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Abstract: In this paper, we introduce and investigate two new subclasses of analytic and bi-univalent
functions using the g-derivative operator D; (0 < g < 1) and the Gegenbauer polynomials in a
symmetric domain, which is the open unit disc A = {p : p € Cand |p| < 1}. For these subclasses
of analytic and bi-univalent functions, the coefficient estimates and Fekete-Szego inequalities are
solved. Some special cases of the main results are also linked to those in several previous studies.
The symmetric nature of quantum calculus itself motivates our investigation of the applications of
such quantum (or g-) extensions in this paper.

Keywords: analytic functions; g-derivative operator; bi-univalent functions; subordination; Fekete—
Szego inequality; Gegenbauer polynomials

1. Introduction

In the advancement of the Geometric Function Theory as a part of the Complex
Analysis research field, the g-derivative is a handy gadget for applications. Jackson was the
first one to work on the application of g-calculus (see [1-4]). Recently, incorporating the
g-derivative operator into the criterion of differential subordination, many researchers have
introduced new subclasses of analytic functions and investigated their geometric properties
(see [5-15]). In addition, g-calculus has been widely applied in various realistic systems
such as viscoelastic models, neural network models and so on [16-21].

Orthogonal polynomials are main concept in mathematical analysis and researchers
have extensively studied since they were discovered in the 19th century. Relating to a
particular weight function, on a given interval, they constitute an orthogonal sequence of
functions. In mathematics researches have used in various areas, including approximation
theory, number theory, and differential equation theory. One of the most important classes
of orthogonal polynomials is the class of classical orthogonal polynomials containing the
Laguerre, Hermite, Legendre, and Gegenbauer polynomials. Having served as the base
for many mathematical applications, researchers have found interest in studying these
polynomials thoroughly.

In fact, in the recent past years, many researchers have put vital effort on studying
and investigating particular subclasses of analytic and bi-univalent functions related with
orthogonal polynomials. They have been interested in obtaining coefficient estimates
containing the initial coefficients, general coefficients, Fekete-5zego6 functional, and Hankel
determinants for these subclasses.

Inspired by their works, in our paper, we define and study two new families le’s i,
V,7,¢] and Jy°[¢, T, ] of the class of analytic and bi-univalent functions related to the
g-derivative operator and the Gegenbauer polynomials. For every subclass, we consider the
coefficient estimates and Fekete-Szego inequality. By comparing the results of the present
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paper with some previous studies in the subject, we show that our results are extending
and generalizing theirs. We suggest studies [12,22-25] to be reviewed thoroughly in
order for the reader to relate our work with the affiliated recent advancements concerning
the coefficient estimates and coefficient inequalities of numerous subclasses of analytic,
univalent, and bi-univalent functions containing the Fekete-5zego functional so that he/she
may be motivated for further studies on the subject.

We call A the class of all analytic functions # defined in the open unit disk

A={p:peCand|p| <1}

with the normalization circumstances /' (0) — 1 = 0 and /(0) = 0. Consequently, a Taylor—
Maclaurin series expansion of the type exists for each 1 € A

hp) = p+ Y ap". )
k=2

In addition, we call S the class of all functions / € A that are univalent in A. Clearly, it is
well known that every function 71 € S has an inverse i !, defined by

el (h(p) =p (p€A)

and

N

w = h(g(w)) (|w| < ro(); rolh) >

)

g(w) :== h_l(w) =w— mw® + (2a% — a3) w® — (Sa% — bBaraz + a4> w0 Q)

As a well-known definition in the field Complex Analysis, one can recall that we call a
function /() bi-univalent in the case that both () and 7! () are univalent in A, and X
denotes the class of bi-univalent functions. Some examples of functions in the class X are

9 jog(l— Ligg( 1o
o log(l1— ) and ZIOg(l—p)'

However, the familiar Koebe function is not a member of the bi-univalent function class X.
We note that Srivastava et al. [26] presented groundbreaking and inspiring results
on the investigation of the normalized class X of analytic and bi-univalent functions in A
such that their article became a leading work flooding the literature in the field with many
sequels to [26].
For a function 1 € A, given by (1), and a function g € A, written as

8(p) = p+}ibw" (p €A,
the Hadamard product of 7 and g is written as
(12 8)(6) 1= o+ Lot = (321)(0) (0 A)
We call P the class of Carathéodory functions Y which are analytic in A and satisfy

(e}
Y(p) =1+ Y o
k=1

and
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R(Y(p)) >0 (p €A,

Let 77 and g be analytic functions in A. If there exists a Schwartz function w that is
analytic in A with
w(0) =0and |w(p)| <1 (p € A)

such that
h(p) = g(w(p)),

then we say that the function % is subordinate to g written as i < g. Additionally, the
following equivalence holds if the function g is univalent in A :

h(p) < 8(p) = 1(0) =g(0)
and
W(A) C g(A).
Letg € (0,1), and define the g-number [5], as follows:

1—q7
e (n€C)

[U]q = n—1
1+Y 45 (p=neN).
k=1
Especially, we note that [0], = 0.
Now, we recall here the g-difference or the g-derivative operator D; (0 < g < 1) ofa
function » € A as follows:

©)
o =] gy 7Y
1'(0) (p=0),

where 7' (0) exists. In addition, we write
(DP1) () = (Dg(Da)) (9):

Recently, orthogonal polynomials have been broadly investigated from numerous
viewpoints due to their importance in probability theory, mathematical physics, engineering
and mathematical statistics. From a mathematical perspective, orthogonal polynomials fre-
quently emanate from ordinary differential equation solutions under specific circumstances
required by a specific model. The orthogonal polynomials that pop up most ordinarily
in utilization are the Gegenbauer, Chebyshev, Legendre, Horadam, (p, q)-Lucas, Jacobi,
Bernoulli and Fibonacci polynomials. We recommend the reader to see the recent stud-
ies [27-41] in connection with orthogonal polynomials and the geometric function theory.

The definition of the Gegenbauer polynomials [42] is offered in terms of the Jacobi

polynomials P,S”’v) ,withu =v=a — %, (Dé > —21/ o # O), which are given by
MM (et ) (gt

P, (x) ©)
F(Zoc)F(n oot j)

(e >k§ <nlzl<iv%+)r>k<x;1)k'

Ci(x) =
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From (3), it follows that Cj; (x) is a polynomial of degree n with real coefficients and Cj; (1) =

( " 1n+ 2 ), while the leading coefficient of Cj; (x) is 2" ( " i T ) . According to

Jacobi polynomial theory, foru = v =a — %, (a > —2% o F 0), we have

Ca(=x) = (=1)"Cy(x).

In [42,43], the Gegenbauer polynomials” generating function is determined by

2 _ - %)“CZ(x)p”, @

_1 2“
(1—2xp+p2)%<1—xp+\/l—2xp+pz>a ’ (2),

and this evenness may be understood from the Jacobi polynomial-generating function.
In 2020, Amourah et al. [44] took into consideration the generating function of Gegen-
bauer polynomials as follows:

1

A—2xp+ A ©®

¢i(p) =
The function ¢% is analytic in A for a fixed x, and as a result, its Taylor series expansion is
written as:

$i(p) = ) Cr(x)¢", (6)

where |x] < 1, a € (—%, oo)\{O}, @ € A and C%(x) is a Gegenbauer polynomial of
degree n.

Obviously, ¢4 generates nothing when a« = 0. As a result, the generating function of
the Gegenbauer polynomial is defined as:

[e9)

P(p) = Y Cx)e", @)

k=0

for & = 0. Furthermore, a normalization of greater than 1/2 is preferable [45]. The recur-
rence relation for Gegenbauer polynomials is as follows:

C(x) =  [2x(n &~ 1)C_y (x) — (n+ 22 ~ 2)C5_5(x)] ®
with the initial values:
Ci(x) =1 C*(x) = 2ax and C%(x) = a [(z +20)x2 — 1] )

Recently, Gegenbauer polynomials and subclasses of the bi-univalent functions were stud-
ied by [46-50].

Remark 1. Particular cases:
(i) Fora =1, we get the Chebyshev Polynomials.

(ii) Fora = %,we get the Legendre Polynomials.

Moreover, Shah and Noor [51] introduced the g-analogue of the Hurwitz—Lerch zeta
function by the following series:

00 k

) =Y 10
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where T € C\Z;, s € C when |p| < 1and R(s) > 1 when |p| = 1. The normalized form
of (10) is as follows:

(s, ) = [1+ 7 {xq (s m0) = [7),°} = Ay At (11)
=2
147, ) +
where A, = = ,keZr.
q

From (11) and (1), Shah and Noor [51] defined the g-Srivastava Attiya operator
Joh(p) s A— Aby

Joch(p) = ¥a(s, T p) ¥ () = o+ Y Dparg” (12)
k=2

where * denotes the Hadamard product.
We note that:

(i) Ifg— 17, then the function x,4(s, T; p) starts reducing to the Hurwitz-Lerch zeta func-
tion, and the operator J; ; overlaps with the Srivastava-Attiya operator (see [52,53]).

(i) ];,oh( )=J K t) dqt(q—Alexander operator).
(iii) Jgh(p) = [Hﬂq fog] At dq (g-Bernardi operator [54]).

-7

(iv) E,lh( ) = [2; 5 Z( )d t (g-Libera operator [54]).

Next, we define the analytic function family J AS[U, V,7,¢] and the bi-univalent
function class Jy” [¢%, T, &].

Definition 1. Let —1 £V < U < 1and 0 £ ¢ =< 1. A function h € A is in the class
TV, i

o(Dafsch) (9) + 662 (DP T} (9) 14 up

=< e N), 13
(T=0)h(0) + S0 DT (9) 11 Ve VN 13
or equivalently,
Dq]q'( @2< ]q'r )
(1-9) ]q'r +§P(Dq]q‘r ) <1. (14)
o(DaJsn) (9)+202 (DY I3 1) (9)

u-v

(1- g)]q,‘r (KJ)JFé@(Dq]q,T )(p)
Remark 2. (i) Fors = 0and { = 0, the class
TV, T,0) = S;[U, V]

was introduced by Srivastava et al. [55].
(i) Fors=0,¢ =0and g — 17, the class

lim jA u,v,t,0] = S*[U, V]
q—1-

was introduced by Janowski [56].

Definition 2. Let 0 < ¢ < 1. A function h € X is in the class Jy " [¢%, T, &] if
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@(Dq]qf ) )+ &p? ( 2)]qr ) )

=)o) + Ep (Do) (p) ) )
w(Dyl8) (w) +&w? (D ]ng) w
=) fseg(@) + co(Dylieg) (@)

where g and ¢ are given by (2) and (5), respectively.
Before proceeding to the main results, the following Lemmas shall be necessary.

Lemma 1 (see [57]). Let p(p) = 1+ c1p +cop? + -+, p € A is a function that has a positive
real part in A, and y is a complex number, then

‘cZ—ycﬂ < 2max{1;|2p — 1|} (16)

Lemma 2 (see [13]). Let

M(p) =1+ i Cep* < H(p) =1+ i dgt.
k=1 k=1
If H(p) is univalent and convex in A, then
Gkl = |da| (k€ N).
Lemma 3 (see [58]). If p(p) = 1+ Y52, cxp* € P, then
lcx] £2 (ke N).

2. Main Results

In this section, for functions in the classes JZ{S[U, V,1,¢] and qu,s [¢%, T, &], which
are defined above (see Definition 1 and 2), the coefficient estimates and the Fekete-Szego
inequality are solved. Many special cases and implications of our main findings are high-
lighted.

Theorem 1. If i given by (1) is in the class jj’s [U,V,1,{], then
‘ak|§ q(1_§)+§
(91 = &) +lK], ) 1
1 (=1, (a1 — &) +2ll,) + (1 - &) +¢&lfl, ) u—v)

<]

=1 (91 =) +2li, ) 1,

(k=2), (17

where Ay = (E{L} ) keZ™r.

Proof. Forh € jj’s [U,V,7,E], we have

(D) (0 + 22 (DPT) () 14w
)= TR i) T Ep(Dyii) (p) T4 Ve WA (18)

=1+ i(u— V(=R =1+ (U= V)p— V(U - V)p* +
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Since v(p) =1+ Y32 Uk ©F, from Lemma 2, we obtain
log| SU -V (keN). (19)

From (18), we have
0(Dyfgeh) (0) +20% (D T51) () = o) [(1 = )3 () + &0 (Dl ) () .

which shows that

o)

o+ Y[k, [1+ &l — 1], Jardeg®
k=2
- <1 +3 vkpk> <p+ 3 [t e (K], = 1) [maet ) (20)
k=1
In Equation (20), by comparing the coefficients p* for both sides, we obtain
k-1
k= 1], [a00 = &) + gk, Jac = ¥ [1+ & (1), — 1) | Ao,
I=1
where a1 =1, v1 = 1 and A = 1. The above equation gives

u-v —
T R [1hAugjl+g( ~)llaiiad

Thus, we obtain

u-v
ol < m
< <q+g (1+ &) (U — V))
B (q |A3| q+§
wl < <q+€ (1+&q)(U - V))
; (q |A4| g(1+8)
X(MAW1—@ el3,| + (-0 + au)am—w)
(701 -2) +2B3), ) 3],
|ﬂk| S q(1_§)+§

(91 = &)+ lK], ) 1

XTﬂrﬁh@u—@+amJ+(u—@+ﬂmyu—v>
i (a1 2)+ &0, ),

~

The theorem’s proof is now complete. [

For s = 0 and ¢ = 0 in Theorem 1, we obtain a similar consequence of the class

S, V).
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Corollary 1. Let i € S;[U, V]. Then,

gl 1], + (U -V)

el <T1
j

=1 q[]]q

(k> 2).

Theorem 2. If 1 given by (1) is in the class J3 " [¢%, T, &), then

2lal
. (4+8)[Aa]”
|a2] < min 2|a| (21)

\/) 2], (g+&(g2+1))2ax2A3—(g+¢) [(l+§q)2ax2+(q+§) (ucx2+x27x7 3 )]A% ‘

and
4laf? + 2|
. +020 7 T 20, (q+E(97 1)) ]As]”
|a3| S min (q ) | 2‘ q 4‘0"2 2|[X| (22)

(2], (9+8(+1)) 2ax? 83— (9+€) [(1+q) 2ax?+(q+¢) (uzxZerzfxf%)]A%‘ + 2],(a+2(a7+1))[A5]7

S
where Ay = <m;> keZ™.

Proof. Let’ € jg's [¢%,7,& and ¢ = A~ L. From (15), we are aware of the existence of two
Schwartz functions u(p) and v(w), so that

o (Dol 1) (0) + 862 (D T3 1) (1)

(1= 8)Js<h(p) + Eo(Dgls ) (9) ¢ (u(p)) (23)

and

w(DyJe8) (@) + 5 (D i g) (@)
(1—8)J5-8(w) + ¢w(DyJ58) (w) = ¢ (0(w)). (24)

We define the functions s(p) and ¢(w) as follows:

_ 14u(p) 2
s(p)—l_u(p)—1+slp+szp +---€eP
and .
tHw) = 1+ o(w) =1+Hw+bw?*+---€P.
1—ov(w)
Since
P10 P — e 1701
(1-2xp+?)" =
we obtain
113 1 13 1 o S% 1 o 2 2
Pr(u(p)) =1+ §C1 (x)s19 + Ecl (x)| 52— > + ZLCZ(x)Sl [ (25)
and

t2

¢ (v(w)) =1+ %Ci‘(x)tler %C{‘(x) (tz — 21> + %C%(x)t% w? 4. (26)




Symmetry 2023, 15,1192 9 of 15

Using the Taylor series formula, we have

o (Dl 1) () + 267 (D 521 ) ()
(1 - g)]g,rh(@) + gp(Dq];,Th) (@)
+{(a+1)+ (P +1)[21,8)Asas — (1 +E) g+ )AFB o2 + -

=1+ (g+¢)Aap

and
(D8 (w) + &2 (DP Js .8 (w)
(1=8)J5.8(w) +¢w(DyJ328) (w)
+{(aa+1)+ (£ +1)[2,6) A3 (203 — a3) — (1 +&q) (7 + £)A3a3 po® + - -

=1-(g+¢)Aaw

As a result of comparing the coefficients in (23) and (24), we have

0+ 8)hatz = 2CE (), @)

2
20, (+ (7 +1) ) dsas — (14 E) (g + £33 = 5CE(x) (Sz - ;) + G0t @9

—(q+8)Daap = %C‘f(x)h, (29)
and

2], (a+ (4% +1) ) 85(203 = a3) — (1+&9)(g + £)2343

1 o t% 1 i3 2
= Ecl (x) tz — E + ZCZ (x)tl. (30)

From (27) and (29), we have

Cl(x¥)s1 —Ci(0h

2T oM 2q+0h G
Thus, we find that
$1=—h (32)
and
8(q+8)*0303 = [C(x) (s} + ). (33)

Using Lemma 3, from (31) we find that

PRI 64)

Now from (28), (30)—(32), we have
a{(2],(a+&(®+1)) [CH@)85 = (0 +8) [(1+ EDCEE) + (9 +)(Ch (x) — C}(x))] A3 } a3
= [C}(x) (s2+ ).

Since
Cf(x) =2ax and C5(x) =« {2(1 + a)x® — 1},
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we obtain

[CE ()] (52 + )
4{[2]q(q +EP D)) [CHX) A — (g +€) [(1 +E0) [CH ()] + (g +8) (C5 (x) — C%(X))} A%}
w?x3(sy + o)

_ . (35)
2], (9 + &(q2 +1))202285 — (g+ &) [(1+E9)20x2 + (7 + &) (wx? + 32 = x — 1) | A3

Applying Lemma 3 to the coefficients s, and ¢, we have
4|

las| < .
2 ¢ 2], + 22 + 1)) 200628 — (q+ &) [(1+Gq)2032 + (g + &) (w32 + 32 — x = 1) [ 3]

By subtracting (28) from (30), we have

202, (5 &(¢ +1)) (a3~ a8) Ay = 5CH ()52 — 12) + 3 (CH () — CE () (53— ) 36)

which yields
CH(x) (s — 1)
2 1
a3 = + .
2 ARl (g + 8P +1)hs

Now taking the modulus of (37) and using Lemma 3, we obtain

(37)

|CT ()]
[2],(4+&(q* + 1)) 14

las| < |aaf* + (38)

and thus, by using (34)

4laf? 2|

1S G oad T Bl 2 DA

In addition, using (35) and (38), we obtain
4laf?
[2],(9 + E(? +1))20x285 — (g + &) [ (1 + 9)202 + (g + &) (a2 + 52— x — 1) [ A
2|
2],(9+¢(9* +1))|As|

laz| <

The theorem’s proof is now complete. [J

Theorem 3. If i given by (1) is in the class jjl’s [U,V,T,{], then

u-v
(1+q9)(g+(¢*>+1

a3 — 3| < s a2 e) — 1), (39)

where

@+ )@+ V+1) = A+E)U = V)M +u(1+q)[q+ (9> + 1) (U - V)As
2(q+¢)*M3

ni(q) =

1+, \°
and A, = ([m]j) JkeZt.
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Proof. Leth € jjl’s [U,V,7,¢]. Using the Taylor series formula, we have

0 (Dalsh) () + 0% (D Tt ) ()
(1= 8)J<n(p) +Ep(Dyli-h) (9)
+{(aa+1) + (£ +1)[21,8) Asas — (1+8q) (9 + §)A3ad o2 + -+ . (40)

+ (9 + )M

From (13), we are aware of the existence of the Schwarz function % such that

o(Dyfsch) (9) + 662 (DX i) (9) 14 un(p)
(1= 8)J5ch(p) +8p(Dylh) (p) 1+ Vh(p)’

We now define a function w € P by

1+ h(p)

_ — 2 ..
w(p)_l—h(p) 14+ wip+wrp” +

This implies that

Twlp)+1 2 2

In addition, we have

1+ Uh(p)

m—u Lu- V)ZU1@+F(U_V)wz—i(V—i—l)(U_V)w%]pz_F“.' an)

Therefore, we obtain

ar = Z(;I_i__g‘)/Awl, (42)
2
_ u-v 1 (1488 ]
a3 = z<1+q><q+<q2+1>c>A3{w2 2@”” (q+¢)<” V)}“’l}' #3)

Now, we can find that

u-v 1 1+
o = | = ‘2<1+q><q+ <q2+1>¢>A3{“’2‘ |- <q+€¢q>(”‘ v)ut|
u-vyE
sq+ormg
u-v
=) g+ @102 { w2 oV D)
_ <<1+¢q><q+c>A2+u1+q[ (q2+1)a}As>(u_V)
(7+&)°A3

_ 2
|A3| "(/Uz M1 (q)wl ’

—_

2

B u-v
2(1+9)(q+ (¢> + 1))

(44)

where

@+ O[@q+EV+1) = (1+ &)U~ V)M +p(1+q)[q+ (8 +1)E] (U — V)As
2(q+¢)*A3 ‘

ni(q) =
O

Using Lemma 1 in (44), we achieve the desired results. The proof of Theorem 3 is
now finished.
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Whens =0,¢ = 0and g — 17, we obtain a consequence of the class S*[U, V| that
was described by Janowski [56].

Corollary 2. Let h € S*[U, V. Then,

’cg—ya%’ < max{L; |[(U-V)2u—1)+V|}.

Theorem 4. Iff: given by (1) is in the class Jy" [¢%, T, &], then

2
az — paz; =

‘QB_WZ%‘ < |a|(|]M+ N|+ |[M — N|), (45)
where
M= (1 - pax?
2], (9 4 6(q2 +1))203285 = (g + &) [ (1 + E)20x2 + (g + &) (wx? 4+ 22 —x — 1) | 43
1
- (46)

212, (+ (2 + )s

Proof. From (37), we have

Ci(x)(s2 — 1)
4[2], (9 +2(4* +1))As

24

a3 — a3 = (1—p)a

Using (35) and (47), we obtain

ax(sp — to)
2[2],(9 +¢(4* +1))As

(1- y)a2x3(sz + )

+ .
20,0+ E(q2 +1))2a3285 — (9 + &) [(1+ )20 + (9 +8) (a2 + 62 — v — ) | 43

After making the necessary arrangements, we rewrite the previous equality as

as — ‘ua% =ax[(M+ N)sy + (M — N)t],

(47)

(48)

where M and N are given by (46). Taking the absolute value of (48), we derive the desired
inequality from Lemma 3.
O

3. Conclusions

We used the g-derivative operator D, (0 < g < 1) and the Gegenbauer polynomials
in this study to ventilate and work on two new subclasses of the class of g-starlike func-
tions and the class of analytic and bi-univalent functions. We obtained several coefficient
estimates and Fekete-Szegt—type inequalities for each subclass. We also show that our
findings extend and generalize those found in previous works. These results will stim-
ulate various new studies for research in this and related fields. Considering this study,
someone can define different general subclasses of analytic and bi-univalent functions by
using special polynomials. For these subclasses, some problems essentially subordination,
inclusion, coefficient inequalities and coefficient estimates containing the second, third,
and fourth Hankel determinants and the Fekete-Szegt¢ functional can be considered. In
two recent survey cum expository review published articles (see [59,60]), the triviality of
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any attempts to translate any known g-results to the corresponding rather inconsequential
(p, q)-results by forcing-in a redundant parameter p has already been demonstrated, so any
such amateurish-type ventures should be discouraged.
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