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Abstract: In this paper, we define a new family of q-starlike and q-convex functions related to
the cardioid domain utilizing the ideas of subordination and the Sălăgean quantum differential
operator. The primary contribution of this article is the derivation of a sharp inequality for the
newly established subclasses of q-starlike and q-convex functions in the open unit disc U . For this
novel family, bounds of the first two Taylor-Maclaurin coefficients, the Fekete-Szegö-type functional,
and coefficient inequalities are studied. Furthermore, we also investigate some new results for the
inverse function belonging to the classes of q-starlike and q-convex functions. The results presented
in this article are sharp. To draw connections between the early and present findings, several well-
known corollaries are also highlighted. Symmetric quantum calculus operator theory can be used to
investigate the symmetry properties of this new family of functions.
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1. Introduction and Definitions

Let A denote the class of all analytic functions g(z) in the open unit disc

U = {z : |z| < 1},

which are normalized by
g(0) = 0 and g′(0) = 1.

Any function g ∈ A, has the following series expansion:

g(z) = z +
∞

∑
n=2

anzn. (1)

A complex value function g ∈ A, is univalent if

z1 = z2 ⇒ g(z1) = g(z2), for all z1, z2 ∈ U .

The symbol S stands for a set of functions fromA that are univalent in the open unit disc U .
Function theory was first proposed in 1851. When Bieberbach [1] examined the

coefficient conjecture in 1916, this field first came into focus as an interesting field for future
study. In 1985, De Branges [2] elucidated this concept. A number of leading scientists
sought to support or disprove the Bieberbach hypothesis between 1916 and 1985. The
theories of analytic and univalent functions, as well as how they estimate function growth
in their stated domains, are of great importance. This includes Taylor series representation,
coefficients of functions, and their associated functional inequalities. One of the most

Symmetry 2023, 15, 1185. https://doi.org/10.3390/sym15061185 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15061185
https://doi.org/10.3390/sym15061185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9960-2591
https://doi.org/10.3390/sym15061185
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15061185?type=check_update&version=2


Symmetry 2023, 15, 1185 2 of 22

significant and practical functional inequalities is the Fekete-Szegö inequality. The Fekete-
Szegö inequality [3] was identified by Fekete and Szegö in 1933. It is a mathematical
inequality that is connected to the Bieberbach conjecture and concerns the coefficients of
univalent analytic functions. It is known as the Fekete-Szegö problem to find comparable
estimates for different types of functions. The maximization of the non-linear functional∣∣a3 − µa2

2

∣∣ and other subclasses of univalent functions has been shown to produce a variety
of results; this type of problem is known as a Fekete-Szegö problem.

If g ∈ S , and it is of the form (1), then

∣∣∣a3 − µa2
2

∣∣∣ ≤


3− 4µ if µ ≤ 0
1 + 2 exp

(
2µ

µ−1

)
if 0 ≤ µ < 1

4µ− 3 if µ ≥ 1


and the result

∣∣a3 − µa2
2

∣∣ is sharp (see [3]).
The subordination of two analytic functions g1 and g2 can be written as

g1(z) ≺ g2(z), z ∈ U ,

if there exists a Schawarz function u, such that |u(z)| < 1 and u(0) = 0 and

g1(z) = g2(u(z)), z ∈ U .

Furthermore, if the function g2 is univalent in U , then

g1(0) = g2(0) and g1(U ) ⊂ g2(U ).

The families of starlike and convex functions, denoted by the letters S∗ and C, respectively,
are the most fundamental and significant subclasses of the set S .

The familiar class of starlike (S∗), consists of functions g ∈ S∗, that satisfy the
following condition

Re

(
zg
′
(z)

g(z)

)
> 0, z ∈ U .

Or, in terms of subordination

S∗ =
{

g ∈ A :
zg
′
(z)

g(z)
≺ 1 + z

1− z

}
.

The class of convex functions (C), consists of functions g ∈ C, that satisfy the following
condition

1 + Re

(
zg
′′
(z)

g′(z)

)
> 0, z ∈ U .

Or, in terms of subordination

C =
{

g ∈ A : 1 +
zg
′′
(z)

g′(z)
≺ 1 + z

1− z

}
.

Ma and Minda [4] gave generalizations of S∗ and C for analytic functions and defined new
classes S∗(ϕ) and C(ϕ) in terms of subordination as follows:

f ∈ S∗(ϕ)⇐⇒ zg
′
(z)

g(z)
≺ ϕ(z)
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and

f ∈ C(ϕ)⇐⇒ 1 +
zg
′′
(z)

g′(z)
≺ ϕ(z),

where ϕ(z) have a positive real part and are normalized by

ϕ(0) = 1, and ϕ
′
(0) > 0.

Note that ϕ maps U onto a region that is starlike with respect to 1 and symmetric with
respect to the real axis. Many subfamilies of the class A of normalized analytic functions
have been studied recently as a particular case of the class S∗(ϕ). For example, Sokól
and Stankiewicz investigated the class S∗L in [5], the class of starlike functions S∗(Q, R)
associated with the Janowski function was studied in [6], and Cho et al. [7] examined the class
S∗sin. The class S∗tan and the class S∗(ez) were investigated in [8,9], respectively. For further
information on sharp coefficient estimations, please refer to [10–15].

The image of U under every g ∈ S contains a disk of radius 1
4 and every g ∈ S has an

inverse defined by:
g−1(g(z)) = z, z ∈ U

and
g(g−1(w)) = w, |w| < r0(g), r0(g) ≥ 1

4
.

The series of g−1 is
g−1(w) = w + A2w2 + A3w3 + A4w4..., (2)

where
A2 = −a2, A3 = (2a2

2 − a3) (3)

and
A4 = −(5a3

2 − 5a2a3 + a4).

Using the idea of subordination, many subclasses of analytic functions have been defined
based on the geometrical interpretation of their image domains. These include the right-
half plane [16], the circular disc [17], the oval- and petal-type domains [18], the conic
domain [19,20], the leaf-like domain [21], and the generalized conic domains [22]; the most
important is the shell-like curve [23–26]. The function

p(z) =
1 + τ2z2

1− τz− τ2z2 , τ =
1−
√

5
2

(4)

is necessary for forming the shell-like curve. The conchoid of Maclaurin is produced by the
image of the unit circle under the function p; that is,

p
(

eiϕ
)
=

√
5

2(3− 2 cos ϕ)
+ i

sin ϕ(4 cos ϕ− 1)
2(3− 2 cos ϕ)(1 + cos ϕ)

, 0 ≤ ϕ < 2π.

The series representation for the function given in (4) is as follows:

p(z) = 1 +
∞

∑
n=1

(un−1 + un+1)τ
nzn,

where

un =
(1− τ)n − τn

√
5

,

and un generate a series of coefficients of Fibonacci numbers.
Malik et al. [27] created a new class CP[Q, R] of analytic functions associated with

p̃(Q, R, z).
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Definition 1 ([27]). Let the function p ∈ CP[Q, R] and

p(z) ≺ p̃(Q, R, z),

where p̃(Q, R, z) is given by

p̃(Q, R, z) =
2Qτ2z2 + (Q− 1)τz + 2
2Rτ2z2 + (R− 1)τz + 2

(5)

and

−1 < R < Q ≤ 1, τ =
1−
√

5
2

, z ∈ U .

In this case, a geometric description of the function p̃(Q, R, z) could be useful in
studying the class CP[Q, R] in detail. If we denote

R p̃

(
Q, R; eiθ

)
= u

and
Ip̃

(
Q, R; eiθ

)
= v

then, the image p̃
(
Q, R, eiθ) of the unit circle is a cardioid-like curve defined by

u =
4 + (Q− 1)(R− 1)τ2 + 4QRτ4 + 2λ cos θ + 4(Q + R)τ2 cos 2θ

4 + (R− 1)2τ2 + 4R2τ4 + 4(R− 1)(τ + Rτ3) cos θ + 8Rτ2 cos 2θ
,

v =
(Q− R)

(
τ − τ3) sin θ + 2τ2 sin 2θ

4 + (R− 1)2τ2 + 4R2τ4 + 4(R− 1)(τ + Rτ3) cos θ + 8Rτ2 cos 2θ
, (6)

where
λ = (Q + R− 2)τ + (2QR−Q− R)τ3.

We note that

p̃(Q, R, 0) = 1 and p̃(Q, R, 1) =
QR + 9(Q + R) + 1 + 4(R−Q)

√
5

R2 + 18R + 1
.

According to (6), the cusp of the cardioid-like curve is provided by

γ(Q, R) = p̃
(

Q, R; e±i arccos( 1
4 )
)
=

2QR− 3(Q + R) + 2 + (Q− R)
√

5
2(R2 − 3R + 1)

.

If the open unit disc U is considered to be a collection of concentric circles with the center at
the origin, then, the image of each inner circle is a nested cardioid-like curve. Thus, using
the function p̃(Q, R, z), the open unit disc U is mapped onto a cardioid region. As a result,
the domain p̃(Q, R;U ) is a cardioid domain.

In the area of geometric function theory (GFT), researchers have constructed and explored
a number of novel subclasses of analytic, univalent, and bi-univalent functions using quantum
calculus and fractional quantum calculus. In 1909, Jackson [28,29] presented the concept of the
q-calculus operator and gave the definition of the q-difference operator Dq. Ismail et al. [30],
for instance, were the first to develop a class of q-starlike functions in U by using Dq. The
most important uses of the q-calculus from the perspective of GFT were essentially provided
by Srivastava in [31]. They used the fundamental (or q-) hypergeometric functions for the
first time in GFT in a book chapter (see, for details, [31]). Very recently, Attiya et al. [32]
studied new applications of differential operators associated with the q-raina function,
while Raza et al. [33] defined a class of starlike functions related to symmetric booth
lemniscate and determined the sharp estimates of the functions that belong to this class.

Jackson [28] introduced the q-difference operator for analytic functions as follows:
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Definition 2 ([28]). For f ∈ A, the q-difference operator is defined as:

Dq f (z) =
f (qz)− f (z)

z(q− 1)
, z ∈ U . (7)

Using (1) in (7) and, after some simple steps, we get

Dq f (z) = 1 +
∞

∑
n=1

[n]qanzn−1.

For n ∈ N and

Dq(zn) = [n]qzn−1, Dq

(
∞

∑
n=1

anzn

)
=

∞

∑
n=1

[n]qanzn−1.

Definition 3 ([34]). For m ∈ N0 = N∪ {0}. The definition of the Sălăgean q-differential operator
for g ∈ A is given as:

S0
q g(z) = g(z), S1

q g(z) = zDqg(z) =
g(qz)− g(z)

(q− 1)
, · · · ,

Sm
q g(z) = zDq

(
Sm−1

q g(z)
)
= g(z) ∗

(
z +

∞

∑
n=2

(
[n]q

)mzn

)
.

Using the definition of convolution, we have

Sm
q g(z) = z +

∞

∑
n=2

[n]mq anzn.

Remark 1. Then, the series of the Sălăgean q-differential operator for g−1 ∈ A can be written as:

Sm
q

(
g−1(w)

)
= w− [2]mq a2w2 + [3]mq (2a2

2 − a3)w3 −

[4]mq (5a3
2 − 5a2a3 + a4)w4.... (8)

To further refine our understanding of the cardioid domain, we used the approach
taken in the previous study [27] to define new subclasses of q-starlike and q-convex func-
tions.

Definition 4. A function g of the form (1) belongs to the class S∗(q, m, Q, R), if

Sm+1
q g(z)

g(z)
≺ p̃(Q, R; z),

where p̃(Q, R; z) is given by (5).

Or, g ∈ S∗(q, m, Q, R), when the function
Sm+1

q g(z)
g(z) takes its values from the cardioid

domain p̃(Q, R; z).

Definition 5. A function g of the form (1) belongs to the class C(q, m, Q, R), if

zDq

(
Sm

q g(z)
)

Sm
q g(z)

≺ p̃(Q, R; z),

where p̃(Q, R; z) is given by (5).
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Remark 2. For q→ 1− and m = 0 in Definition (MDPI: We removed the unnecessary bracket
outside of the Definition citation number, please confirm.) 4, then, S∗(q, m, Q, R) = S∗(Q, R), as
studied by Malik et al. in [35].

Remark 3. For Q = 1, R = −1, q→ 1− and m = 0 in Definition 4, then, S∗(q, m, Q, R) = SL,
as introduced and studied by Sokół in [26].

Remark 4. For q→ 1− and m = 0 in Definition 5, then, C(q, m, Q, R) = S∗(Q, R), as studied
by Malik et al. in [35].

Remark 5. For q→ 1− and m = 1 in Definition 5, then, C(q, m, Q, R) = C(Q, R) is the class of
convex functions connected with the cardioid domain.

2. A Set of Lemmas

We will demonstrate our findings by utilizing the following lemmas:

Lemma 1 ([27]). Let the function p̃(Q, R; z), defined by (5), and, if p(z) ≺ p̃(Q, R; z). then,

Rep(z) > α,

where

α =
2(Q + R− 2)τ + 2(2QR−Q− R)τ3 + 16(Q + R)τ2η

4(R− 1)(τ + Rτ3) + 32Rτ2η
,

η =
4 + τ2 − R2τ2 − 4R2τ4 −

(
1− Rτ2)χ(R)

4τ(1 + R2τ2)
,

χ(R) =
√

5(2Rτ2 − (R− 1)τ + 2)(2Rτ2 + (R− 1)τ + 2)

and

−1 < R < Q ≤ 1, and τ =
1−
√

5
2

.

Note that the function p̃(Q, R; z) is univalent for the disc |z| < τ2.

Lemma 2 ([27]). Let the function p̃(Q, R; z), given by (5), and p̃(Q, R; z) = 1 +
∞
∑

n=1
p̃nzn. Then,

p̃n =


(Q− R) τ

2 for n = 1,
(Q− R)(5− R) τ2

22 for n = 2,
1−R

2 τpn−1 − Rτ2 pn−2 for n = 3, 4, 5, ...
(9)

where −1 < R < Q ≤ 1.

Lemma 3 ([27]). Let the function p̃(Q, R; z), given by (5). Let p(z) = 1+
∞
∑

n=1
pnzn ≺ p̃(Q, R; z)

= 1 +
∞
∑

n=1
p̃nzn. Then,

∣∣∣p2 − vp2
1

∣∣∣ ≤ (Q− R)|τ|
4

max{2, |τ(v(Q− R) + R− 5)|}, v ∈ C. (10)

Lemma 4 ([36]). Let p ∈ P , and p(z) = 1 +
∞
∑

n=1
cnzn. Then,

∣∣∣c2 −
v
2

c2
1

∣∣∣ ≤ max{2, 2|v− 1|} =
{

2 if 0 ≤ v ≤ 2,
2|v− 1|, elsewhere

}
(11)
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and
|cn| ≤ 2, for n ≥ 1. (12)

Lemma 5 ([37]). Let

g(z) =
∞

∑
n=1

bnzn

be convex in U and let

f (z) =
∞

∑
n=1

anzn

be analytic in U . If
f (z) ≺ g(z),

then,
|an| < |b1|, k = 1, 2, 3....

In this section, we show sharp coefficient estimates for the Taylor series, sharp Fekete-
Szeg problems, and coefficient inequalities for the functions belonging to newly defined
subclasses of q-starlike and q-convex functions. In addition, we also consider the same type
of problem for the inverse functions in this study.

3. Main Results

In the following theorem, we find sharp coefficient estimates for the functions belong-
ing to S∗(q, m, Q, R):

Theorem 1. Let g ∈ S∗(q, m, Q, R) be given by (1), −1 ≤ R < Q ≤ 1. Then,

|a2| ≤
(Q− R)|τ|

2
(
[2]m+1

q − 1
) ,

|a3| ≤
(Q− R)|τ|2

4
(
[3]m+1

q − 1
)
(5− R)− (Q− R)(

[2]m+1
q − 1

)
.

These inequalities are sharp.

Proof. Let g ∈ S∗(q, m, Q, R), and of the form (1). Then,

Sm+1
q g(z)

g(z)
≺ p̃(Q, R; z), (13)

where

p̃(Q, R, z) =
2Qτ2z2 + (Q− 1)τz + 2
2Rτ2z2 + (R− 1)τz + 2

.

Utilizing the idea of subordination, then, we have a function u with

u(0) = 0 and |u(z)| < 1

such that
Sm+1

q g(z)
g(z)

= p̃(Q, R; u(z)). (14)
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Let

u(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + ...

2 + c1z + c2z2 + ...

=
1
2

c1z +
1
2

(
c2 −

1
2

c2
1

)
z2 +

1
2

(
c3 − c1c2 +

1
4

c3
1

)
z3 + · · · . (15)

Since p̃(Q, R; z) = 1 +
∞
∑

n=1
p̃nzn, then,

p̃(Q, R; u(z))

= 1 + p̃1

{
1
2

c1z +
1
2

(
c2 −

1
2

c2
1

)
z2...

}
+ p̃2

{
1
2

c1z +
1
2

(
c2 −

1
2

c2
1

)
z2...

}
+ ...

= 1 +
p̃1c1

2
z +

(
1
2

(
c2 −

1
2

c2
1

)
p̃1 +

p̃2c2
1

4

)
z2 + .... (16)

Moreover, considering the function

p̃(Q, R; z) =
2Qτ2z2 + (Q− 1)τz + 2
2Rτ2z2 + (R− 1)τz + 2

.

Letting τz = β. Then,

p̃(Q, R, z)

=
2Qβ2 + (Q− 1)β + 2
2Rβ2 + (R− 1)β + 2

=
Qβ2 + (Q−1)

2 β + 1

Rβ2 + (R−1)
2 β + 1

=

(
Qβ2 +

(Q− 1)
2

β + 1
)(

Rβ2 +
(R− 1)

2
β + 1

)−1

=

(
Qβ2 +

(Q− 1)
2

β + 1
)[

1 +
1
2
(1− R)β +

(
R2 − 6R + 1

4

)
β2 + ...

]
= 1 +

1
2
(Q− R)β +

1
4
(Q− R)(5− R)β2 + .... (17)

Putting back τz = β in (17), we have

p̃(Q, R; z) = 1 +
1
2
(Q− R)τz +

1
4
(Q− R)(5− R)τ2z2 + .... (18)

From (16), it is clear to see that

p̃(Q, R; u(z))

= 1 +
1
4
(Q− R)τc1z +


1
4 (Q− R)τ

(
c2 − 1

2 c2
1

)
+

(Q−R)(5−R)τ2c2
1

16

z2 + .... (19)
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Since g ∈ S∗(q, m, Q, R), then,

Sm+1
q g(z)

g(z)
= 1 +

(
[2]m+1

q − 1
)

a2z +
((

[3]m+1
q − 1

)
a3 −

(
[2]m+1

q − 1
)

a2
2

)
z2 + .... (20)

Comparing the coefficients from (19) and (20), we get

a2 =
(Q− R)τc1

4
(
[2]m+1

q − 1
) . (21)

Applying the modulus, we have

|a2| ≤
(Q− R)|τ|

2
(
[2]m+1

q − 1
) .

Comparing the coefficients once more of (19) and (20), we have(
[3]m+1

q − 1
)

a3

=
1
4
(Q− R)τ

(
c2 −

1
2

c2
1

)
+

(Q− R)(5− R)τ2

16
c2

1 +
(
[2]m+1

q − 1
)

a2
2,

=
(Q− R)τc2

4
− (Q− R)τ

4
c2

1
2
+

(Q− R)(5− R)τ2

16
c2

1 +
(Q− R)2τ2

16
(
[2]m+1

q − 1
) c2

1.

Therefore, we have

a3 =
(Q− R)τ

4
(
[3]m+1

q − 1
)
c2 −

c2
1

2
+

(5− R)τ
4

c2
1 +

(Q− R)τ

4
(
[2]m+1

q − 1
) c2

1


=

(Q− R)τ

4
(
[3]m+1

q − 1
)
c2 −

1
2

1− (5− R)τ
2

− (Q− R)τ

2
(
[2]m+1

q − 1
)
c2

1


=

(Q− R)τ

4
(
[3]m+1

q − 1
){c2 −

v
2

c2
1

}
, (22)

where

v =

1− (5− R)τ
2

− (Q− R)τ

2
(
[2]m+1

q − 1
)
.

Which shows that v > 2 for relation Q > R. Hence, by applying Lemma 4, the desired
result is attained. The result is sharp.

Sm+1
q g(z)

g(z)
= 1 +

(Q− R)τ
2

z +
(Q− R)(5− R)τ2

4
z2 + ....

Taking q→ 1− and m = 0 in Theorem 1, we have the known corollary proven in [38].
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Corollary 1 ([38]). Let g ∈ S∗(Q, R) be given by (1), −1 ≤ R < Q ≤ 1. Then,

|a2| ≤
(Q− R)|τ|

2
,

|a3| ≤
(Q− R)|τ|2

8
{Q− 2R + 5}.

Theorem 2. Let g ∈ S∗(q, m, Q, R), and of the form (1). Then,∣∣∣a3 − µa2
2

∣∣∣
≤ (Q− R)|τ|

4
(
[3]m+1

q − 1
) max

2,

∣∣∣∣∣∣∣∣∣∣
τ


− 1

[2]m+1
q −1

(Q− R) + R− 5

+ 1
[2]m+1

q −1

(
(Q−R)

(
[3]m+1

q −1
)

µ

[2]m+1
q −1

)

∣∣∣∣∣∣∣∣∣∣

.

This result is sharp.

Proof. Since g ∈ S∗(q, m, Q, R), we have

Sm+1
q g(z)

g(z)
= p̃(Q, R; u(z)), z ∈ U ,

where the Schwarz function u, such that u(0) and |u(z)| < 1 in U . Therefore,

z + [2]m+1
q a2z2 + [3]m+1

q a3z3 + ... =
{

z + a2z2 + a3z3 + ...
}{

1 + p1z + p2z2 + ...
}

.

Comparing the coefficients of both sides, we get

a2 =
p1

[2]m+1
q − 1

, and
(
[3]m+1

q − 1
)

a3 = (p1a2 + p2).

This implies that

∣∣∣a3 − µa2
2

∣∣∣ =
1

[3]m+1
q − 1

∣∣∣∣∣∣p2 −
1

[2]m+1
q − 1

µ
[3]m+1

q − 1

[2]m+1
q − 1

− 1

p2
1

∣∣∣∣∣∣
=

1

[3]m+1
q − 1

∣∣∣p2 − vp2
1

∣∣∣,
where

v =
1

[2]m+1
q − 1

µ
[3]m+1

q − 1

[2]m+1
q − 1

− 1

.

By using the Lemma 3 for v = 1
[2]m+1

q −1

(
µ
[3]m+1

q −1

[2]m+1
q −1

− 1
)

, we have the required result. The

equality

∣∣∣a3 − µa2
2

∣∣∣ = (Q− R)|τ|2

4
(
[3]m+1

q − 1
)
∣∣∣∣∣∣∣∣∣∣
− 1

[2]m+1
q −1

(Q− R) + R− 5

+ 1
[2]m+1

q −1

(
(Q−R)

(
[3]m+1

q −1
)

µ

[2]m+1
q −1

)
∣∣∣∣∣∣∣∣∣∣

holds for

g∗(z) = z +
τ

2
(Q− R)z2 +

τ2

8
(Q− R)(Q− 2R + 5)z3 + .... (23)
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Let the function g0 : U → C be given as:

g0(z) = z exp
z∫

0

p̃
(
Q, R; t2)− 1

t
dt = z +

τ

2
(Q− R)z3 + ..., (24)

where p̃(Q, R; z) is defined in (5). Hence, it is clear that g0(0) = 0 and g
′
0(0) = 1 and

Sm+1
q g(z)

g(z)
= p̃

(
Q, R; t2

)
.

This shows that g0 ∈ S∗(q, m, Q, R). Hence, the equality
∣∣a3 − µa2

2

∣∣ = (Q−R)|τ|
2
(
[2]m+1

q −1
) holds for

the function g0 given in (24).

Taking q→ 1− and m = 0 in Theorem 1, we get the known result.

Corollary 2 ([38]). Let g ∈ S∗(Q, R), and of the form (1). Then,∣∣∣a3 − µa2
2

∣∣∣ ≤ (Q− R)|τ|
8

max{2, |τ(−(Q− 2R + 5) + 2(Q− R)µ)|}.

Theorem 3. For a function g ∈ A, defined by (1). If g ∈ S∗(q, m, Q, R), then,

|a2| ≤
| p̃1|

[2]m+1
q − 1

and

|an| ≤
| p̃1|

[n]m+1
q − 1

n−1

∏
k=2

1 +
| p̃1|

[k]m+1
q − 1

, for n ≥ 3.

Proof. Let g ∈ S∗(q, m, Q, R) and suppose

K(z) =
Sm+1

q g(z)
g(z)

. (25)

Then, by Definition 4, we have
K(z) ≺ p̃(Q, R; z),

where p̃(L, R; z) is defined by (5). Hence, applying the Lemma 5, we get∣∣∣∣∣K(j)(0)
j!

∣∣∣∣∣ = ∣∣cj
∣∣ ≤ | p̃1|, j ∈ N, (26)

where
K(z) = 1 + c1z + c2z2 + ....

Since a1 = 1, in view of (25), we have

(
[n]m+1

q − 1
)

an = {cn−1 + cn−2a2 + ... + c1an−1} =
n−1

∑
i=1

cian−i. (27)

Using (26) into (27), we get

(
[n]m+1

q − 1
)
|an| ≤ | p̃1|

n−1

∑
i=1
|an−i|, n ∈ N.
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For n = 2, 3, 4, we have

|a2| ≤
| p̃1|

[2]m+1
q − 1

,

|a3| ≤
| p̃1|

[3]m+1
q − 1

(1 + |a2|)

≤ | p̃1|
[3]m+1

q − 1

1 +
| p̃1|

[2]m+1
q − 1


and

|a4| ≤
| p̃1|

[4]m+1
q − 1

(1 + |a2|+ |a3|)

≤ | p̃1|
[4]m+1

q − 1

1 +
| p̃1|

[2]m+1
q − 1

+
| p̃1|

[3]m+1
q − 1

1 +
| p̃1|

[2]m+1
q − 1


| p̃1|

[4]m+1
q − 1

1 +
| p̃1|

[2]m+1
q − 1

+
| p̃1|

[3]m+1
q − 1

+
| p̃1|

[3]m+1
q − 1

 | p̃1|
[2]m+1

q − 1


=

| p̃1|
[4]m+1

q − 1

1 +
| p̃1|

[3]m+1
q − 1

1 +
| p̃1|

[2]m+1
q − 1

.

Applying the mathematical induction, we have

|an| ≤
| p̃1|

[n]m+1
q − 1

n−1

∏
k=2

1 +
| p̃1|

[k]m+1
q − 1

, for n ≥ 3.

This completes the proof of Theorem 3.

In Theorem 4, we get the new result for a class C(q, m, Q, R).

Theorem 4. Let g ∈ C(q, m, Q, R) be given by (1), −1 ≤ R < Q ≤ 1. Then,

|a2| ≤
(Q− R)|τ|

2[2]mq
(
[2]q − 1

) ,

|a3| ≤
(Q− R)|τ|2

4[3]mq
(
[3]q − 1

)
(5− R)− (Q− R)(

[2]q − 1
)
.

Proof. Let g ∈ C(q, m, Q, R), and of the form (1). Then,

zDq

(
Sm

q g(z)
)

Sm
q g(z)

≺ p̃(Q, R; z), (28)

where

p̃(Q, R, z) =
2Qτ2z2 + (Q− 1)τz + 2
2Rτ2z2 + (R− 1)τz + 2

.

Using the definition of subordination, there exists a function u with

u(0) = 0 and |u(z)| < 1



Symmetry 2023, 15, 1185 13 of 22

such that
zDq

(
Sm

q g(z)
)

Sm
q g(z)

= p̃(Q, R; u(z)). (29)

It is simple to observe from (15), (18) and (16) that

p̃(Q, R; u(z))

= 1 +
1
4
(Q− R)τc1z +


1
4 (Q− R)τ

(
c2 − 1

2 c2
1

)
+

(Q−R)(5−R)τ2c2
1

16

z2 + ... (30)

and

zDq

(
Sm

q g(z)
)

Sm
q g(z)

= 1 + [2]mq
(
[2]q − 1

)
a2z +

(
[3]mq

(
[3]q − 1

)
a3 − [2]mq [2]

m
q

(
[2]q − 1

)
a2

2

)
z2 + .... (31)

It is simple to show that, by using (29) and comparing the coefficients from (30) and (31),
we get

a2 =
(Q− R)τc1

4[2]mq
(
[2]q − 1

) .

Taking the mod on both sides, we have

|a2| ≤
(Q− R)|τ|

2[2]mq
(
[2]q − 1

) . (32)

Now, again comparing the coefficients from (30) and (31), we have

[3]mq
(
[3]q − 1

)
a3

=
1
4
(Q− R)τ

(
c2 −

1
2

c2
1

)
+

(Q− R)(5− R)τ2

16
c2

1 + [2]mq [2]
m
q

(
[2]q − 1

)
a2

2

=
(Q− R)τc2

4
− (Q− R)τ

4
c2

1
2
+

(Q− R)(5− R)τ2

16
c2

1 +
(Q− R)2τ2

16
(
[2]q − 1

) c2
1

=
(Q− R)τ

4

c2 −
c2

1
2
+

(5− R)τ
4

c2
1 +

(Q− R)τ

4
(
[2]q − 1

) c2
1


and

a3 =
(Q− R)τ

4[3]mq
(
[3]q − 1

)
c2 −

1
2

1− (5− R)τ
2

− (Q− R)τ

2
(
[2]q − 1

)
c2

1


=

(Q− R)τ

4[3]mq
(
[3]q − 1

){c2 −
v
2

c2
1

}
, (33)

where

v =

1− (5− R)τ
2

− (Q− R)τ

2
(
[2]q − 1

)
.
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which shows that v > 2. Hence, by using the Lemma 4, we get the required result. The
sharpness can be calculated by using

zDq

(
Sm

q g(z)
)

Sm
q g(z)

= 1 +
(Q− R)τ

2
z +

(Q− R)(5− R)τ2

4
z2 + ....

Theorem 5. Let g ∈ C(q, m, Q, R), and of the form (1). Then,∣∣∣a3 − µa2
2

∣∣∣
≤ (Q− R)|τ|

4[3]mq
(
[3]q − 1

) max

2,

∣∣∣∣∣∣∣∣∣∣
τ


− 1

[2]q−1 (Q− R) + (R− 5)

+ 1
[2]q−1

(
(Q−R)[3]mq

(
[3]q−1

)
µ(

[2]mq
)2(

[2]q−1
)
)

∣∣∣∣∣∣∣∣∣∣

.

This result is sharp.

Proof. Since g ∈ C(q, m, Q, R), so

zDq

(
Sm

q g(z)
)

Sm
q g(z)

= p̃(Q, R; u(z)), z ∈ U ,

Therefore,

z + [2]mq [2]qa2z2 + [3]mq [3]qa3z3 + ...

=
{

z + [2]mq a2z2 + [3]mq a3z3 + ...
}{

1 + p1z + p2z2 + ...
}

.

Comparing the coefficients of both sides, we get

a2 =
p1

[2]mq
(
[2]q − 1

) , and [3]mq
(
[3]q − 1

)
a3 =

(
[2]mq p1a2 + p2

)
.

This implies that

∣∣∣a3 − µa2
2

∣∣∣ =
1

[3]mq
(
[3]q − 1

)
∣∣∣∣∣∣p2 −

1
[2]q − 1

µ
[3]mq

(
[3]q − 1

)
[2]mq [2]

m
q

(
[2]q − 1

) − 1

p2
1

∣∣∣∣∣∣
=

1

[3]mq
(
[3]q − 1

) ∣∣∣p2 − vp2
1

∣∣∣,
where

v =
1

[2]q − 1

µ
[3]mq

(
[3]q − 1

)
(
[2]mq

)2(
[2]q − 1

) − 1

.
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By using Lemma 3 for v = 1
[2]q−1

(
µ

[3]mq
(
[3]q−1

)
(
[2]mq

)2(
[2]q−1

) − 1

)
, we have the required result. The

equality

∣∣∣a3 − µa2
2

∣∣∣ = (Q− R)|τ|2

4[3]mq
(
[3]q − 1

)
∣∣∣∣∣∣∣∣∣∣
− 1

[2]q−1 (Q− R) + (R− 5)

− 1
[2]q−1

(
(Q−R)[3]mq

(
[3]q−1

)
µ(

[2]mq
)2(

[2]q−1
)
)
∣∣∣∣∣∣∣∣∣∣

holds for

g∗(z) = z +
τ

2
(Q− R)z2 +

τ2

8
(Q− R)(Q− 2R + 5)z3 + ....

Now, consider the function g0 : U → C be defined as:

g0(z) = z exp
z∫

0

p̃
(
Q, R; t2)− 1

t
dt = z +

τ

2
(Q− R)z3 + ...,

where p̃(Q, R; z) is defined in (5). Hence, it is clear that g0(0) = 0 and g
′
0(0) = 1 and

zDq

(
Sm

q g(z)
)

Sm
q g(z)

= p̃
(

Q, R; t2
)

.

This demonstrates g0 ∈ C(q, m, Q, R). Hence, the equality∣∣∣a3 − µa2
2

∣∣∣ = (Q− R)|τ|
2[2]mq

(
[2]q − 1

)
holds for the function g0 given in (24).

Theorem 6. For function g ∈ A, given by (1). If g ∈ C(q, m, Q, R), then,

|a2| ≤
| p̃1|

[2]mq
(
[2]mq − 1

)
and

|an| ≤
| p̃1|

[n]mq
(
[n]q − 1

) n−1

∏
k=2

1 +
| p̃1|(

[k]q − 1
)
, for n ≥ 3.

Proof. Suppose g ∈ C(q, m, Q, R) and let

K(z) =
zDq

(
Sm

q g(z)
)

Sm
q g(z)

(34)

Then, by Definition 4, we have
K(z) ≺ p̃(L, R; z).

Using the Lemma 5, we get ∣∣∣∣∣K(j)(0)
j!

∣∣∣∣∣ = ∣∣cj
∣∣ ≤ | p̃1|, m ∈ N, (35)

where
K(z) = 1 + c1z + c2z2 + ....
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Since a1 = 1, in view of (34), we get

[n]mq
(
[n]q − 1

)
an =

{
cn−1 + [2]mq cn−2a2 + ... + [n− 1]mq c1an−1

}
=

n−1

∑
i=1

[n− i]mq cian−i. (36)

Applying (35) into (36), we get

[n]mq
(
[n]q − 1

)
|an| ≤ | p̃1|

n−1

∑
i=1

[n− i]mq |an−i|, n ∈ N.

For n = 2, 3, 4, then

|a2| ≤
| p̃1|

[2]mq
(
[2]q − 1

) ,

|a3| ≤
| p̃1|

[3]mq
(
[3]q − 1

) (1 + |a2|)

≤ | p̃1|
[3]mq

(
[3]q − 1

)
1 +

| p̃1|(
[2]q − 1

)


and

|a4| ≤
| p̃1|

[4]mq
(
[4]q − 1

) (1 + |a2|+ |a3|)

≤ | p̃1|
[4]mq

(
[4]q − 1

)
1 +

| p̃1|(
[2]q − 1

) +
| p̃1|(

[3]q − 1
)
1 +

| p̃1|(
[2]q − 1

)


=
| p̃1|

[4]mq
(
[4]q − 1

)
1 +

| p̃1|(
[3]q − 1

)
1 +

| p̃1|(
[2]q − 1

)
.

Hence, by mathematical induction, we arrive at

|an| ≤
| p̃1|

[n]mq
(
[n]q − 1

) n−1

∏
k=2

1 +
| p̃1|(

[k]q − 1
)
, for n ≥ 3.

This completes the proof of Theorem 3.

Inverse Coefficients

Theorem 7. Let g ∈ S∗(q, m, Q, R) be given by (1), and g−1 have coefficients of the form (2)
−1 ≤ R < Q ≤ 1. Then,

|A2| ≤
(Q− R)|τ|
2
(
[2]mq − 1

) (37)

and

|A3| ≤
(Q− R)|τ|
4
(
[3]mq − 1

) max

2,

∣∣∣∣∣∣∣τ
(5− R) +

(Q− R)
[2]mq − 1

−
2(Q− R)

(
[3]mq − 1

)
(
[2]mq − 1

)2


∣∣∣∣∣∣∣
. (38)

The result is sharp.
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Proof. Let g ∈ S∗(q, m, Q, R), then, using (21) and (22), we have

a2 =
(Q− R)τc1

4
(
[2]mq − 1

) (39)

and

a3 =
(Q− R)τ

4
(
[3]mq − 1

)
c2 −

c2
1

2
+

(5− R)τ
4

c2
1 +

(Q− R)τ

4
(
[2]mq − 1

) c2
1

. (40)

Since g(g−1)(w) = w, and from (2), we have

A2 = −a2. (41)

By solving (39) and (41), we have

|A2| ≤
(Q− R)|τ|
2
(
[2]mq − 1

)
and, from (3), we have

A3 = 2a2
2 − a3. (42)

Putting (39) and (40) in (42), we get

|A3| =
(Q− R)|τ|
4
(
[3]mq − 1

) ∣∣∣∣c2 −
1
2

Vc2
1

∣∣∣∣,
where

V =

1− τ

2

(5− R) +
(Q− R)(
[2]mq − 1

) − 2(Q− R)
(
[3]mq − 1

)
(
[2]mq − 1

)2


.

Hence, by applications of the Lemma 4, we have

|A3| ≤
(Q− R)|τ|
4
(
[3]mq − 1

) max

2,

∣∣∣∣∣∣∣τ
(5− R) +

(Q− R)
[2]mq − 1

−
2(Q− R)

(
[3]mq − 1

)
(
[2]mq − 1

)2


∣∣∣∣∣∣∣
.

Hence, the required result is proved.
The equality holds for the functions given in (23) and (24).

Taking q→ 1− and m = 1 in Theorem 7, we get the known corollary proved in [38].

Corollary 3 ([38]). Let g ∈ S∗(Q, R) be given by (1), and g−1 have coefficients of the form (2),
−1 ≤ R < Q ≤ 1. Then,

|A2| ≤
(Q− R)|τ|

2
and

|A3| ≤
(Q− R)|τ|

8
max{2, τ|3Q− 2R− 5|}.
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Theorem 8. Let g ∈ S∗(q, m, Q, R), and of the form (1), and g−1 have coefficients of the form (2)
−1 ≤ R < Q ≤ 1. Then,∣∣∣A3 − µA2

2

∣∣∣

≤ (Q− R)|τ|
4
(
[3]mq − 1

) max

2,

∣∣∣∣∣∣∣∣∣∣
τ


1

[2]mq −1

(
(2−µ)

(
[3]mq −1

)
(
[2]mq −1

)2 (Q− R)

)

− 1
[2]mq −1 (Q− R) + R− 5


∣∣∣∣∣∣∣∣∣∣

.

The result is sharp.

Proof. Since
A2 = −a2 (43)

and
A3 = 2a2

2 − a3. (44)

Therefore, by using a2 = p1
[2]mq −1 and a3 = 1

[3]mq −1 (p1a2 + p2), we can write

∣∣∣A3 − µA2
2

∣∣∣ =
∣∣∣2a2

2 − a3 − µa2
2

∣∣∣
=

∣∣∣a3 − (2− µ)a2
2

∣∣∣
=

1
[3]mq − 1

∣∣∣∣∣∣p2 −
1

[2]mq − 1

 (2− µ)
(
[3]mq − 1

)
[2]mq − 1

− 1

p2
1

∣∣∣∣∣∣
=

1
[3]mq − 1

∣∣∣p2 − vp2
1

∣∣∣,
where

v =
1

[2]mq − 1

 (2− µ)
(
[3]mq − 1

)
[2]mq − 1

− 1

.

Hence, by application of Lemma 3, we obtain the required result

∣∣∣A3 − µA2
2

∣∣∣ ≤ (Q− R)|τ|
4
(
[3]mq − 1

) max

2,

∣∣∣∣∣∣∣∣∣∣
τ


1

[2]mq −1

(
(2−µ)

(
[3]mq −1

)
[2]mq −1 (Q− R)

)

− 1
[2]mq −1 (Q− R) + R− 5


∣∣∣∣∣∣∣∣∣∣

.

The equality holds for the functions given in (23) and (24).

Taking m = 1 and q→ 1− in Theorem 8, we get the known result.

Corollary 4 ([38]). Let g ∈ S∗(Q, R), and of the form (1), and g−1 of the form (2) −1 ≤ R <
Q ≤ 1. Then, µ ∈ C and |z| < τ2.∣∣∣A3 − µA2

2

∣∣∣
≤ (Q− R)|τ|

8
max{2, |τ(3Q− 2R− 5− 2µ(Q− R))|}.
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Theorem 9. Let g ∈ C(q, m, Q, R) be defined in (1), and g−1 of the form (2) −1 ≤ R < Q ≤ 1.
Then,

|A2| ≤
(Q− R)|τ|
2
(
[2]mq − 1

)
and

|A3| ≤
(Q− R)|τ|

4[3]mq
(
[3]q − 1

) max

2, τ

∣∣∣∣∣∣∣∣∣∣


(5− R) + (Q−R)

[2]q−1 −

2(Q−R)[3]mq
(
[3]q−1

)
[2]2m

q

(
[2]q−1

)2


∣∣∣∣∣∣∣∣∣∣


The result is sharp.

Proof. Let g ∈ C(q, m, Q, R), then, using (32) and (33), we have

a2 =
(Q− R)τc1

4[2]mq
(
[2]q − 1

) (45)

and

a3 =
(Q− R)τ

4[3]mq
(
[3]q − 1

)
c2 −

1
2

1− (5− R)τ
2

− (Q− R)τ

2
(
[2]q − 1

)
c2

1

. (46)

Since g(g−1)(w) = w, and from (2),

A2 = −a2. (47)

By solving (45) and (47), we have

|A2| ≤
(Q− R)|τ|

2[2]mq
(
[2]q − 1

) .

From (3), we have
A3 = 2a2

2 − a3. (48)

Putting (45) and (46) in (48), we get

|A3| =
(Q− R)τ

4[3]mq
(
[3]q − 1

) ∣∣∣∣c2 −
1
2

V0c2
1

∣∣∣∣,
where

V0 =

1− τ

2

(5− R) +
(Q− R)(
[2]q − 1

) − 2(Q− R)[3]mq
(
[3]q − 1

)
[2]2m

q

(
[2]q − 1

)2


.

Hence, by using the Lemma 4, we get

|A3| ≤
(Q− R)|τ|

4[3]mq
(
[3]q − 1

) max

2, τ

∣∣∣∣∣∣∣∣∣∣


(5− R) + (Q−R)

[2]q−1

−
2(Q−R)[3]mq

(
[3]q−1

)
[2]2m

q

(
[2]q−1

)2


∣∣∣∣∣∣∣∣∣∣

.

Hence, the required result is proved.
The equality holds for the functions given in (23) and (24).
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Theorem 10. Let g ∈ C(q, m, Q, R) be of the form (1) and g−1 from (2) −1 ≤ R < Q ≤ 1. Then,
µ ∈ C and |z| < τ2.∣∣∣A3 − µA2

2

∣∣∣

≤ (Q− R)|τ|
4[3]mq

(
[3]q − 1

) max

2,

∣∣∣∣∣∣∣∣∣∣
τ


1

[2]q−1

(
(2−µ)[3]mq

(
[3]q−1

)
[2]2m

q

(
[2]q−1

)
)

− 1
[2]q−1 (Q− R) + R− 5


∣∣∣∣∣∣∣∣∣∣

.

The result is sharp.

Proof. Since
A2 = −a2, A3 = 2a2

2 − a3

and
a2 =

p1

[2]mq
(
[2]q − 1

) , and [3]mq
(
[3]q − 1

)
a3 =

(
[2]mq p1a2 + p2

)
.

Therefore, by using a2 = p1

[2]mq
(
[2]q−1

) and a3 = 1
[3]mq

(
[3]q−1

)([2]mq p1a2 + p2

)
, we can write

∣∣∣A3 − µA2
2

∣∣∣ =
∣∣∣a3 − (2− µ)a2

2

∣∣∣
=

1

[3]mq
(
[3]q − 1

)
∣∣∣∣∣∣p2 −

1
[2]q − 1

 (2− µ)[3]mq
(
[3]q − 1

)
[2]2m

q

(
[2]q − 1

) − 1

p2
1

∣∣∣∣∣∣
=

1

[3]mq
(
[3]q − 1

) ∣∣∣p2 − vp2
1

∣∣∣,
where

v =
1

[2]q − 1

 (2− µ)[3]mq
(
[3]q − 1

)
[2]2m

q

(
[2]q − 1

) − 1

.

Hence, by applications of the Lemma 3, we obtain the required result:

∣∣∣A3 − µA2
2

∣∣∣ ≤ (Q− R)|τ|
4[3]mq

(
[3]q − 1

) max

2,

∣∣∣∣∣∣∣∣∣∣
τ


1

[2]q−1

(
(2−µ)[3]mq

(
[3]q−1

)
[2]2m

q

(
[2]q−1

)
)

− 1
[2]q−1 (Q− R) + R− 5


∣∣∣∣∣∣∣∣∣∣

.

The equality holds for the functions given in (23) and (24).

4. Conclusions

In this article, two new subclasses of q-starlike and q-convex functions are defined
by the use of the Sălăgean q-differential operator and the definition of subordination.
This article is organized in three sections. In Section 1, a brief introduction and definitions
are discussed, and, in Section 2, some known lemmas are presented. The first two Taylor-
Maclaurin coefficients, coefficient inequalities and estimates for the Fekete-Szegö-type
functional are only some of the fascinating problems we examine in Section 3 for functions
belonging to the subclasses of q-starlike and q-convex functions. All of the bounds that
we looked at in this article have been shown to be sharp. The inverse functions were also
examined for the same kind of results. Our study also highlighted some of the primary
effects that are already known to exist. We anticipate that study of this article will motivate
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researchers to extend this idea for meromorphic functions and the class of bi-univalent
functions.

Additionally, we would like to point out that the concept conveyed in this article
can be expanded using symmetric q-calculus, which can be used to replace the original
article’s use of the Sălăgean quantum differential operator with the symmetric q-derivative
operator [39] and the Sălăgean quantum differential operator [40]. Using this operator,
new subclasses of starlike and convex functions connected to the cardioid domain can then
be defined, and the results of this article can be examined by connecting to a symmetric
q-calculus. Furthermore, based on particular probability distributions with particular
functions, new classes can be defined and investigated.
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