# Symmetries and Asymmetries in Branching Processes

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries: The Neutron Transport Equation from a Master Equation

#### 2.1. Forward Master Equation

#### 2.2. Backward Master Equation

#### 2.3. Derivation of the Neutron Transport Equation

## 3. The Basic Branching Process

## 4. Branching Processes with Several Particle Types and Detection

#### 4.1. Forward Approach

#### 4.1.1. First Moments

#### 4.1.2. Second Moments

#### 4.2. Backward Approach

#### 4.2.1. Distributions and Moments by One Single Starting Particle

#### 4.2.2. Distributions by a Process Maintained by an Extraneous Source

## 5. Discussion

## 6. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Watson, H.W.; Galton, F. On the probability of the extinction of families. J. Anthropol. Inst.
**1875**, 4, 103. [Google Scholar] [CrossRef] - Harris, T. The Theory of Branching Processes; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1963. [Google Scholar]
- Bell, G.I.; Glasstone, S. Nuclear Reactor Theory; Van Nostrand Reinhold Company: New York, NY, USA, 1970. [Google Scholar]
- Pázsit, I. Transport Theory and Stochastic Processes; Chalmers Lecture Notes; Chalmers University of Technology: Göteborg, Sweden, 2023. [Google Scholar]
- Pázsit, I.; Pál, L. Neutron Fluctuations: A Treatise on the Physics of Branching Processes; Elsevier Ltd.: London, UK; New York, NY, USA; Tokyo, Japan, 2008. [Google Scholar]
- Williams, M.M.R. Some considerations on the forward and backward Boltzmann equations. Ann. Nucl. Energy
**1978**, 5, 149–150. [Google Scholar] [CrossRef] - Williams, M.M.R. The role of the Boltzmann transport equation in radiation damage calculations. Prog. Nucl. Energy
**1979**, 3, 1–65. [Google Scholar] [CrossRef] - Pázsit, I. Duality in Transport-Theory. Ann. Nucl. Energy
**1987**, 14, 25–41. [Google Scholar] [CrossRef] - Williams, M.M.R. The relationship between the backward and forward equations of stochastic neutron transport and associated matters. Ann. Nucl. Energy
**2023**, 186, 109746. [Google Scholar] [CrossRef] - Lewins, J. Importance: The Adjoint Function; Pergamon Press: Oxford, UK; New York, NY, USA, 1965. [Google Scholar]
- Pázsit, I. A Simple Derivation of the Neutron Transport Equation. Nucl. Sci. Eng.
**1992**, 112, 369–374. [Google Scholar] [CrossRef] - Srinivasan, S.K. Stochastic Theory and Cascade Processes; Number 15 in Modern Analytic and Computational Methods in Science and Mathematics; Elsevier: New York, NY, USA; London, UK; Amsterdam, The Netherlands, 1969. [Google Scholar]
- Pázsit, I.; Yamane, Y. The variance-to-mean ratio in subcritical systems driven by a spallation source. Ann. Nucl. Energy
**1998**, 25, 667–676. [Google Scholar] [CrossRef] - Pázsit, I.; Yamane, Y. The backward theory of Feynman- and Rossi-alpha methods with multiple emission sources. Nucl. Sci. Eng.
**1999**, 133, 269–281. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pázsit, I.
Symmetries and Asymmetries in Branching Processes. *Symmetry* **2023**, *15*, 1154.
https://doi.org/10.3390/sym15061154

**AMA Style**

Pázsit I.
Symmetries and Asymmetries in Branching Processes. *Symmetry*. 2023; 15(6):1154.
https://doi.org/10.3390/sym15061154

**Chicago/Turabian Style**

Pázsit, Imre.
2023. "Symmetries and Asymmetries in Branching Processes" *Symmetry* 15, no. 6: 1154.
https://doi.org/10.3390/sym15061154