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Abstract: Numerical and physical simulations of the magnetohydrodynamic mixed convective flow
of electrically conducting fluid along avertical magnetized and symmetrically heated plate with
slip velocity and thermal slip effects have been performed. The novelty of the present work is to
evaluate heat transfer and magnetic flux along the symmetrically magnetized plate with thermal
and velocity slip effects. For a smooth algorithm and integration, the linked partial differential
equations of the existing fluid flow system are converted into coupled nonlinear ordinary differential
equations with specified streaming features and similarity components. By employing the Keller
Box strategy, the modified ordinary differential equations (ODEs) are again translated in a suitable
format for numerical results. The MATLAB software is used to compute the numerical results, which
are then displayed in graphical and tabular form. The influence of several governing parameters on
velocity, temperature distribution and magnetic fields in addition to the friction quantity, magnetic
flux and heat transfer quantity has been explored. Computational evaluation is performed along the
symmetrically heated plate to evaluate the velocity, magnetic field, and temperature together with
their gradients. The selection of the magnetic force element, the buoyancy factor 0 < ξ < ∞ , and the
Prandtl parameter range 0.1 ≤ Pr ≤ 7.0 were used to set the impacts of magnetic energy and diffusion,
respectively. In the domains of magnetic resonance imaging (MRI), artificial heart wolves, interior
heart cavities, and nanoburning systems, the present thermodynamic and magnetohydrodynamic
issuesare significant.

Keywords: mixed convection; heat transfer; electrical conducting fluid; thermal slip; symmetrically
magnetized plate; slip velocity; Keller box method

1. Introduction and Literature Review

The effects of thermal slip and velocity slip on the mixed convective flow of electrically
conducting fluid along the magnetized and symmetrically heated surface are the main
focus of the present research. The most crucial symmetry for boundary layers is the one
that results from wall-normal and stream-wise transformations of the leading edge. The
magnetization that arises from the wall-normal and stream-wise modifications of the top
edge, respectively, is especially significant for flow separation. The slip-flow process is
the movement of fluid molecules without their interacting with the surface of a plate. It is
generally known that the no-slip condition, a crucial characteristic for viscous fluid at a solid
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barrier, causes the velocity of the fluid to match the velocity of the solid boundary. However,
there are some situations where the no-slip requirement is broken. This is a fundamentally
intriguing subject in fluid mechanics, but there are still gaps in our knowledge and the
experimental work does not fully address it. Modern technology uses fluid with slip-
boundary for a variety of things, including polishing prosthetic heart valves and interior
heart cavities. Due to its potential use in diverse manufacturing and technical industries,
mixed convection flow in a vertical plate has been the subject of many previous studies.
These include gas-cooled nuclear reactors, the heating of the Trombe wall system, and the
cooling of electrical devices.

Prosthetic heart valves, inner heart cavities, nanoburning systems, geothermal reser-
voirs, drying of porous materials, heat resistance, improved extraction of oil, packed-bed
catalyzed reactors, cooling of nuclear reactors, and basement energy transit are just a
few engineering and geophysical applications of simultaneous heat transfer from various
shapes with consequences for velocity slip and thermal slip. Convection and thermal
forced flow across vertical surfaces are beneficial for geothermal energy, industrial pur-
poses, mechanical, civil, and chemical engineering. The flow of helium in pebble-bed
nuclear reactors, the subsurface removal of nuclear or nonnuclear waste, the preparation
and food preservation, the filtration of crude oil, the flow in glaucoma patients’ eyes, and
the flow via filter materials are additional significant examples of fluid flows in the induced
magnetic field. The effects of the Lorentz force conferresistance on the liquid flow because a
fluid’s viscosity differs from that of a magnetic field. In addition, the current problems have
substantial implications for polymer industries, such as paper manufacturing, glass-fiber
processing, liquid crystal densification, petroleum refining, fabrication of strange lubri-
cants, suspension treatments, wire drawing, consistent cooling, fabric spinning, plastic film
production, thermoplastic cover extraction, fault zones, petroleum resource restoration,
catalyzed reactors, and the manufacture of electronic machines.

In the areas of metallurgy, polymerization, and nuclear technology, the current mag-
netic flux and thermal efficiency issue of mixed convective flow over a magnetic surface
is significant for both research and practical use. In a variety of applications, including
nuclear energy, geophysics, astronomy, and liquid metals, the magnetohydrodynamic
and mixed convection processes are fundamentally important for engineers. The mag-
netohydrodynamic may additionally be utilized externally in a variety of circumstances
to improve or enhance heat transport. Magnetohydrodynamics, which was invented by
Maxwell for electromagnetism, is the dynamic study of electromagnetic fluid. As a result,
in this branch of study, consolidation of the findings has taken precedence. The analysis
of recent advances in the field of heat transfer in the presence of a magnetic field and the
provision of a concise assessment of the situation are the study’s secondary goals. This is
the basic notion underlying an electrically conducting fluid.

The analysis of the dynamics and magnetic characteristics of fluids with electrical con-
ductivity is known as magnetohydrodynamics or hydromagnetics. These magnetic liquids
include liquid materials, plasmas, electrolytes, and seawater, for instance. Hannes Alfven
received the Nobel Prize in Physics in 1970 for his ground-breaking study of magnetohy-
drodynamics. In physics, astronomy, solar physics, space plasma physics, blood-pumping
devices, cancer tumor therapy, and laboratory plasma investigations, magnetohydrody-
namic is used extensively. Revnic et al. [1] addressed the mixed flow of convection towards
an axially symmetric stagnation point on a circular channel numerically. They also ana-
lyzed the type of approach in the situation of the massive Prandtl number asymptotic limit.
Chamkha [2] has quantitatively determined the general methodological issue by taking
into account the consequences of viscous dissipation and heat flux. He accomplished this
by using the implicitly finite-difference methodology. They summarized their findings for
crucial characteristics including temperature. Using a control volume approach and the
SIMPLE algorithm, free convective slipping rates inside an open-ended vertically plate with
asymmetric and symmetric surface temperatures have been computationally explored in [3].
Due to the prevalence of frictional dissipation, the central pressure drops in the channel’s
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early portion. Zaidi [4] completed quantitative research on the MHD flow of theinviscid
electrically charged fluid inside a vertical stream over asymmetric and symmetric wall heat
regimes. They observed that as heat generation raises, the intensity of the process of heat
transport on the isoflux flow path declines. By taking into account symmetrical heat along
the adiabatic and heating surfaces, Habchi and Acharya [5] carried out a computational
assessment on convective heat transport of air inside a vertical channel. They foundthat
the axial velocity reveals a concavity around the axis inside the symmetrical heat situation
and rises close towards the hot surfaces.

It is advantageous to utilize the combined effects of magnetohydrodynamics and heat
sources to produce a final product with attractive characteristics. Such factors are crucial,
particularly in the metallurgical processes that include the purifying of metallic materials
from nonmetallic impurities and the cooling of consecutive strips and filaments dragged
through a quiescent fluid. Due to its important impact in numerous fields, especially
the mechanical, geomagnetic, and pesticide sciences, the research of heat transport in
porous materials has recently attracted the attention of many scientists using vertical
geometries by [6]. They found that a higher local Nusselt number increases the impact
of viscous parameters over the surface. Singh and Makinde [7] depicted the presence of
free stream over a free forced convective slip flow with heat transport along a rotating
plate. They found that for higher slip effects and rates of heat transfer, the density of the
thermal boundary decreases. Ashraf et al. [8] illustrated the analysis of mass-transfer with
convective conditions over a free forced radiating flow of a three-dimensional nanoliquid
across an inclined elastic sheet. They found that results of the local Nusselt number and local
Sherwood number show an inverse relation. Raju et al. [9] studied nonlinear convection
flow, which is not stable over a moving vertical geometry for non-Newtonian fluid passing
in a magnetohydrodynamics sequence. They found that flow characteristics profiles as
well as skin friction coefficients decrease as nonlinear temperature and concentration flow
parameters increase. Mukhopadhyay and Mandal [10] illustrated free forced convective
slip flows and thermal expansion over a vertical surface using boundary layer flow. They
observed that as the suction parameter is increased, the surface temperature falls. The
researchers [11,12] analyzed the comparable results by reducing magnetic force and thermal
slip effects for various values of the magnetic Prandtl number in the presence of aligned
magnetic impact past the vertical surface.

The use of the MHD concept is a necessary process for changing the structure of
the flow separation in order to influence the flow pattern in the desired direction. Many
artificial approaches have been specifically designed to regulate the behavior of flow
separation. The usage of fluids with electrical conductivity in a variety of industrial settings
under the influence of electromagnetic fields has sparked a resurgencein research into
hydromagnetic flow and heat transfer in numerous geometries. Maneengam et al. [13]
performed convective heat transport issue in a lid-driven shape filled with nanoliquid with
a heating source. They observed that shear stress drops as the temperature increases, but it
rises as the slip velocity rises. Atashafrooz and Nassab [14] represented laminar free forced
convection recess flow including a heat transfer system. They found that increasing the
values of radiation-conduction parameters have a greater positive impact than the total
local Nusselt number along the walls of the heated ducts. Haq et al. [15] has carried out
statistical predictions for the thermos-migration nanoliquid susceptible to radiant heat
and porous materials. Hayat et al. [16] studied nonlinear free forced convective Darcy
forchheimer flow by using an optimal homotopic analysis method. They observed that the
lower thermal diffusivity is associated with a greater Prandtl number, which reduces the
fluid temperature.

Due to its industrial uses and significant implications for advanced technical pro-
cedures, the analysis of hydrodynamic flow and the transfer of heat through extending
spheres or flat plates have attracted a lot of attention. For the efficient working of pumps, tur-
bines, and bearings, this assessment of MHD fluids became essential. Armaghani et al. [17]
analyzed entropy transmission in free forced convection by using MHD effects in an open
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C-shaped hole. The findings reveal that a higher Hartmann number leads to increased
entropy generation while increasing the aspect ratio of the cavity, promotingthe movement
of heat. Khan et al. [18] illustrated thin revolutionary objects having free forced thermal
conduction in porous material with generalized mixed small particles. They found that the
velocity field of the type of nanofluid and flow over the various shape bodies is reduced.
Saleem and Nadeem [19] numerically studied slip flows on a moving geometric figure
with heat transfer impacts. They found that the fluid temperature graph is an increasing
component of the Eckert number. The use of liquid is made more efficient by technolo-
gies with jet flow, which also improves the quantities of both heat and mass transmission
by [20].For contributing grey substances in 2-D/3-D complicated geometric enclosures
with constraints, a finite-volume radiated structure was developed in [21]. They noticed
that with increased free forced convection, the momentum and the temperature increase.
Uddin et al. [22] developed nonlinear absorption and numerical modeling of MHD con-
vection nanofluid flow in porous material. They observedthat the heat flux is reduced by
increasing slip effects.

The majority of the research previously listed resumed their discussions under the as-
sumption of no slip boundary conditions. Under particular circumstances, a phenomenon
known as velocity slip—the fluid’s non-adherence to a solid boundary—has been observed.
Moreover, the macroscopic wall slip that is frequently seen in polymer materials is typically
controlled by a non-linear and monotonic connection between slip velocity and traction.
Das et al. [23] elaborated free forced convection slip flows involving variable viscosity
and heat transfer MHD across an inclined vertical plate. They have seen that when the
velocity ratio is increased, the velocity profile decreases. Jamil and Ahmed [24] analyzed
the motions of fractionalized mixed convective elastic fluid by using two different slip
flow effects. They found that the temperature gradients at the surface are proportional
to the average velocity profile. Liu and Guo [25] further investigatedthe influence of slip
with second order on a partial mixed convection flows. They noticed that when the slip
factors are non-zero, the velocities and shear forces are decreased. In the context of slip
velocity, stratification, and separable gravity, the oscillating hydro-magnetic procedure
across the non-magnetized material has been depicted in [26–29]. In order to investigate the
dynamics of the MHD convective hybrid nanofluid and nanofluid flow between the two
spinning and shrinking discs with radiative heating and the magnetization, the heat trans-
port procedure was carried out in [30]. By employing wavelets, Kumar and Murthy [31]
modified the finite-difference approach to solve the equations illustrating the heat transport
process in a heated regenerator. For the purpose of industrial optimization in thermal
systems using air-water as the working fluid, Kumar [32] evaluated rotational packed beds
(RPBs).The consequences of magnetization characteristics and flow slipping on convective
heat transmission along non-magnetized configuration were evaluated by Ullah et al. [33].
The entropy generating mechanism was implemented by Kan et al. [34] for the imaging
and qualitative examination of significant energy loss sections in order to explore the
modification of heat losses throughout the transition phase of a bidirectional axial-flow
pump. Using computational modeling, Kan et al. [35] used the entropy generating strategy
to evaluate the impact of TLF on the PAT’s thermal performance. The consequences of
chemical processes and numerous slip conditions on the computation of multiple inviscid
hydromagnetic nanofluid through a stretchy cylinder containing microorganisms have
been covered in [36]. Ullah et al. [37] have addressed the thermal study of heat transfer
of viscous flow field with temperature slip and heat radiating effects along the vertically
symmetrical plane surface immersed inside a permeable medium. Ali [38] reported on
the Cattaneo–Christov characteristics and self-motivated bio-convective microorganisms
submerged in the water-based nanofluid with excision/accretion of the leading edge. The
importance of a nanoparticle’s radius was evaluated in [39] for the hydro-magnetic mi-
cropolar and tangential hyperbolic movement for water-based nanofluid above a stretched
sheet. Rahman et al. [40] has implemented a quantitative two-phase flow framework that
investigates the connection of Casson nanofluid and dust particles on a stretching sheet
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by employing MHD Darcy-Forchheimer and Fourier’s law via Cattaneo-Christov heating
flux. The researcher [41] evaluated the fluid motion movements toward a vertically stretchy
layer near the static pressure of an incompressible fluid involving vacuum, injector, and
entropy generation influences. Tlili [42] conducted a study of the hydrodynamic g-Jitter-
free convective boundary layer flow across an angled stretchy surface. Ullah et al. [43]
used the similarity transformation for electrical conducting fluid along the vertical surface.
Kumar et al. [44] evaluated the characteristics of heat and mass rate of Casson nanofluid
through accelerating surface numerically.

The novelty of this research is to discuss the computational assessment of two-
dimensional hydro-magnetic flow of electrically conducting fluid through heated plate in
presence of thermal slip and velocity slip. The analytical expressions have been made sim-
pler via scaling factor, and the simplified boundary value equations have been numerically
solved using the Keller box methodology. The global matrix of mathematical equations
is constructed using the Keller Box methodology (KBM), with adequate assumptions pro-
vided by the Newton–Raphson technique (NRT) and the finite difference procedure (FDP).
The KBM has been implemented to tackle numerous nonlinear issues in science and tech-
nology since it requires no auxiliary element and quickly transforms approximations to
optimum solution. The recent research is novel because it evaluates magnetic properties of
the electrically charged flow along the heating vertical plate. To evaluate friction factor, heat
transmission, and magnetic flux, the approximate solutions for the stable component are
evaluated. Due to the magnetic fluid’s surface in the current assignment, which insulates
heat during mechanism and eliminates excessive energy, the fluid becomes electrically
conductive. The outcomes are outstanding and precise since they satisfy the boundary
requirements that were specified.

2. The Flow Geometry and Mathematical Formulation

Computational algorithms for slip boundary assessments of the convective flow rate
of heat through heated and magnetic shapes are the primary topic of the article. Using
stream-function patterns, the basic problem will be reduced into a sequence of partial
differential conditions, which will subsequently be changed into ordinary ones. The FDM
approach will be coupled with the Keller Box procedure to address the present issue. The
computational results for the physical characteristics under discussion will be provided in
mathematical and qualitative order.

The terminologies u′, Hx
′ and v′, Hy

′ denotemagnetic and fluid velocity vectors,
respectively, in the x′ and y′ directions in Figure 1, in which x′ and y′ are parallel and
normal to the vertical plate. This is done by considering electrically conducting fluid that is
steady and inviscidin two components. The thermal diffusivity of the fluids is denoted by
κ, H0 represents the magnetic intensity, the temperature is denoted by T′, the free stream
temperature is denoted by T′∞, Cp represents the heat capacity, and Hx

′ = H0 refer to the
magnetization at the surface. The density of the fluid is denoted by ρ, the magnetic moment
is represented by µo, the kinetic viscosity of the fluid is denoted by ν = µ/ρ, the volumetric
temperature coefficient is represented β∗, and the gravitational acceleration is denoted by g.
These are examples of how inclined electromagnetic field, heat, momentum, and continuity
are expressed mathematically by the following [11,12]:

∂u′

∂x′
+

∂v′

∂y′
= 0 (1)

∂H′x
∂x′

+
∂H′y
∂y′

= 0 (2)

u′
∂u′

∂x′
+ v′

∂u′

∂y′
= ν

∂u′2

∂y′2
+ gβ∗

(
T′ − T′∞

)
+

µ0

4πρ

(
H′x

∂H′x
∂x′

+ H′y
∂H′y
∂y′

)
(3)
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u′
∂H′x
∂x′

+ v′
∂H′x
∂y′

= νm
∂H′2x
∂y′2

(
H′x

∂u′

∂x′
+ H′y

∂u′

∂y′

)
(4)

u′
∂T′

∂x′
+ v′

∂T′

∂y′
=

κ

ρCp

(
∂T′2

∂y′2

)
(5)
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The boundary conditions of the present model are,

u′ = L1 (∂u′/∂y′), v′ = 0, H′x = H0 , H′y = 0, T′ = Tw + D1(
∂T′
∂y′ ) at y′ = 0

U → U∞ , T → T∞ , Hx → 0 as y→ ∞.
(6)

The above-described boundary conditions pertain to magnetic, velocity and temper-
ature conditions with the temperature-slip factor and the velocity components with the
slip velocity. With L being the initial value of velocity having some dimension of length,
Rex being the local Reynolds number Rex = U∞x

ν , and U∞ being the free steam velocity,
L1 = LRex1/2 is the velocity slip factor, Tw = T∞ + To

x is the surface temperature and the
constant temperature is denoted by To across the electromagnetic vertical plate.

3. Stream Functions and Similarity Variables

To reduce partial differential formulas into ordinary differential equations, the essential
non-dimensional similarities and streaming feature are provided by [43,44]:

u′ =
∂ψ

∂y
, v′ = −∂ψ

∂x
, H′x =

∂φ

∂y
, H′y = −∂φ

∂x
, θ =

T′ − T∞

Tw − T∞
(7)

η = y′
√

U∞
νx′ , ψ =

√
U∞νx′ f (η), T′ = T∞ +

T0

x′
θ(η), φ =

H0

U∞

√
νx′U∞ (8)

By considering above similarities, Equations (1)–(6) are reduced into an ordinary
differential format,

− f f ′′

2
= f ′′′ + λθ − Mgg′′

2
(9)

− f g′′

2
= Pmg′′′ − g f ′′

2
(10)
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Pr
(
−θ f ′ − θ′ f

2

)
= θ′′ (11)

where the values of the parameters are Pr = ν
α , Pm = νm

ν , M =
H2

0 L2µ0
ν24πρ

, λ = gβ∗T0
U2

∞
, η, θ,

ν = µ
ρ , δ = LU∞

ν , β = DU∞
ν . Equation (6) in the form of ODEs is:

f ′ = δ f ′′ , f = 0 , g = 0 , θ = 1 + βθ′, g′ = 1, at η = 0
f ′ → 1, θ → 0, g′ → 0, as η → ∞

(12)

The slope of velocity is C fx = τw
ρU∞2 , slope of temperature is Nux = xqw

κ(Tw−T∞)
, and

slope of the magnetic field is Mgx = jw
U∞2 , where, τw, qw, and jw are defined as:

τw = µ

(
∂u
∂y

)
y=0

, qw = −κ

(
∂T
∂y

)
y=0

, jw = −νm

(
∂H
∂y

)
y=0

The formulas of skin friction, Nusselt number and magnetic flux are provided as,

Rex
1/2C fx = f ′′ (0), Rex

−1/2Nux = −θ′(0), Rex
1/2Mgx = −g′′ (0)

4. Numerical Technique and Simulation

Using an adequate stream function approach, the associated mathematically dy-
namic PDEs system is changed into a similar ODEs framework having similarity elements.
Equations (9)–(11) use the progressive Keller Box procedure to solve a related associated
ODE system with provided boundary conditions (12). By employing expression (13), the
newly established elements are provided by p(η); q(η), u(η), v(η), l(η) and m(η),

f ′ = p, f ′′ = p′ = q, f ′′′ = q′, g′ = u, g′′ = u′ = v, g′′′ = v′, θ′ = l, θ′′ = l′ = m (13)

The above transformations in (13) are again reduced in the following manner,

f ′ = p⇒ f ′ − p = 0 (14)

p′ = q⇒ p′ − q = 0 (15)

g′ = u⇒ g′ − u = 0 (16)

u′ = v⇒ u′ − v = 0 (17)

θ′ = l ⇒ θ′ − l = 0 (18)

q′ +
f q
2

+ λθ − Mgv
2

= 0 (19)

Pmv′ +
f v
2
− gq

2
= 0 (20)

m + Pr
(

θP +
l f
2

)
= 0 (21)

The converted boundary conditions are:

f = 0, g = 0, p = δq, θ = 1 + βl at η = 0
p→ 1, u→ 0, θ → 0, as η → ∞

(22)

Now consider the midpoint values with segment ηn−1, ηn with ηn− 1
2

by using
Equation (23):

η0 = 0, ηn = ηn−1 + hn, ηn = η∞ (23)
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The calculation in (24) modifies the aforementioned Formulas (14)–(22) using the
averaged and central difference expressions,

f ′ =
fn − fn−1

hn
, f =

fn + fn−1

2
= fn− 1

2
(24)

and
fn − fn−1 −

1
2

hn(pn + pn−1 ) = 0 (25)

pn − pn−1 −
1
2

hn(qn + qn−1 ) = 0 (26)

gn − gn−1 −
1
2

hn(un + un−1) = 0 (27)

un − un−1 −
1
2

hn(vn + vn−1 ) = 0 (28)

θn − θn−1 −
1
2

hn(ln + ln−1) = 0 (29)

1
8
( fn + fn−1)(qn + qn−1) +

1
hn

(qn − qn−1) +
λ

2
(θn + θn−1)−

M
8
(gn + gn−1)(vn + vn−1) = 0 (30)

1
8
( fn + fn−1)(vn + vn−1) +

Pm
hn

(vn − vn−1)−
1
8
(gn + gn−1)(qn + qn−1) = 0 (31)

1
4
(θn + θn−1)(Pn + Pn−1) +

1
8
(ln + ln−1)( fn + fn−1) +

1
Pr

(mn + mn−1) = 0 (32)

along with boundary conditions

f0 = 0, g0 = 0, P0 = δq0 , θ0 = 1 + βl0, at η = 0
p0 → 1, θ0 → 0, u0 → 0, as η → ∞

(33)

Furthermore, using the smoothing approach evaluated below along with the sequential
Newton–Raphson procedure, the following expressions are obtained:

f k+1
n = f k

n + δ f k
n , pk+1

n = pk
n + δpk

n
qk+1

n = qk
n + δqk

n, θk+1
n = θk

n + δθk
n

uk+1
n = uk

n + δuk
n, gk+1

n = gk
n + δgk

n
vk+1

n = vk
n + δvk

n, lk+1
n = lk

n + δlk
n

(34)

Calculations (25)–(29) are greatly simplified by the Newton–Raphson method by
removing all repetitions of power higher than the initial power,

δ fn − δ fn−1 −
1
2

hn(δpn + δpn−1) = (r1)n (35)

δpn − δpn−1 −
1
2

hn(δqn + δqn−1) = (r2)n (36)

δgn − δgn−1 −
1
2

hn(δvn + δvn−1) = (r3)n (37)

δun − δun−1 −
1
2

hn(δvn + δvn−1) = (r4)n (38)

δθn − δθn−1 −
1
2

hn(δln + δln−1) = (r5)n (39)

Again using Equations (35)–(39) in Equations (30)–(33), the equations in their con-
densed form are given below,
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(u1)nδ fn + (u2)nδ fn−1 + (u3)nδqn + (u4)nδqn−1 + (u5)n + (u6)n + (u7)nδvn + (u8)nδvn−1
+(u9)nδgn + (u10)nδgn−1 = (r6)n

(40)

(v1)nδvn + (v2)nδvn−1 + (v3)nδ fn + (v4)nδ fn−1 + (v5)nδqn + (v6)nδqn−1 + (v7)nδgn
+(v8)nδgn−1 = (r7)n

(41)

(w1)nδpn + (w2)nδpn−1 + (w3)nδθn + (w4)nδθn−1 + (w5)nδ fn + (w6)nδ fn−1 + (w7)nδmn
+(w8)nδmn−1 = (r8)n

(42)

δ f0 = 0, δg0 = 0, δp0 = (δ)δq0, δθ0 = 1 + βδl0, δpn = 1,
δθn = 0, δun = 0

(43)

5. Matrix Form of Vector Equations

The above-mentioned difference coefficients’ matrix-based format is an essential sub-
sequent stage. Improper implementation results in either zero outputs because of an
individual matrix having zero Eigen-value, sub-matrix or extremely poor execution since
the matrix has no observable pattern. Vector coefficients are expressed in matrix format
as follows:

Aδ = r (44)

[A] =


[A1][C1]

[B2][A2][C2]
· · · · · ·

...
. . .

...
... · · · [Bn−1][An−1][Cn−1]

[Bn][An]

, [δ] =


[δ1]
[δ2]
...

[δn−1]
[δn]

, [r] =


[r1]
[r2]
...

[rn−1]
[rn]

 (45)

6. The Results and Discussions

The main focus of this research is to discuss the computational assessment of the two-
dimensional hydro-magnetic flow of electrically conducting fluid through a heated plate in
presence of thermal slip and velocity slip. The analytical expressions have been simplified
via a scaling factor, and the simplified boundary value equations have been numerically
solved using the Keller box methodology. The global matrix of mathematical equations is
constructed using the Keller Box methodology (KBM), with adequate assumptions provided
by the Newton–Raphson technique (NRT) and the finite difference procedure (FDP).The
KBM has been implemented to tackle numerous nonlinear issues in science and technology
since it does not require an auxiliary element and quickly transforms approximations into
the optimal solution. The recent research is novel because it evaluates magnetic properties
of the electrically charged flow along the heating vertical plate. To evaluate friction factor,
heat transmission, and magnetic flux, the approximate solutions for the stable component
are evaluated. The outcomes are outstanding and precise since they satisfy the boundary
requirements that were specified. The impact of physical parameters such as the Prandtl
factor Pr, temperature slip β, velocity slip δ, buoyancy number λ, magnetic/force number
M, and magneto Prandtl element Pm are evaluated scientifically.

The significance of the Prandtl number is shown in Figure 2a–c for distinct values of
Pr = 0.1, 0.71, 3.0, and 7.0 along the heated and magnetized plate. By maintaining some
constant variables, the fluid temperature, magnetic field, and velocity are acquired in order
to examine the behavior of physical attributes. In Figure 2a, it is shown that the velocity
f ′(η) improves when Pr is less than 0.1, but falls when Pr is more than 7.0. It should be
observed that the desirable variations are obtained at each Pr value and then approach
the specified boundary condition asymptotically. The electromagnetic effects in the fluid
in Figure 2b are at their peak at a smaller Pr = 0.1, while minor quantities are seen at
larger Pr = 7.0. The fluid’s magnetic profile showed good changes at each Pr value. The
temperature distribution is maximal for a small value of Pr = 0.1, but is investigated at a
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bigger Pr = 7.0 in a noticeable way, according to Figure 2c. The presence of λ = 1.6 causes
the temperature changes to be very noticeable along with noticeable slip effects. The above
reaction was anticipated since a rise in Pr is associated with higher temperature-dependent
density variation, which enhances the buoyant force. When Pr grows, the thickness of
the thermodynamic boundary layer diminishes. At each amount of Pr, the temperature
plot demonstrates significant temperature slip with significant variance. The velocity field,
magnetic plot, and temperature distribution for different quantities of δ = 0.1, 0.7, 1.5, and
2.5 along the surface of heated and magnetically chargedsurfacesare shown in Figure 3a–c.

The velocity graph in Figure 3a reaches its highest value at a large value of δ = 2.5 and
its minimum value at a small value of δ = 0.1 with noticeable slip, and it then approaches
its supplied condition asymptotically. With good variations, it can be shown in Figure 3b
that the magnetic profile improves at small values of δ = 0.1 and is minimal at large values
of δ = 2.5. Figure 3c shows that, with better thermal slip, the temperature profile improves
at lower values of δ = 0.1 but declines at higher values of δ = 2.5. The solutions are
significantly affected by the magnetic parameter. It is evident that magnetization increases
fluid restriction, restricting the fluid’s movement. The magnetization actually works
against the transport processes. This happens due to the impact of the electromagnetic
field’s Lorentz force, which grows with rising Pm and creates additional restriction of the
transport mechanisms. In Figure 4a, when λ = 1.7, M = 3.5, and δ = 1.3 are present along
a polarized and heatingsurface, the highest velocity slip is obtained at bigger Pm = 3.5,
and the minimum velocity slip is obtained at reduced Pm = 0.5. For each value of Pm, the
magnetic plot in Figure 4b shows the major changes. Figure 4c shows the temperature
response for each Pm to be similar. The velocity graph shows a good slip phenomenon
that is both excellent and favorable. At each value of Pm, the flow velocity graph shows
good changes, which then asymptotically approach the specified boundary condition.
The viscosity of the fluid increases and the fluid thickens more as the electromagnetic
Prandtl number grows; as a result, the thickness of the boundary layer diminishes. The
electromagnetic Prandtl value, which measures the ratio of magnetic to kinetic energy,
reveals that this conclusion was anticipated. The magnetic energy is thus enhanced while
the kinetic energy is decreased by reducing the electromagnetic Prandtl value Pm.

Figure 5a–c illustrates the impact of the thermal slip parameter along a magnetically
vertical surface at distinct values of β = 0.1, 0.7, 1.5, and 2.5. In Figure 5a, it can be observed
that f ′(η) velocity increases at lesser concentrations of a β = 0.1 while it declines at higher
quantities of a β = 0.7. Additionally, it needs to be highlighted that in the presence of
thermal slip, the velocity profile exhibits good slip effects along the vertical surface. In
Figure 5b, the magneto profile rises when the thermal slip parameter is reduced (β = 0.1),
but when it is larger (β = 0.7), a lower magnetic profile is achieved by maintaining some
other factors constant (λ = 7.3, M = 5.1, and δ = 0.5). The above outcome was anticipated
since an enhancement in magnetic force enhances the Lorentz forces that resist flow patterns
and slow down fluid motion. At any value of the thermal-slip number, the same outcome is
achieved. According to Figure 5c, the thermal-slip effects on fluid temperature are at their
peak when the quantity is smaller than β = 0.1 and smaller than β = 0.7. Additionally, it
should be highlighted that the presented phenomena yield a temperature distribution with
outstanding thermal slip that asymptotically achieves the specified boundary conditions.
It was expected because magneto diffusion, which is essential for the aforementioned
processes, is diminished by increasing magnetic-Prandtl quantity. For the magnetic surface,
Figure 6a–c show a comparison of the various values of the mixed convection parameter
λ = 0.5, 1.0, 1.5, and 2.5.
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As seen in Figure 6a, the velocity f ′(η) is at its highest with a fair slip response at a
mixed convection parameter value of λ = 2.5, but the quantity of f ′(η) is at its lowest at
λ = 0.5. Additionally, it should be mentioned that the f ′(η) profile exhibits good behavior
for surfaces of geometrical shape when mixed convection is present. The magnetic field
profile in Figure 6b demonstrated good variances for each value of along the electromag-
netic geometry and asymptotically achieves the specified boundary conditions. The Prandtl
number indicates the connection between thermal and momentum diffusivity. Heat will
escape from the surface more quickly from fluids with smaller Prandtl coefficients due to
their greater thermal conductivity. By leaving the remaining parameters M = 1.1, β = 0.6,
and δ = 1.5 in constant form, it can be determined from Figure 6c that the surface tem-
perature along the field of the provided shape is maximal at the minimal value of λ = 0.5
and minimum at the larger value of λ = 2.5. At each value of, the temperature graph
shows a good variety. Physically, it was anticipated since bigger values of related to higher
forced convection, which improves the fluid flow’s acceleration. The magnetic effects are
significantly detected exactly at the surface because of conducting processes, but they are
zero for all values below the surface.

According to Table 1, under the impact of the buoyancy factor λ = 1.5, skin friction
f ′′ (0) is increased for a small δ of 0.1 and concluded to be at its lowest for a larger δ of 2.5.
With buoyancy component λ = 1.5, the heat rate−θ′(0) is increased for a bigger δ of 2.0, and
the minimal heat transfer is calculated for a smaller δ of 0.1.The lower δ = 0.1 has the highest
magnetic energy, and the larger δ = 2.5 with a buoyancy factor of λ = 1.5 has the lowest
magnetic energy. For physical features of f ′′ (0),−g′′ (0) and −θ′(0) through the magnetic
field including variables λ = 1.7, M = 3.5, and δ = 1.3, Table 2 is given for the impact of β
factor with some selections β = 0.5, 1.5, 2.0, and 3.5. For a maximal β = 3.5, the friction is
improved, and for minimal β = 0.5, the skin-friction lowest value is evaluated. It is reported
that raising the β to 3.5 improves the heat and reducing the β to 0.5 diminishes it. As can be
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observed, for a smaller value of β = 0.5, the magnetic flux is boosted, whereas for a larger
significance of β = 3.5, the decreasing trend of magnetic flux is evaluated. In the presence
of induced magnetic contact across the vertical surface, Table 3 evaluates skin friction f ′′ (0)
as per the works of Mehmood et al. [11] and Ilyas et al. [12] for three characteristics of the
magneto Prandtl number Pm = 1, 10, and 100. It is inferred that thermal slip consequences
for every Pm are responsible for the substantial skin friction. Moreover, the present skin
friction outcomes are consistent with the earlier findings.

Table 1. The numerical outcomes of skin friction f′′ (0), magneticflux −g′′ (0) and heat transfer −θ′(0)
with some choices of δ = 0.1, 0.7, 1.5, 2.5.

δ= f”(0) −g”(0) −θ’(0)

0.1 1.989774405441794 1.452028440838210 0.381378974954840

0.7 1.452028440838210 0.402289137201107 0.426522228527584

1.5 1.025010274138276 0.390450947704641 0.449802888251293

2.5 0.740080079359131 0.383745624147633 0.462288381003255

Table 2. The numerical outcomes of skin friction f′′ (0), magneticflux −g′′ (0) and heat transfer −θ′(0)
with some choices of β = 0.5, 1.5, 2.5, 3.5.

β f”(0) −g”(0) −θ’(0)

0.5 0.816233852426368 1.152414669813850 0.213488501588350

1.5 0.875996451145098 0.655892431891026 0.216760098451247

2.5 0.903041872750674 0.502439580088601 0.218263512085719

3.5 0.919880101214037 0.421244286666454 0.219185569281904

Table 3. The numerical outcomes of skin friction f′′ (0) various choices of Pm = 1.0, 10.0, 100.0 for
δ = 7.0, β = 0.1, M = 3.7, Pr = 7.0, λ = 0.1 at the leading edge.

Pm Mehmood et al. [11] Ilyas et al. [12] Present Analysis

1 0.3148 0.3122 0.3102

10 0.3151 0.3137 0.3146

100 0.3156 0.3149 0.3157

7. Conclusions

The current work presents the computational assessment of two-dimensional hydro-
magnetic flow of electrically conductive fluid through heated plate in presence of thermal
slip and velocity slip. The analytical expressions have been made simpler via a scaling
factor, and the simplified boundary value equations have been numerically solved using
the Keller box methodology. The global matrix of mathematical equations is constructed
using the Keller Box methodology (KBM), with adequate assumptions provided by the
Newton–Raphson technique (NRT) and the finite difference procedure (FDP). The KBM
has been implemented to tackle numerous nonlinear issues in science and technology since
it does not require an auxiliary element and quickly transforms approximations to the
optimal solution. The recent research is novel because it evaluates magnetic properties of
the electrically charged flow along the vertical heating plate. To evaluate the friction factor,
heat transmission, and magnetic flux, the approximate solutions for the stable component
are evaluated. The outcomes are outstanding and precise since they satisfy the boundary
requirements that were specified. The impact of physical parameters such as the Prandtl
factor Pr, temperature slip β, velocity slip δ, buoyancy number λ, magnetic/force number
M, and magneto Prandtl element Pm are evaluated scientifically. The main findings are
provided as:
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• At each level of Pr, the temperature plot demonstrates significant temperature slip
with significant variance. The maximum slip effect is obtained for a small value of Pr.
This is because slip effects increase as Pr decreases due to lower viscosity of the fluid
in the presence of velocity slip and thermal slip.

• It is concluded that the magnetic profile is improved at small values of δ = 0.1 and is
minimal at large values of δ = 2.5. The good slip effect in the temperature graph is
observed at each value of Pm along the utilized shape with good agreement.

• It is determined that the Prandtl number indicates the connection between thermal
and momentum diffusivity. The magnetic effects are significantly detected exactly at
the surface because of conducting processes, but they are zero for all values below
the surface.

• In the domains of magnetic resonance imaging (MRI) resonance patterns, artificial
heart wolves, interior heart cavities, and nanoburning systems, the present thermody-
namic and magnetohydrodynamic issues are significant.
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