesses
µ Heat generation parameter σr

∗, σφ
∗ Non-dimensional radial and tangential stress

h∗ Heat transfer coefficient α∗ linear coefficient of thermal expansion
γ Non-dimensional heat generation Nt Temperature ratio variable
Nr Non-dimensional radiative-conductive parameter R Non-dimensional outer radius
θ Dimensionless temperature κ Thermal conductivity variation
q0 Internal heat generation at ambient temperature E Young’s modulus
T∞ Ambient temperature ψ Thermo-geometric parameter
ξ Non-dimensional radius Tb Base temperature
χ Non-dimensional coefficient of thermal expansion ri Inner radius
r0 Outer radius ν Poisson’s ratio
κo Thermal conductivity at ambient temperature c Internal heat generation variation
T Temperature εr, εφ Radial and tangential strain
Ac Area of cross-section k∗ Thermal conductivity
σr, σφ Radial and tangential stress
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