
Citation: Pour, G.B.; Ashourifar, H.;

Aval, L.F.; Solaymani, S.

CNTs-Supercapacitors: A Review of

Electrode Nanocomposites Based on

CNTs, Graphene, Metals, and

Polymers. Symmetry 2023, 15, 1179.

https://doi.org/10.3390/sym15061179

Academic Editors: Taher Armaghani

and Sergei D. Odintsov

Received: 11 April 2023

Revised: 27 April 2023

Accepted: 29 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Review

CNTs-Supercapacitors: A Review of Electrode Nanocomposites
Based on CNTs, Graphene, Metals, and Polymers
Ghobad Behzadi Pour 1,* , Hassan Ashourifar 1 , Leila Fekri Aval 2 and Shahram Solaymani 2

1 Department of Physics, East Tehran Branch, Islamic Azad University, Tehran 18661-13118, Iran;
rzh.ashourifar@gmail.com

2 Quantum Technologies Research Center, Science and Research Branch, Islamic Azad University,
Tehran 14778-93855, Iran; leila2mst@yahoo.com (L.F.A.); shahram.solaymani@ipm.ir (S.S.)

* Correspondence: ghobadbehzadi@yahoo.com; Tel.: +98-912-034-5348

Abstract: Carbon nanotubes (CNTs), due to mechanical, electrical, and surface area properties and
their ability to adapt to different nanocomposite structures, are very substantial in supercapacitor
electrodes. In this review, we have summarized high-performance, flexible, and symmetry CNT
supercapacitors based on the CNTs/graphene, CNTs/metal, and CNTs/polymer electrodes. To
present recent developments in CNT supercapacitors, we discuss the performance of supercapacitors
based on electrical properties such as specific capacitance (SC), power and energy densities, and
capacitance retention (CR). The comparison of supercapacitor nanocomposite electrodes and their
results are reported for future researchers.
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1. Introduction

Supercapacitors are capable energy storage systems, as they offer fast charge/discharge,
high cycle stability, high power density, and stable electrical properties. Supercapacitors
in several industries are used for energy harvesting and high-power systems in electric
vehicles. Recently, supercapacitors based on CNTs composite electrodes have received
more attention due to the electrical and chemical properties of CNTs [1–7]. Growth in the
publication of CNT-based supercapacitors is shown in Figure 1.
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The SC is a crucial parameter in the calcification of supercapacitors. The SC can be ob-
tained by cyclic voltammetry and charge/discharge methods. From the cyclic voltammetry
method, the SC can be obtained from the following formula:

Cm =

∫ V2
V1

I dV

m S ∆V
(1)

where m is the mass of the active materials’ electrode, S is the voltage scan rate (mV/s), ∆V
is the potential window, I is the current in the CV curve, and m is the mass of the electrode
materials. From the charge/discharge method, the SC can be obtained from the following
formula [8]:

Cm =
I(

m dV
dt

) (2)

Figure 2 shows the SC of CNT-based supercapacitors that was published in 2022.
As shown in Figure 2, 14% of supercapacitors achieved a SC higher than 1000 F/g and
65% lower than 500 F/g.
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The co-occurrence keywords analysis of the CNT-based supercapacitor by VOSviewer
from the Scopus for 2022 publications is shown in Figure 3. As can be observed from
Figure 3, the electrode nanocomposite based on the CNTs/graphene, CNTs/metal, and
CNTs/polymer are more highlighted in the co-occurrence keywords analysis. Other
characterizations such as symmetric [9–11], flexible [12,13], wearable electronic [14,15],
cellulose [16–18], cycling stability [19,20], pseudocapacitor [21,22], solid-state supercapaci-
tor [23–25], activated carbon [26–28], polymers [29–31], MXene [32,33], and CNTs [34–46]
were mentioned in Figure 3.
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Nanomaterials are widely used for industrial applications such as supercapacitors,
batteries, antibacterial activity, nano-membranes, and sensors [47–56]. Graphene, due to its
highly tunable surface area, outstanding electrical conductivity, good chemical stability,
and excellent mechanical behavior, is promising for applications in supercapacitors. The
recent development of graphene-based supercapacitors from zero-dimensions to three-
dimensions was reported in Ref. [57]. Lu et al. [58] reported a symmetric supercapacitor
based on the CNTs/reduced graphene oxide (rGO) electrodes at different temperatures.
They demonstrated that the specific capacitances of the symmetric CNT/rGO supercapaci-
tors reached 107.8 and 128.2 F/g at 25 ◦C and 80 ◦C, and 80.0 and 144.6 F/g at −20 ◦C and
60 ◦C. The CR of CNT/rGO supercapacitors remained almost unchanged after 20,000 cy-
cles. Flexible supercapacitors are used in portable and wearable electronics. The flexible
supercapacitors are based on CNTs/graphene, CNTs/GO, and CNTs/SnS2 compared
in Ref. [59]. The paper presented the areal and volumetric capacitance of the symmet-
ric CNT/SnS2 supercapacitors, which were 533 mF/cm2 and 63 mF/cm3, respectively,
whereas CNT/GO-based electrodes display a high-rate capability. Zhang et al. [60] investi-
gated the fabrication of the supercapacitor based on the CNT/graphene/FeCo electrode.
They stated that the specific capacitance of the CNT/graphene/FeCo supercapacitor was
560.26 F/g and that the supercapacitor exhibits better electron conductivity and electro-
chemical performance than pure graphene. The electrical properties of supercapacitors
based on the CNTs/COOH/Fe3O4 and CNT/COOH/Fe3O4/rGO structures were com-
pared in Ref. [61]. The paper demonstrated that the specific capacitance, energy, and power
densities of the CNT/COOH/Fe3O4 and CNT/COOH/Fe3O4/rGO supercapacitors were
167.29 F/g, 41.65 Wh/kg, and 1333 W/kg and 448.10 F/g, 34.02 Wh/kg, and 1282 W/kg,
respectively. The cyclic stability of the CNT/COOH/Fe3O4 supercapacitor was 69% up to
2000 cycles, and for the CNT/COOH/Fe3O4/rGO supercapacitor, it had 93% cyclic stability
after 2000 cycles. With the explosive growth of portable electronic devices and electric
vehicles, the consideration of renewable energy and the development of sustainable green
energy storage devices are more highlighted. In another study, a supercapacitor based
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on the CNT/rGO-aminoindle structure was reported in Ref. [62]. The paper mentioned
using redox-active 7-aminoindole (7-Ai) effectively, the agglomeration of rGO nanosheets
was reduced, and a rapid diffusion and transport of ions/electrons from network channels
constructed by CNTs happened. The specific capacitance of CNT/rGO-aminoindle super-
capacitor, power, and energy densities was 183.86 mAh/g, 17.8 kW/kg, and 163.63 Wh/kg,
respectively, with a cycling stability of 87.12% for 16,000 cycles. Juang et al. [63] produced
graphene sheets via an amino-assisted liquid phase exfoliation method and proposed that
the electrical conductivity of functionalized CNT/graphene buckypaper was 87.500 S/m,
which is six times higher than unfunctionalized CNT/graphene buckypaper. They stated
that for functionalized graphene/CNT buckypaper, the capacitance was 359.6 mF/cm3

with no capacitance change after 10,000 cycles. A study investigated the preparation of a
composite consisting of polypyrrole-derived highly defective CNTs and highly conduc-
tive rGO [64]. The highly defective structures serve as effective electrochemically active
sites to enhance ion adsorption. Meanwhile, the CNTs and rGO structures act as rapid
electrons/ions’ dual transport channels. The combination of CNTs and rGO structures
with defective structures synergistically promotes fast energy storage/release. The paper
demonstrated that the carbon composite with an optimized structure had a specific capac-
itance of 160.6 F/g. Li et al. [65] fabricated a supercapacitor with the CNT/rGO/PANI
structure, and PANI was grown vertically on CNT/rGO fiber. This structure enabled fast
transport for electrons and rapid diffusion for ions. For the CNT/rGO/PANI supercapaci-
tor, the volumetric capacitance of 50.2 F/cm3 with 62.5% CR was achieved A supercapacitor
based on the CNT/graphene nanoribbons/molybdenum disulfide (MoS2) electrode dis-
played a specific capacitance of 282 F/g [66]. Mendoza et al. [67] compared three types
of flexible supercapacitors with structures of CNTs, CNTs/Boron nitride (BN)/graphene,
and CNT/Boron nitride (BN)/graphene/lithium titanate (Li2TiO3). They reported that
the specific capacitance of CNTs, CNTs/BN/graphene, and CNT/BN/graphene/Li2TiO3
supercapacitors was 329.7 F/g, 890.2 F/g, and 1662.2 F/g, respectively. On the other hand,
the added BN/graphene and BN/graphene/Li2TiO3 increased the capacitance by ~4 times.
The fabrication of graphene fiber as an electrode for CNT/rGO fiber supercapacitors, using
GO/polyacrylonitrile (PAN) fibers, is researched in Ref. [68]. The paper described a specific
capacitance increase from 34 F/g to 141 F/g with a CR of 96% after 2500 cycles that was due
to the improved inaccessibility and pseudo-capacitance provided by oxygen-containing
functional groups. CNT/graphene nanocomposites have drawn scientific attention as
effective electrodes for supercapacitors. A supercapacitor based on the CNTs/graphene
electrode and 1 M NaCl as the electrolyte showed SC of 179 F/g [69]. The advancement
of multifunctional materials and their carbonaceous hybrids as supercapacitor electrodes
are of critical importance. Das et al. [70] reported a supercapacitor based on the ternary
germanium selenide (Ge4Se9) with CNTs and reduced graphene oxide (RGO) and 1 M
H2SO4 as the electrolyte. They observed that the SC of the supercapacitor was 440 F/g
with 98% coulombic efficiency after 5000 cycles. A study investigated a supercapacitor con-
structed by the tungsten trioxide (WO3)/CNT/RGO electrode and demonstrated the SC of
691.38 F/g at 5 mV/s [71]. Ngo et al. [72] fabricated polydopamine/CNT/graphene oxide
nanocomposites as the flexible symmetric electrode for the supercapacitor and demon-
strated the SC of 217.4 F/g. The supercapacitors based on the CNTs/MnO2 nanocomposite
electrode have been developed to fabricate high-performance supercapacitors [73–78]. The
dispersion of MnO2 and conductive additives in an electrode are key factors in increasing
the efficiency of the electrode. The high theoretical capacitance of MnO2 offered it as a
promising electrode for supercapacitors. Yesilbag et al. [76] compared the supercapacitors
with CNTs and CNT/MnO2 electrodes and demonstrated that the SC of supercapacitors
were 53.7 F/g and 497 F/g, respectively. This review aimed to describe the supercapacitors
based on the CNTs, graphene, metals, and polymer electrodes. Furthermore, the SC, energy,
and power densities were investigated for CNT-based supercapacitors. The developments
of CNT-based supercapacitors for 2022 publications (Scopus) were also compared.
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2. CNT/Graphene-Based Supercapacitors

CNTs, due to their unique electrical, mechanical, and chemical stability properties,
can be used for the development of supercapacitors, as electrodes create a large interface
between the electrode and electrolyte. To obtain a higher energy density, CNTs should
be composites with other nanomaterials and conductive polymers [79]. Figure 4 shows
the number of publications of CNT/graphene-based supercapacitors in different years. A
comparison of the SC of CNT/graphene-based supercapacitors that was published in 2022
is also plotted in Figure 4.
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As can be observed in Figure 4, the SC of different publications in 2022 are from
113 F/g to 2532 F/g. Yang et al. [80] reported a supercapacitor with nanocomposite
electrodes based on the CNTs/graphene and Ti3C2Tx MXene. They demonstrated that
the SC of the supercapacitor at the 3000 mV/s was 349 F/g with a CR of 97.1% after
100,000 cycles. In another study, a supercapacitor based on nanocomposite electrodes
with the combination of CNTs, reduced graphene oxide (rGO), and ZrO2 nanoparticles,
was investigated [81]. That study demonstrated that the CNT/rGO/ZrO2 nanocomposite
electrode offers the SC of 357 F/g at 1A/g with a CR of 97.1% after 5000 cycles, and the
structure of CNTs/rGO creates an excellent conductive network. Wang et al. [82] described
a flexible supercapacitor with a CNT/rGO electrode and demonstrated a SC of 267.8 F/g.
Recently, paper supercapacitors based on the carbon nanomaterials’ electrode and polymer
electrolyte were used. Figure 5 shows a schematic of paper-based supercapacitors.
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The comparison of CNT/graphene electrode-based supercapacitors is shown in
Table 1. Liu et al. [83] described a hybrid supercapacitor with polyhedron-CNTs/graphene
as the negative electrode and CNT/NiCo2O4/CoP core-sell polyhedron as the positive
electrode. The study demonstrated that the polyhedron-CNT film with porous structure
and high conductivity achieved an SC of 1918.4 F/g, and energy and power densities of
68.6 Wh/kg and 800 W/kg at 1 A/g, respectively. The asymmetric supercapacitor based
on the CNT/rGO/FeO/NiFe electrode was investigated in Ref. [84]. They reported that
the SC, and energy and power densities of the supercapacitor were 411.9 F/g, 41.4 Wh/kg,
and 5600 W/kg, respectively, at a scan rate of 5 mV/s and CR of 102.2% after 5000 cycles.

Table 1. Comparison of CNT/graphene electrode-based supercapacitors.

Electrode Materials CR (%)/Cycles SC (F/g)
Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Reference

CNTs/graphene/polyhedron - 1918.4 68.6 800 [83]
CNTs/rGO/FeO/NiFe 102.2/5000 411.9 41.4 5600 [84]
CNTs-GONRs@g-C3N4/Ni-Co-LDH/NF - 2532.80 77.61 850 [85]
CNTs/graphene/NiCo2O4/ZnCo2O4 86.1/6000 1128.6 68.6 800 [86]
CNTs/graphene/N-Co3S4 97.2/4000 1158 37.69 8000 [87]
CNTs/graphene/N-MnO2 - 185.1 75.3 18,100 [88]
CNTs/graphene/NiCo2S4/MXene 80/5000 1076 0.115 Wh/m2 12.4 W/m2 [89]
CNTs/graphene/Mn0.06CO2.94O4 82/33,000 933 55 9000 [90]
CNTs/graphene - 603 0.24 Wh/m2 21.6 W/m2 [91]
CNTs/graphene/activated carbon 94–97/1000 32.13 6.6 69 [92]
CNTs/graphene/TiO2 - 168 15 337.5 [93]

Qiu et al. [85] used nanocomposites based on CNTs, GO/nanoribbon@graphitic,
carbon nitride/Ni and Co-layered double hydroxide/Ni foam (CNTs-GONRs@g-C3N4/Ni–
Co-LDH/NF) for the supercapacitor electrode. They proposed that the SC of the superca-
pacitor at 1A/g was 2532.80 F/g and energy and power densities were 77.61 Wh/kg
and 850 W/kg, respectively. Chen et al. [86] considered a nanocomposite based on
CNTs/graphene/NiCo2O4/ZnCo2O4 as the electrode for an energy storage device. They
indicated that the SC of the supercapacitor was 1128.6 F/g at 1A/g with a CR of 86.1% after
6000 cycles at 10A/g. That nanocomposite demonstrated an energy density of 68.6 Wh/kg
and a power density of 800 W/kg at 1 A/g. Transition metal sulfides due to high theo-
retical capacity have become electrodes in supercapacitors. Zhang et al. [87] proposed a
supercapacitor electrode based on the CNTs/graphene/N-Co3S4. They demonstrated that
the CNT/graphene/N-doped -Co3S4 supercapacitor has energy and power densities of
37.69 Wh/kg and 8000 W/kg, respectively. In another study, the supercapacitor based on
the CNT/graphene/N-doped-MnO2 electrode exhibited energy and power densities of
75.3 Wh/kg and 18,100 W/kg, respectively [88]. Hybrid nanostructures have been used
to design flexible supercapacitors. However, the performance and low cost of supercapac-
itors are interesting characteristics. Pathak et al. [89] reported the supercapacitor based
on the MXene (Ti3C2Tx) as the negative electrode and CNT/graphene/NiCo2S4/MXene
nanocomposites as the positive electrode. They proposed that the SC of the supercapac-
itor was 1076 F/g. Transition metal oxides, CNTs, and graphene have been composited
as possible electrodes for high-performance supercapacitors. The supercapacitor with
CNT/graphene/Mn0.06Co2.94O4 structure displayed a high SC of 933 F/g [90]. The pro-
cess for preparing ionic gel and CO2 plasma treatment to modify electrodes based on
CNT/graphene composites is presented in Ref [91]. The paper demonstrated that the SC of
the supercapacitor was 603 F/g, and the energy and power densities of the supercapacitor
were 24.03 µWh/c and 2.16 mW/cm, respectively. Rustamaji et al. [92] designed and
fabricated a supercapacitor based on the AC/CNT/graphene electrode. They reported
that the SC of the AC/CNT/graphene supercapacitor was 32.13 F/g, and the power and
energy densities of the supercapacitor were 69 W/kg and 6.6 Wh/kg, respectively. The
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supercapacitor based on the CNT/rGO/TiO2 electrode demonstrated the SC of 168 F/g
and energy and power densities of 15 Wh/kg and 337.5 W/kg, respectively [93].

3. CNT/PANI-Based Supercapacitors

Polymers due to electrochemical properties were used in both supercapacitors’ elec-
trodes and electrolytes [94–96]. Conducting polymers such as polyaniline (PANI) have
recently been widely used in the electrode material composite of supercapacitors for the
fabrication of a lightweight, flexible, symmetry, and high-performance energy storage de-
vice. Panasenko et al. [97] reported the supercapacitor based on the CNT/PANI electrode
with a SC of 541 F/g. The supercapacitor is based on the CNT/PANI/rGO electrode with a
SC of 478 F/g presented in Ref. [98]. The micro-supercapacitors with CNT/PANI/MXene
electrodes showed the SC of 414 F/g and cycling stability of 90.4% after 10,000 cycles [99].
Electrode material based on the PANI composite is ideal for flexible supercapacitors. How-
ever, the formation of PANI agglomeration leads to a decrease in the SC and cycling stability.
The supercapacitor with the CNT/PANI/Sb composite electrode demonstrated the SC of
416 F/g [100]. A comparison of the SC, power, and energy densities of CNT/PANI-based
supercapacitors published in 2022 is mentioned in Table 2. In Ref. [101], the supercapacitor
based on the CNT/PANI/MnO2 electrodes is developed for energy storage applications
and exhibited a high SC of 532 F/g at a current density of 1 A/g. Moreover, the paper
demonstrated 80% CR after 4000 cycles and had energy and power densities of 11.8 Wh/kg
and 3785 W/kg, respectively. MXene, a successful nanomaterial with a two-dimensional
structure, has displayed a capable application on energy storage devices. Due to the
susceptibility of MXene to oxidation as a cathode electrode, there is a need for research
into developing these electrodes. Wu et al. [102] introduced a supercapacitor with a
CNT/PANI@MXene electrode and reported the SC of 463 F/g at 5 mV s−1, and 92% CR
after 10,000 cycles. They mentioned the supercapacitor with the composite cathode, and the
MXene/CNTs anode achieved energy and power densities of 10 Wh/kg and 2808 W/kg,
respectively. In a study, CNTs were embedded in polydimethylsiloxane for outstanding
adhesion and integration and then PANI was deposited on its surface [103]. The study pro-
posed that for the CNT/PANI/Polydimethylsiloxane composite electrode, the SC, power,
and energy densities of the supercapacitor were 265 F/g, 25.5 Wh/kg, and 126.6 W/kg,
respectively. In composite electrodes (nanomaterials/PANI), the electrochemical enhance-
ment of PANI is related to the dispersion state of the nanomaterials in the polymer. Wang
et al. [104] demonstrated the fabrication of a symmetric supercapacitor based on the CNT-
lignosulfonate/PANI/molybdenum disulfide-lignosulfonate (CNTs-LS/MoS2-LS/PANI)
electrode. They demonstrated that, in comparison to the supercapacitor based on the pure
PANI, the performance of the supercapacitor with nanocomposites’ electrode enhanced.
They reported that the SC, power, and energy densities of the supercapacitor with the CNT-
LS/MoS2-LS/PANI nanocomposite electrode were 458.9 F/g, 265.3 W/kg, and 10.9 Wh/kg
with 86% CR after 10,000 cycles. Fabrication of a symmetrical supercapacitor was based
on the CNT/PANI/graphene/graphite electrode with a high surface area, described in
Ref. [105]. The paper demonstrated the SC of 880 F/g at a current density of 1.5 A/g,
an energy density of 68.4 mWh/g, a power density of 895.4 mW/g, and 80.6% CR after
10,000 cycles. Xu et al. [106] demonstrated a flexible, symmetric supercapacitor based
on the CNT/PANI-Carboxymethylcellulose (CMC) electrode with a gravimetric SC of
348.8 F/g with 89.2% CR after 5000 cycles. Furthermore, they exhibited that the energy
and power densities of symmetric supercapacitors with the CMC-PANI/CNT electrode
were 99.89 µW h/cm2 and 400.02 µW/cm2, respectively. The supercapacitor with the
CNT/vinyltrimethoxysilane/PANI flexible electrode was introduced in Ref. [107] and
displayed the highest SC and energy density of 531.3F/g and 26.5 Wh/kg, respectively, at
the current density of 1 A/g.
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Table 2. Comparison of CNT/PANI electrode-based supercapacitors.

Electrode Materials CR (%)/Cycles SC (F/g)
Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Reference

CNTs/PANI/MnO2 80/4000 532 11.8 3785 [101]
CNTs/PANI@MXene 92/10,000 463 10 2808 [102]
CNTs/PANI/PDMS 76/5000 265 25.5 126.6 [103]
CNTs-LS/MoS2-LS/PANI 86/10,000 458.9 10.9 265.3 [104]
CNTs/PANI/graphene/graphite 80.6/10,000 880 68.4 895.4 [105]
CNTs/PANI-Carboxymethylcellulose 89.2/5000 348.8 0.999 Wh/m2 4 W/m2 [106]
CNTs@vinyltrimethoxysilane/PANI 96.6/2000 531.3 26.5 - [107]

4. CNTs/Metal-Based Supercapacitors

Increasing energy demands are causing the growth of new materials for supercapacitors’
electrodes and electrolytes. Recently, CNT/metal nanocomposites were widely investigated
for the development of supercapacitor electrode materials such as CNTs/HCNFs/MOF,
CNTs/NiPMo12, CNT/BT/Zn-N, CNTs@NHP/Co@LDH-CoZnAl, CNTs/ZnCo2O4, CNTs/
NiO/MnO2, CNTs/Ti3C2TX, CNTs/KCl, CNTs/V2CTx MXene, CNTs/NiC32N8H16, CNTs/
MnS, CNTs/MnO2, CNTs/Ni–Va and CNTs/ZnWO4/Ni foam, CNTs/NiO/MnO2, CNTs/
ZnO/C, CNTs/NiCo2S4@N, CNTs@Bi2S3/MoS2, CNTs/Cu2P2O7, and CNTs/MXene with
a SC of 712 F/g, 815.6 F/g, 252 F/g, 869.6 F/g, 888 F/g, 23 F/g, 270.5 F/g, 334.4 F/g,
1842 F/g, 12 F/g, 8 F/g, 1298 F/g, 386 F/g, 1493 F/g, 4552 F/g, 1320 F/g, 650 F/g, 254 F/g,
1338 F/g, 465 F/g, and 401.4 F/g, respectively [108–127]. A comparison of SC, power, and
energy densities of CNT/metal-based supercapacitors published in 2022 is mentioned in
Table 3.

Table 3. Comparison of CNT/metal electrode-based supercapacitors.

Electrode Materials CR (%)/Cycles SC (F/g)
Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Reference

CNTs/Ni 83.2/5000 97 32.6 476.5 [128]
CNTs/NiCo2O4/Ni/C - 1945.9 58.31 749.7 [129]
CNTs/NiCoO2 92/5000 1587 41.8 412 [130]
CNTs/NiS2/NiCo2S4 83/10,000 2905 58.1 - [131]
CNTs/NiFe2O4 89.16/5000 670 23.39 466.66 [132]
CNTs/Co-S@carbon nanofibers 96.9/10,000 416.5 10.3 320 [133]
CNTs/Co3V2O8 95.26/3000 120.17 37.55 - [134]
CNTs/ZIF/MoS2 -/10,000 262 52.4 3680 [135]
CNTs/ZnCoS 96/10,000 2957.6 68.8 700 [136]
CNTs/MnO2 78.26/6000 253.86 32 413.70 [137]
CNTs/Ti3C2/MnCo2S4 94.09/5000 823 49.5 350 [138]
CNTs/Bi-Fe-P 85.6/8000 532 81.5 890.2 [139]
CNTs/cerium selenide nanopebbles 84.1/4000 451.4 36.3–14.5 2800–5600 [140]
CNTs/Nb2O5 96/10,000 192 5.4–2.7 98.7–24.671 [141]
CNTs/Nitrogen–Boron–Carbon 95.7/3000 432.31 11.67–7.74 300–1485 [142]
CNTs/SnS2-BN 101/- 87 49 - [143]

Metals that are organic due to chemical and physical properties such as porosity
were proposed for supercapacitors’ electrode material. A comparison of supercapacitors
based on CNT/Ni electrode structures is reported in Table 3 [128–132]. Sun et al. [128]
synthesized the CNT/Ni composite electrode for the supercapacitor electrode and reported
that the SC of the supercapacitor was 97 F/g and 83.2% retention after 5000 cycles. They
reached 32.6 Wh/kg and 476.5 W/kg energy density and power density, respectively, for
CNT/Ni supercapacitors. The hierarchical electrode materials are attractive for energy
storage applications. The supercapacitor is based on the CNT/NiCo2O4/Ni/C electrode
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structure described in Ref. [129]. The paper mentioned that the SC of a supercapacitor with
the hierarchical electrode material was 1945.9 F/g with an energy density of 58.31 Wh/kg
at a power density of 749.7 W/kg. One of the disadvantages of supercapacitors is related
to the low energy density that can be improved by pseudocapacitive materials from redox
reactions. A supercapacitor electrode based on the CNT/NiCoO2 mesoporous structure
presented the SC of 1587 F/g and 92% CR after 5000 cycles, with an energy density of
41.8 Wh/kg at a power density of 412 W/kg [130]. Geioushy et al. [131] introduced the
CNT/NiS2/NiCo2S4 nanostructure as electrode material for energy storage applications.
They achieved the SC of 1587 F/g and 83% CR after 10,000 cycles. The composition of the
binary metal oxide with CNTs is considered for increased energy storage in recent reports.
The supercapacitor with the CNT/NiFe2O4 electrode structure demonstrated energy and
power densities of 23.39 Wh/kg and 466.66 W/kg, respectively [132]. Supercapacitors with
long-cycle stability and flexible electrodes are in demand for portable electronic equip-
ment. Yao et al. [133] investigated the flexible quasi-solid-state supercapacitor based on
the CNT/Co-S/carbon nanofibers’ electrode and stated that the SC of the supercapacitor
was 416.5 F/g and 96.9% CR after 10,000 cycles. Due to the tunable structure and stability
properties of the binary metal, oxides were used for electrode materials’ construction. The
supercapacitor with the gel polymer electrolyte and the CNT/Co3V2O8 electrode was
proposed in Ref. [134]. The paper detailed that the SC of the supercapacitor was 120.17 F/g
and 95.26% CR after 3000 cycles. Despite the capability of supercapacitors in energy storage,
there is a big difference in energy densities between batteries and supercapacitors. Houpt
et al. [135] introduced a hybrid framework with the CNT/ZIF/MoS2 electrode material.
They stated that the power density was 3682 W/kg for the supercapacitor with a SC of
262 F/g. A supercapacitor based on the metal–organic CNT/ZnCoS electrode demon-
strated the SC of 2957.6 F/g with a 96% CR after 10,000 cycles [136]. Metal–oxygen material
such as CNTs/MnO2 was used for the supercapacitor electrode and achieved the SC of
253.86 F/g with 78.26% CR after 6000 cycles, with energy and power densities of 32 Wh/kg
and 413.7 W/kg, respectively [137]. The improvement of supercapacitors’ performance is
related to the electrode materials and structural design. The CNT/Ti3C2/MnCo2S4 compos-
ite electrode with positively charged CNTs and negatively charged Ti3C2 was investigated
in Ref. [138]. The paper mentioned that the symmetric supercapacitor demonstrated the
SC of 823 F/g and energy and power densities of 49.5 Wh/kg and 350 W/kg respectively.
Pseudocapacitive materials due to their good redox processes and low cost are proper for
supercapacitor fabrication. A supercapacitor based on the CNT/Bi-Fe-P electrode exhibited
an energy density and power densities of 81.5 Wh/kg and 890.2 W/kg, respectively, with
85.6% CR after 8000 cycles [139]. Problems in flexible energy storage devices are related to
mechanical properties, cyclic stability, and small capacitance. A flexible symmetric superca-
pacitor based on the CNT/cerium selenide nanopebbles’ electrode and poly (vinyl alcohol)
(PVA)-LiClO4 gel electrolyte was proposed in Ref. [140]. The study achieved energy and
power densities in a range of 36.3–14.5 Wh/kg and 2800–5600 W/kg, respectively. There is
sodium due to an abundance in the Earth’s crust, leading to low-cost energy storage and
renewable energies. In combination with niobium pentoxide and CNTs, sodium ions can
make intercalation into niobium pentoxide and electrostatic adsorption into CNTs.

Real et al. [141] investigated a flexible, sodium-ion pseudocapacitor with the CNT/Nb2O5
electrode and demonstrated a SC of 192 F/g and 96% CR after 10,000 cycles. A super-
capacitor based on the CNT/Nitrogen–Boron–Carbon electrode reached energy density
and power density in a range between 11.67–7.74 Wh/kg and 300–1485 W/kg, respec-
tively [142]. Due to large-volume oscillations, the low inherent conductivity and stability
of the bare SnS2 are not expected for supercapacitor devices. A supercapacitor with
CNT/SnS2-BN electrode material stated the SC of 87 F/g [143]. A comparison of Tables 1–3
in the specific capacitance, power density, and energy density for supercapacitors based
on the CNTs/metal, CNTs/graphene, and CNT/PANI is plotted in Figure 6. As can be
observed from Figure 6 for CNT/metal-based supercapacitors, the energy density is higher,
and for CNT/graphene-based supercapacitors, the power density is highlighted. The
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CNT/metal-based supercapacitors achieved an energy density of about 80 Wh/kg, and the
CNT/graphene-based supercapacitor reached a power density of 9000 W/kg.
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There is a continued need for supercapacitors in several industries for energy storage
systems due to fast charge/discharge, high cycle stability, and high-power density. In this
study, a recent development in CNT-based supercapacitors was reported. The comparison
of supercapacitors based on the CNTs/graphene, CNTs/metal, and CNTs/polymer elec-
trodes was investigated in this review. Results demonstrated that for the CNT/metal-based
supercapacitors, the energy density is higher and for CNT/graphene-based supercapaci-
tors, the power density is highlighted. The CNT/metal-based supercapacitors achieved an
energy density of about 80 Wh/kg, and the CNT/graphene-based supercapacitor reached
a power density of 9 kW/kg.
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