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Abstract: In this paper, we aimed to study some asymptotic properties of a class of third-order neutral
differential equations with advanced argument in canonical form. We provide new and simplified
oscillation criteria that improve and complement a number of existing results. We also show some
examples to illustrate the importance of our results.
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1. Introduction

The study of functional differential equations (FDEs) and their symmetric properties
is one of the most important studies, as it has been, and still is, the focus of attention
of researchers for its effective role in the understanding and interpreting of real-world
phenomena. As it is not easy to find solutions in their closed forms, studying the properties
of solutions is one of the best ways to understand and analyze the phenomena; see [1–3].

In particular, delay differential equations (DDEs) are defined as giving the derivative
of an unknown function at a certain time in terms of the values of the function at previous
times, and are referred to in the literature as delay systems or systems with delay argu-
ments. The mathematical modeling that includes DEs with a delay has been extensively
studied in different fields of life sciences, such as, for example, immunology, population
dynamics, epidemiology, neural networks, and physiology. For more details, see [4–8] and
the references therein. This delay may be related to a certain period of hidden processes, as
can be seen in the time interval between the infection of cells and the production of new
viruses, the duration of the immunity period, and the duration of the infection period in
the stages of the life cycle.

Recently, advanced differential equations (ADEs) have been used to model some
phenomena whose development depends not only on the present, but also on the future.
Whereas delays in DDEs are retrospective, in relation to the past, developments in ADEs
are prospective in the future (i.e., taking into account the effect on any possible future
actions that are currently available). For instance, it is believed that economic problems,
population dynamics, or mechanical control engineering are among the phenomena in
which such a phenomenon may occur (see [9,10] for details).

The importance of oscillation theory has evolved into a widely used numerical mathe-
matical method in many disciplines and fields of technology. Finding better conditions to
ensure the oscillation of the solutions of any DE is one of the most important and prominent
goals of this theory, as attested to by its many studies that have appeared over the past
decades. See the following references: [11–15].
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The study of second-order ADEs has received relatively more attention compared to
higher-order ADEs. For example, the following linear advanced differential equation of the
second order

v′′(>) + Θ(>)v(Ω(>)) = 0

has been discussed in [16,17].
Furthermore, Dzurina [18] studied the oscillatory behavior of the ADE(

r(>)v′(>)
)′
+ Θ(>)v(Ω(>)) = 0

in canonical form and presented some new oscillation criteria.
We also found a number of similar studies and results that we refer the reader

to [19–22].
There is a very limited amount of literature that studies the oscillatory behavior of

third-order ADEs. Yao et al. in [23], discussed some results of the oscillation of the equation(
r2(>)

((
r1(>)

(
v′(>)

)`)′)β
)′

+ Θ(>)v(Ω(>)) = 0, > ≥ >0 > 0, (1)

They offered some conditions that ensure that the solutions of Equation (1) are either
oscillatory or converge to zero, where

∫ >
r−1/`

1 (s)ds < ∞ and
∫ >

r−1/`
2 (s)ds < ∞.

Furthermore, Dzurina and Baculikova [24] presented some results, in canonical form,
that complement the previous oscillation results for equation(

r(>)
(
v′(>)

)`)′′
+ Θ(>)v(Ω(>)) = 0, > ≥ >0 > 0

In this work, we study some properties of third-order nonlinear DEs with an advanced
argument of the form (

r(>)
(
v′′(>)

)`)′
+ Θ(>) f (κ(Ω(>))) = 0, (2)

where ` is a quotient of odd positive integers. Furthermore, we applied our results to the
following ADEs:(

r(>)
(
v′′(>)

)`−1
v′′(>)

)′
+ Θ(>)[κ(Ω(>))]`−1κ(Ω(>)) = 0, where ` > 0, (3)

and
v(>) = κ(>) + p(>)κ(ς(>)).

We assumed the following conditions:

(H1) Θ, Ω, ς, r, p ∈ C([>0, ∞), (0, ∞)), Ω(>) ≥ >, ς(>) ≥ >, ς′(>) ≥ ς0 > 0, Ω′(>) ≥
Ω0 > 0, p(>) ≤ p0 < ∞, lim>→∞ ς(>) = ∞, Θ does not vanish identically and

R(>) =
∫ >
>0

1
r1/`(s)

ds = ∞; (4)

(H2) f ∈ (R,R) such that κ f (κ) > 0, f (κ)/κ > κ` ∀ κ 6= 0, where κ > 0.
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Definition 1 ([11]). A solution of (2) means κ ∈ C2([>κ , ∞), [0, ∞)), >κ > >0, which satisfies
the property r(κ′′)` ∈ C1([>κ , ∞), [0, ∞)) and (2) on [>κ , ∞). We consider the solutions of (2)
existing on some half-line [>κ , ∞) and satisfy

sup{|κ(>)| : T∗ ≤ > < ∞} > 0 for any T∗ ≥ >κ .

Such a solution is called oscillatory if it has arbitrarily large zeros on [>κ , ∞); otherwise, it is
said to be nonoscillatory. Equation (2) itself is said to be oscillatory if all its solutions are oscillatory.

In this paper, we aimed to study some asymptotic properties of a class of third-
order neutral DEs with advanced argument in canonical form. First, we classified the
derivatives of the nonoscillatory (positive) solutions of the Equation (2) and presented
some new monotonic properties. Next, by means of these properties, we were able to
obtain relationships between the solution and the corresponding function of Equation (2).
We used these new relationships to exclude positive increasing solutions. The results of
this paper are an improvement of, and complement to, a number of existing results. We
also show some examples to illustrate the importance of our results.

The paper is organized as follows. In Section 1, we present the importance of oscillation
theory in many disciplines and fields of technology, which is the starting point of this paper.
After that, in Section 2, we give some conditions and auxiliary results that are used in
Section 3, where there are some new oscillation results of the studied equation in canonical
form. We also present some examples and their discussions to illustrate the significance of
our findings in Section 4. We end with Section 5, addressing the conclusions and future
works, and posing an interesting open question.

2. Auxiliary Lemmas

We show here some auxiliary results that are used in the theorems that follow. For
ease, we use the following notation:

L1v(>) =
1

Ω0
r
(

Ω−1(>)
)(

v′′
(

Ω−1(>)
))`

+
p
`

0
Ω0ς0

r
(

Ω−1(ς(>))
)(

v′′
(

Ω−1(ς(>))
))`

,

L2v(>) = r(>)
(
v′′(>)

)`
+

p
`

0
ς0

r(ς(>))
(
v′′((ς(>)))

)`
and

Θ̃1(>) = min
{

Θ
(

Ω−1(>)
)

, Θ
(

Ω−1(ς(>))
)}

, Θ̃2(>) = min{Θ(>), Θ(ς(>))}.

Lemma 1. Let κ > 0 be a solution of (2). Then, v(>)
(

r(>)(v′′(>))`
)′

< 0, v(>)v′′(>) > 0
and either

v(>)v′(>) < 0, (5)

or
v(>)v′(>) > 0. (6)

Proof. Let κ > 0 be a solution of (2), for > ≥ >0. By (2), we see that(
r(>)

(
v′′(>)

)`)′
< 0.

This means that r(v′′)` is decreasing and has a fixed sign. If r(>)(v′′(>))` < 0, then
is v(>) is decreasing and negative. This contradiction is

r(>)
(
v′′(>)

)`
> 0, eventually.
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Thus, v(>) has a fixed sign for all > that are large enough. Consequently, one of two
cases, Case (5) or Case (6), is satisfied. The proof is complete.

Definition 2. When we say that property N holds, we mean that all nonoscillatory solutions to (2)
satisfy only the Case (5).

Lemma 2. Assume that κ > 0 is a solution of (2). Then

L1v(>) ≤ − κ

µ
Θ̃1(>)v`(>). (7)

Moreover, assume that ς ◦Ω = Ω ◦ ς. Then

L2v(>) ≤ − κ

µ
Θ̃2(>)v`(Ω(>)). (8)

Proof. Let κ > 0 be a solution of (2). By [25], we note that

(κ(>) + p0κ(ς(>)))`

κ(>)` + p`0κ(ς(>))
`
≤ µ :=

{
2`−1 if ` > 1
1 if ` ≤ 1

.

That is
1
µ

v`(>) ≤ κ(>)` + p`0κ(ς(>))
` (9)

and
1
µ

v`(Ω(>)) ≤ κ(Ω(>))` + p`0κ(ς(Ω(>)))`. (10)

Using (H2) in (2), we have(
r(>)

(
v′′(>)

)`)′
+ κΘ(>)κ`(Ω(>)) ≤ 0. (11)

Furthermore,

1
Ω0

(
r
(

Ω−1(>)
)(

v′′
(

Ω−1(>)
))`)′

+ κΘ
(

Ω−1(>)
)
κ`(>) ≤ 0.

Since Ω′(>) ≥ Ω0 > 0 and ς′(>) ≥ ς0 > 0, it follows that

p
`

0
Ω0ς0

(
r
(

Ω−1(ς(>))
)(

v′′
(

Ω−1(ς(>))
))`)′

+ κΘ
(

Ω−1(ς(>))
)
κ`(ς(>)) ≤ 0. (12)

Combining (11) and (12), and using (9), we obtain(
1

Ω0
r
(
Ω−1(>)

)(
v′′
(
Ω−1(>)

))`
+

p
`
0

Ω0ς0
r
(
Ω−1(ς(>))

)(
v′′
(
Ω−1(ς(>))

))`)′
+

κ

µ
Θ̃1(>)v`(>) ≤ 0. (13)

On the other hand, since ς′(>) ≥ ς0 > 0 and ς ◦Ω = Ω ◦ ς, we obtain

p
`

0
ς0

(
r(ς(>))

(
v′′(ς(>))

)`)′
+ κΘ(ς(>))κ`(ς(Ω(>))) ≤ 0. (14)

Now, combining (11) and (14), then, using (10), we obtain(
r(>)

(
v′′(>)

)`
+

p
`

0
ς0

r(ς(>))
(
v′′((ς(>)))

)`)′
+

κ

µ
Θ̃2(>)v`(Ω(>)) ≤ 0.
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This ends the proof.

Lemma 3. Assume that v(>) > 0, and v′(>) are positive and increasing. Then

>v(Ω(>))− K0Ω(>)v(>) ≥ 0, k0 ∈ (0, 1), eventually. (15)

Proof. Since v′(>) is positive and increasing, we have

v(Ω(>))−v(>)
∫ Ω(>)

>
v′(s)ds ≥ v′(>)(Ω(>)−>)

or
v(Ω(>))

v(>) ≥ v′(>)
v(>) (Ω(>)−>) + 1. (16)

Using the fact lim>→∞ v(>) = ∞, ∃ a >1 is large enough, such that

k0v(>) ≤ v(>)−v(>1) =
∫ >
>1

v′(s)ds

≤ v′(>)(>−>1) ≤ v′(>)>, for any k0 ∈ (0, 1).

That is
>v′(>) ≥ k0v(>). (17)

By using (17) in (16), we obtain

v(Ω(>))
v(>) ≥ k0(Ω(>)−>)

> + 1

≥ k0Ω(>)
> .

Thus, the proof is complete.

3. Main Results

In this section, we present some new criteria that ensure that property N holds.

Theorem 1. Assume that ς(>) ≥ Ω(>). If

lim inf
>→∞

1
Q(>)

∫ ∞

>
R
(

Ω−1(s)
)

Q1+1/`(s)ds >
1

(`+ 1)
1+1/` , (18)

where
Q(>) = κ

µ

∫ ∞

>
Θ̃1(s)ds,

then property N holds.

Proof. Let κ > 0 be a solution of (2), that is v > 0 and satisfying Case (II). By (7), we have

(L1v(>))′ ≤ − κ

µ
Θ̃1(>)v`(>).

Define

w(>) = L1v(>)
v`(>)

> 0. (19)
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Since
(
Ω−1(>)

)′
> 0, that is

w(>) < r
(

Ω−1(>)
)(

v′′
(

Ω−1(>)
))`( 1

Ω0
+

p
`

0
Ω0ς0

)
1

v`(>)

and
Ω0ς0

ς0 + p`

0

w(>) <
r
(
Ω−1(>)

)(
v′′
(
Ω−1(>)

))`
v`(>)

. (20)

That is

w′(>) = (L1v(>))′

v`(>)
− `

L1v(>)
v`(>)

v′(>)
v(>) .

By (7), and taking into account that v′
(
Ω−1(>)

)
≤ v′(>), implies

w′(>) ≤ (L1v(>))′

v`(>)
− `

L1v(>)
v`(>)

v′
(
Ω−1(>)

)
v(>)

≤ − κ

µ
Θ̃1(>)− `w(>)

v′
(
Ω−1(>)

)
v(>) . (21)

By using
(

r(>)(v′′(>))`
)′
≤ 0, we have

v′(>) ≥
∫ >
>1

(
r(s)

(
v′′(s)

)`)1/` 1
r1/`(s)

ds ≥
(

r(>)
(
v′′(>)

)`)1/` ∫ >
>1

r−1/`(s)ds

≥
(

r(>)
(
v′′(>)

)`)1/`
R(>). (22)

Hence, we obtain

v′
(

Ω−1(>)
)
≥
(

r
(

Ω−1(>)
)(

v′′
(

Ω−1(>)
))`)1/`

R
(

Ω−1(>)
)

. (23)

From (21) and (23), we obtain

w′(>) ≤ − κ

µ
Θ̃1(>)− `w(>)

r1/`(Ω−1(>)
)(

v′′
(
Ω−1(>)

))
v(>) R

(
Ω−1(>)

)
.

By (20), we find that

w′(>) ≤ −

 κ

µ
Θ̃1(>) + `

(
Ω0ς0

ς0 + p`

0

)1/`

w1+1/`(>)R
(

Ω−1(s)
).

Integrating from > to ∞, we obtain

w(>) ≥ Q(>) +
∫ ∞

>
`

(
Ω0ς0

ς0 + p`

0

)1/`

w1+1/`(s)R
(

Ω−1(s)
)

ds (24)

or

w(>)
Q(>) ≥ 1 + `

(
Ω0ς0

ς0 + p`

0

)1/`
1

Q(>)

∫ ∞

>
R
(

Ω−1(s)
)

Q1+1/`(s)
(

w(s)
Q(s)

)1+1/`
ds.

According to the fact w(>) > Q(>), we note that

inf
>≥>1

w(>)/Q(>) = λ ≥ 1.
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This implies

w(>)
Q(>) ≥ 1 + `

(
Ω0ς0

ς0 + p`

0

)1/`
λ1+1/`

Q(>)

∫ ∞

>
R
(

Ω−1(s)
)

Q1+1/`(s)ds. (25)

From (18), there exists η > 0 , such that

1
Q(>)

∫ ∞

>
R
(

Ω−1(s)
)

Q1+1/`(s)ds > η >
1

(j + 1)
1+1/j , (26)

where j = `(Ω0ς0)
1/`/

(
ς0 + p

`

0

)1/`
. Using (25) in (26), we have

w(>)
Q(>) ≥ 1 + j

(
λ1+1/j

)
η,

and then

λ ≥ 1 + j
(

λ1+1/`
)

η > 1 +
j
(

λ1+1/`
)

(`+ 1)
1+1/`

or

1
j + 1

+
1

j + 1

j
(

λ1+1/`
)

(`+ 1)
1+1/` −

1
j + 1

λ < 0.

Set
g
(

λ̂
)
=

1
j + 1

+
J

j + 1
λ̂1+1/` − λ̂.

This contradicts the fact that the function g
(

λ̂
)

is positive for all λ̂ > 0. This completes
the proof.

Corollary 1. If ∫ ∞

>0

Θ̃1(>)ds = ∞, (27)

then property (N) holds.

Proof. The proof being the same as the proof of Theorem 1, we are led to the inequality (24).
Thus, there is a contradiction with (27). The proof is complete.

Corollary 2. If ∫ ∞

>0

R
(

Ω−1(s)
)

Q(s)1+1/`ds = ∞, (28)

then property N holds.

Proof. Using w(>) > Q(>) and (24), we have

w(>1) ≥ Q(>1) +
∫ ∞

>1

`

(
Ω0ς0

ς0 + p`

0

)1/`

Q1+1/`(s)R
(

Ω−1(s)
)

ds.

This contradicts (28).

Theorem 2. Assume that (2) has property N. If

∫ ∞

>0

∫ ∞

v
r−1/`(u)

(∫ ∞

u
Θ̃2(s)ds

)1/`
dudv = ∞, (29)
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then every nonoscillatory solution v(>) of (2) converges to zero as > → ∞.

Proof. Since property N holds, then v(>) satisfies Case (I) and implies that

lim >→∞ v(>) = $ ≥ 0. (30)

We claim that $ = 0, if not, then $ > 0.

Let $ > 0. Integrating (8) from > to ∞ and using v(Ω(>)) > $, we obtain

L2v(>) ≥ κ

µ
$`
∫ ∞

>
Θ̃2(s)ds. (31)

Using ς(>) > >, we have

L2v(>) = r(>)
(
v′′(>)

)`
+

p
`

0
ς0

r(ς(>))
(
v′′((ς(>)))

)`
≤ r(>)

(
v′′(>)

)`( ς0 + p
`

0
ς0

)
.

Thus, (31) becomes

v′′(>) ≥

 κς0

µ
(

ς0 + p`

0

)
 1

`

$

r
1
` (>)

(∫ ∞

>
Θ̃2(s)ds

) 1
`

. (32)

Integrating (32) from > to ∞, we find

−v′(>) ≥ $

 κς0

µ
(

ς0 + p`

0

)
 1

` ∫ ∞

>

1
r1/`(u)

(∫ ∞

u
Θ̃2(s)ds

)1/`
du.

Integrating again from >1 to ∞, we see that

v(>1) ≥ $

 κς0

µ
(

Ω0 + p`

0

)
 1

` ∫ ∞

>1

∫ ∞

v

1
r1/`(u)

(∫ ∞

u
Θ̃2(s)ds

)1/`
dudv.

There is a contradiction with (29). That is lim >→∞ v(>) = 0.

Now, for the next result, we define a sequence {An(>)}∞
n=0 as follows:

A0(>) = Q(>)

and

An+1(>) = A0(>) + `

(
Ω0ς0

ς0 + p`

0

)1/` ∫ ∞

>
A1+1/`

n (s)R(s)ds, n = 0, 1, . . . . (33)

Theorem 3. Assume that there ∃ some An(>) such that

∫ ∞

>0

Θ̃1(>)

e
`

(
Ω0ς0

Ω0ς0+p
`
0

)1/` ∫ >
>0

A1/`
n (s)R(s)ds

d> = ∞, (34)
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for some K ∈ (0, 1). Then property N holds.

Proof. Let κ be a solution of (2) and v(>) > 0 satisfying Case (II). As in the proof
of Theorem 1, we see that (24) holds. Using (24) and A0(>), it is easy to note that
w(>) ≥ A0(>). Thus,

1(>) = A0(>) + `

(
Ω0ς0

ς0 + p`

0

)1/` ∫ ∞

>
A1+1/`

0 (s)R(s)ds

≤ A0(>) + `

(
Ω0ς0

ς0 + p`

0

)1/` ∫ ∞

>
w1+1/`(s)R(s)ds

≤ w(>).

By induction, we find that sequence {An(>)}∞
n=0 is nondecreasing and w(>) ≥

An(>). So the sequence {An(>)}∞
n=0 converges to A(>). Let n → ∞, then, by means of

the Lebesgue monotone theorem, (33) becomes

A(>) = A0(>) + `

(
Ω0ς0

ς0 + p`

0

)1/` ∫ ∞

>
A1+1/`(s)R(s)ds.

Taking into account A(>) ≥ An(>), we obtain

A′(>) = − κ

µ
Θ̃1(>)− `

(
Ω0ς0

ς0 + p`

0

)1/`

A1+1/`(>)R(>)

≤ − κ

µ
Θ̃1(>)− `

(
Ω0ς0

ς0 + p`

0

)1/`

A(>)A1/`
n (>)R(>), for > ≥ >1.

That is,A(>)

e
`

(
Ω0ς0

ς0+p
`
0

)1/` ∫ >
>1

A1/`
n (s)R(s)ds



′

≤ − κ

µ
Θ̃1(>)

e
`

(
Ω0ς0

ς0+p
`
0

)1/` ∫ >
>1

A1/`
n (s)R(s)ds

.

Thus, we have

0 ≤ A(>)

e
`

(
Ω0ς0

ς0+p
`
0

)1/` ∫ >
>1

A1/`
n (s)R(s)ds



≤ A(>1)−
κ

µ

∫ >
>1

Θ̃1(u)

e
`

(
Ω0ς0

ς0+p
`
0

)1/` ∫ >
>1

A1/`
n (s)R(s)ds

du.

This is a contradiction with (34). The proof is complete.

Theorem 4. Assume that there ∃ some An(>) such that

lim sup
>→∞

[∫ >
>1

(R(s)− R(>1))ds
]`

An(>) > 1. (35)

Then property N holds.
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Proof. Assume that κ(>) is a solution of (2) and v(>) > 0 satisfying Case (6). Since
> < Ω(>), by (22), we have

v(>) ≥ r
1
` (>)v′′(>)

∫ >
>1

∫ u

>1

r−1/`(s)dsdu. (36)

On the other hand, combining (20) together with (36), we obtain

1
w(>) =

Ω0ς0

ς0 + p`

0

1
r(>)

(
v(>)

v′′(>)

)`

≥ Ω0ς0

ς0 + p`

0

[∫ >
>1

R(s)− R(>1)ds
]`

.

Therefore,[∫ >
>1

(R(s)− R(>1))ds
]`

An(>) ≤
[∫ >
>1

(R(s)− R(>1))ds
]`

w(>) ≤ 1.

This contradicts (35).

The following corollaries are immediate by putting n = 0 and n = 1 in Theorem 4.

Corollary 3. Assume that

lim sup
>→∞

[∫ >
>1

R(s)− R(>1)ds
]` ∫ ∞

>
Θ̃1(s)ds > 1. (37)

Then property N holds.

Corollary 4. Assume that

lim sup
>→∞

[∫ >
>1

R(s)− R(>1)ds
]`Q(>) + `

(
Ω0ς0

ς0 + p`

0

)1/` ∫ ∞

>
Q1+1/`(s)R(s)

ds > 1.

Then property N holds.

4. Application

Example 1. Consider the following third-order differential equations(
>
(
(κ(>) + pκ(λ>))′′

)3
)′

+ β>−6v3(λ>) = 0, β > 0, λ ≥ 1, > ≥ 1. (38)

That is

Θ̃1(>) = min
{

Θ
(

Ω−1(>)
)

, Θ
(

Ω−1(ς(>))
)}

=
β

>6 .

and
Q(>) = κ

µ

∫ ∞

>

β

s6 ds =
κβ

5µ>5 .

By means of Theorem 1, we see that (38) has property N if

β >

(
2
3

)1/3(5
4

)4 µ11/3

κ
λ.

On the other hand, by means of Theorem 2, we note that (29) holds. Hence, every nonoscillatory
solution v(>) of (38) converges to zero as > → ∞.
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Example 2. Consider the following differential equation(
>
(
v′′(>)

)3
)′

+
β

>9 v3
(
>2
)
= 0, β > 0, > ≥ 1. (39)

By means of Theorem 1, we see that (39) has property N if

β >

(
5
4

)4 8
27

.

Remark 1. Putting p = 0 in Example 1, we notice that the condition for property N depends
mainly on the greatness of the advanced argument. We see that Ω(>) in Example 2 is greater than
in Example 1 and this allows the function Θ(>) to be reduced.

Example 3. Consider the third-order nonlinear ADE(
>2(v′′(>))3

)′
+

β

>5 v3(λ>) = 0, β > 0, λ ≥ 1, > ≥ 1. (40)

By Corollaries 3 and 4, we see that (40) has property N if

β >
44

(9λ)3 (41)

or

β >
44

93λ3

(
1− 94

416/3 λ4β4/3
)

, (42)

respectively.
On the other hand, when applying Theorem 2, note that (29) holds. Hence, every

nonoscillatory solution v(>) of (39) converges to zero as > → ∞.

Remark 2. Condition (42), (which was obtained for n = 1 in (35)), is better than condition (41),
(which was obtained for n = 0 in (35)).

Furthermore, all previous results are also correct for the Equation (3). To discuss these
results, we provide the following example:

Example 4. Consider the third-order ADE(
>a∣∣v′′(>)∣∣`−1

v′′(>)
)′

+
β

>b |v(>c)|`−1v(>c) = 0, > ≥ 1, (43)

where ` > a > 0, b, β > 0 and c ≥ 1. By applying Corollary 1, Corollary 2 and Theorem 1,
respectively, (43) have property N if

(a) 1− ` ≥ b− `c.
(b) 1− ` < b− `c,

and 1
` − `+ 1 ≥ 1

`+2 a +
(

1
` − 1

)
b− `c.

(c) 1− ` < b− `c,
1
` − `+ 1 < 1

`+2 a +
(

1
` − 1

)
b− `c,

1
` + 1 = a

` +
b
` − c

and 1
(`−a)(b+`−`c−1)1+1/` >

1
`β1/`(`+1)1+1/` .

5. Conclusions

We, herein, presented a study on the monotonic properties and oscillatory behavior
of Equation (2). We presented a number of relationships that link the solution of the
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Equation (2) and the corresponding function. These relationships are applicable in the
two cases of positive nonoscillatory solutions of the studied equation. Then, we used the
relationships to obtain conditions that ensured that there were no nonoscillatory solutions
of type (II). Through examples, we clarified the importance of our results.

It would be interesting to study Equation (2) in a more general form, such as:(
r(>)

(
(κ(>) + p(>)κ(ς(>)))′′

)`)′
+

m

∑
ξ=1

Θξ(>) f
(
κ
(
Ωξ(>)

))
= 0.

It would also be worthwhile to discuss obtaining the oscillation criteria of Equation (2)
without condition ς ◦Ω = Ω ◦ ς.
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