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Abstract: Symmetry is presented in many works involving differential and integral equations.
Whenever a human is involved in the design of an integral equation, they naturally tend to opt for
symmetric features. The most common examples are the Green functions and linguistic kernels that
are often designed symmetrically and regularly distributed over the universe of discourse. In the
current study, the authors report a study on boundary value problem (BVP) for a nonlinear integro
Volterra–Fredholm integral equation with variable coefficients and show the existence of solution by
applying some fixed-point theorems. The authors employ various numerical common approaches as
the homotopy analysis methodology established by Liao and the modified Adomain decomposition
technique to produce a numerical approximate solution, then graphical depiction reveals that both
methods are most effective and convenient. In this regard, the authors address the requirements
that ensure the existence and uniqueness of the solution for various variations of nonlinearity power.
The authors also show numerical examples of how to apply our primary theorems and test the
convergence and validity of our suggested approach.

Keywords: boundary conditions; nonlinear integro-differential equations; Krasnoselskii fixed point
theorem; Arzela–Ascoli theorem

MSC: 34A45; 34B15; 65L10; 45J05

In the setting of integral equations, boundary value problems play a significant role in
the theory of applied differential calculus. Differential equation of ordinary, partial, integro,
and stochastic types are some examples (see [1–4]). Numerous mathematical formulations
of mathematical phenomena incorporate integro-differential equations, which appear in
many domains such as in physics, material sciences, fractional calculus theory, number
theory, ecology, and epidemiology (see [5–9]). They often occur in approximation models
of the real-world problems and this motivates the in-depth study of these types of integral
models aiming to prove existence or/and uniqueness of their solutions.
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The Fredholm, Volterra, and integro-differential equations have important features
and are used widely in mathematics. Many mathematicians have explored generating
functions and combinatorial sums of specific polynomials and integro-differential equations
in particular. Because integral questions of this sort exist in many mathematical models,
computer algorithms, engineering difficulties, physics, and fractional calculus theory (cf.
other articles [10–16]).

On the other hand, the Adomian decomposition and its modifications are widely
utilized in many fields of applied mathematics, particularly in integral equation theory.
As a result, numerous researchers, including Wazwaz and his students, have researched
these numerical methods in order to solve difficult problems and get accurate outcomes.
In previous articles, these approaches were also applied to the numerical solution of
Abel’s integral equations, the Bagley–Torvik equations, the Fredholm and Volterra integral
equations, the integro equations that play a significant role in mathematics to obtain
meaningful relations and representations; see [17–24] and closed references therein.

Furthermore, the exploration and solution of integro differential equation of nonlinear
Volterra and Fredholm types have attracted more and more attention by using homotopy
analysis methods. Over the years, this method has been proposed to find solution of linear
and nonlinear integral equations, for example, see [25–29].

Among the previous obtained results in study of the BVPs including the construction
of an integro-differential solution are those obtained in previous studies. For instance,
in this paper, we will consider a nonlinear integro-differential equation of the form and
solving it by using modified Adomian and homotopy analysis methods,

fϕ
′′
(t) +A(t)ϕ

′
(t) + B(t)ϕ(t) = f(t) + λ1

t∫
b0

Ψ(t, y)[ϕ(y)]pdy

+ λ2

b1∫
b0

Ψ(t, y)[ϕ(y)]qdy, for t ∈ J, (1)

with the boundary conditions

ϕ(b0) = `1, ϕ(b1) = `2, `1, `2 ∈ R, (2)

where A, B, f and the kernel Ψ are known functions under fulfilling the requirements
to be provided in the following section. The parameters λ1, λ2 and f are nonzero real
parameters and p, q are finite natural numbers. While ϕ(t) is an unknown function that
must be discovered in the space C2(J,R) and J = [b0, b1].

On the other hand, the main advantage of this problem is the application of boundary
value problem on integral equation, which enable us to convert and analyse the problem
to an ordinary differential equation. In addition, the large number of studies on differen-
tial equations in neutral, delay, and KdV with different boundary conditions have been
investigated by researchers; see for example, [30–32].

The rest of our study is arranged as follows: In Section 1, we recall the main concepts,
and existence and uniqueness of the solution. Section 2 describes the methods of solution
of (1) by the algorithms proposed in this article in detail in Sections 2.1 and 2.2, respectively.
Section 3 describes the numerical results and analysis. Finally, Section 4 gives the conclusion
of our study.

1. Basic Tools and Existence of Solutions

In this section we briefly review some basic elements of the Volterra–Fredholm integral
equations and integro-differential equations. For a comprehensive study on these topics,
we refer the interested reader to [33–37].
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Definition 1 (See [33]). Let (X, d) be a metric space. Then, we say a function f:X → X is a
contraction mapping, if there is a non-negative real number 0 ≤ k < 1 such that

d(f(x), f(y)) ≤ kd(x, y), for all x, y ∈ X.

Theorem 1 (See [37]). Suppose that g(x) = limn→∞gn(x) on J, where g, g1, g2, . . . are all
Riemann integrable functions on I. If {gn(x)}∞

n=1 is uniformly bounded on J, then
∫ b1

b0
g(t)dt =

limn→∞
∫ b1

b0
gn(t)dt and limn→∞

∫ b1
b0

∣∣gn(t)− g(t)
∣∣dt = 0

Theorem 2 (See [34]). Let (X, d) be a metric space, then for each contraction mapping τ : X → X
has a unique fixed point of τ in X.

Theorem 3 (See [35]). Let (X, ||.||) be a Banach space over R and K be a nonempty closed, convex
and bounded subset of X. Any Compact operator b0 : K → K has at least one fixed point.

Our two theorems are considering the Arzela–Ascoli theorem and Krasnoselskii fixed
point theorem, respectively.

Theorem 4 (See [33]). Every bounded and equicontinuous sequence in the closed and bounded
interval [a, b] has a uniformly convergent subsequence.

Theorem 5 (See [36]). Let X be a Banach space and µ be a closed and convex nonempty subset of
X, then the functionsH,K : µ→ X with the following properties:

1. H is a contraction mapping,
2. K is compact and continuous,
3. for all x, y ∈ µ, such thatHx+Ky ∈ µ.

Then, there is y in µ such thatHy+Ky = y.

Let us briefly recall the following concepts that will be involved in proving the next
theorem of existence and uniqueness of the solutions.

Main postulates:
We suppose the following Hypotheses to prove all theorems.

Hypothesis 1 (H1). The functions A and B belong to C(J,R).

Hypothesis 2 (H2). The known free function f is a member of the C2(J,R).

Hypothesis 3 (H3). For any y ∈ J, the known kernel (t, y) 7→ Ψ(t, y) is continuous in t,
for all t ∈ R.  b1∫

b0

(Ψ(t, y))2dy


1
2

≤ γ, for all t ∈ J, γ > 0,

Hypothesis 4 (H4).
(ξ + k1|λ1|ε1(1) + |λ2|ε2(1)) ≤ |f|,

where
ξ =

(
(b1 − b0)‖A‖∞ + (b1 − b0)

2‖B‖∞

)
,

ε1(l) =
(

p
l

)
γ(b1 − b0)

2l+ 1
2
√

Υ1(l)√
2p− 2l + 1

,

ε2(l) =
(

q
l

)
γ(b1 − b0)

2l+ 1
2
√

Υ2(l)√
2q− 2l + 1

,



Symmetry 2023, 15, 1144 4 of 20

Υ1(l) = {`
2p−2l
2 + `

2p−2l−1
2 `1 + · · ·+ `

2p−2l
1 },

and
Υ2(l) = {`

2q−2l
2 + `

2q−2l−1
2 `1 + · · ·+ `

2q−2l
1 }.

Hypothesis 5 (H5).
(ξ + |λ1|Λ1 + |λ2|Λ2) ≤ |f|,

where

Λ1 =
p

∑
l=1

ρ1(l)kl
1ε1(l)

(b1 − b0)3l−3 ,

and

Λ2 =
q

∑
l=1

ρ2(l)ε2(l)
(b1 − b0)3l−3 ,

where ρ1(l), ρ2(l) such that ρ1(1) = 1 = ρ2(1) are finite positive constants depend on l
and k1 is a positive real numbers.

Theorem 6. If the conditions (H1)–(H3) are applied, then (1)–(2) are reduce to the as follows
Equation (3) is nonlinear Volterra–Fredholm integral equations (NVFIE).

fσ(t) +

b1∫
b0

[H(t, x)− λ1

t∫
b0

Sp(t, y; 1)M2(y, x)dy

− λ2

b1∫
b0

Sq(t, y; 1)M2(y, x)dy]σ(x)dx

= F (t) + λ1

t∫
b0

p

∑
l=2
Sp(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy

+ λ2

b1∫
b0

q

∑
l=2
Sq(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy,

(3)

where

σ(t) := ϕ
′′
(t), (4)

H(t, x) :=
1

(b1 − b0)

{
(x− b0)(A(t)− (b1 − t)B(t)) b0 ≤x ≤ t

(x− b1)(A(t)− (b0 − t)B(t)) t ≤x ≤ b1
, (5)

Sp(t, y; l) :=
(

p
l

)
Ψ(t, y)

(b1 − b0)p [`1(b1 − y) + `2(y− b0)]
p−l , (6)

Sq(t, y; l) :=
(

q
l

)
Ψ(t, y)

(b1 − b0)q [`1(b1 − y) + `2(y− b0)]
q−l , (7)

M2(y, x) :=
{

(x− b0)(y− b1) b0 ≤ x ≤ y

(x− b1)(y− b0) y ≤ x ≤ b1
, (8)

µ(t) :=
(−A(t) + (b1 − t)B(t))`1 + (A(t) + (t− b0)B(t))`2

(b1 − b0)
, (9)

F (t) := f(t) + λ1

t∫
b0

Sp(t, y; 0)dy+ λ2

b1∫
b0

Sq(t, y; 0)dy− µ(t). (10)
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Proof. If a function t 7→ σ(t) belongs C(J,R), then:

Let ϕ
′′
(t) = σ(t), (11)

ϕ
′
(t) =

t∫
b0

σ(x)dx+ ϕ
′
(b0), (12)

and

ϕ(t) =

t∫
b0

(t− x)σ(x)dx+ `1 + (t− b0)ϕ
′
(b0). (13)

It follows from Equation (13) with t = b1 that

ϕ
′
(b0) =

1
(b1 − b0)

(`2 − `1) +

b1∫
b0

(x− b0)σ(x)dx

 (14)

and by putting Equation (14) into Equation (12), we obtain

ϕ
′
(t) =

1
(b1 − b0)

(`2 − `1) +

b1∫
b0

H1(t, x)σ(x)dx

. (15)

By using the result in Equations (12) and (11), we can obtain

ϕ(t) =
1

(b1 − b0)

(t− b0)`2 + (b1 − x)`1 +

b1∫
b0

H2(t, x)σ(x)dx

, (16)

where

M1(t, x) :=
{

(b0 − x) b0 ≤ x ≤ t

(b1 − x) t ≤ x ≤ b1
, (17)

M2(t, x) :=
{

(b1 − t)(b0 − x) b0 ≤ x ≤ x

(b0 − t)(b1 − x) t ≤ x ≤ b1
, (18)

and

[ϕ(t)]p =
1

(b1 − b0)p

p

∑
l=0

(
p
l

)
[(t− b0)`2 + (b1 − t)`1]

p−l

 b1∫
b0

M2(t, x)σ(x)dx

l

, (19)

[ϕ(t)]q =
1

(b1 − b0)q

q

∑
l=0

(
q
l

)
[`1(b1 − t) + `2(t− b0)]

q−l

 b1∫
b0

M2(t, x)σ(x)dx

l

. (20)

Substitution Equations (11), (15), (16), (19) and (20) into Equation (1) to get
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fσ(t) +
A(t)

b1 − b0
(`2 − `1) +

1
b1 − b0

b1∫
b0

[A(t)M1(t, x) + B(t)M2(t, x)]σ(x)dx

+
B(t)

b1 − b0
((b1 − t)`1 + (t− b0)`2)

= F (t) + λ1

(b1 − b0)p

t∫
b0

p

∑
l=0

(
p
l

)
Ψ(t, y)[(b1 − t)`1 + (t− b0)`2]

p−l

 b1∫
b0

M2(y, x)σ(x)dx

l

dy

+
λ2

(b1 − b0)q

b1∫
b0

q

∑
l=0

(
q
l

)
Ψ(t, y)[(b1 − t)`1 + (t− b0)`2]

q−l

 b1∫
b0

M2(y, x)σ(x)dx

l

dy,

fσ(t) +

b1∫
b0

[H(t, x)− λ1

t∫
b0

Sp(t, y; 1)M2(y, x)dy− λ2

b1∫
b0

Sq(t, y; 1)M2(y, x)dy]σ(x)dx

= F (t) + λ1

t∫
b0

p

∑
l=2
Sp(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy

+ λ2

b1∫
b0

q

∑
l=2
Sq(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy,

(21)

where F (t),H(t, x),Sp(t, y; l),Sq(t, y; l) and µ(t) are determined in Equations (5)–(7), (9)
and (10) above, respectively.

The converse is straight forward and thereby it is omitted.

The following theorem states that if the NVFIE (3) has a continuous solution if it meet
the requirements (H1)–(H4).

Theorem 7. If conditions (H1)–(H4) hold, then an NVFIE (3) has a continuous solution.

Proof. Let ∇ς = {‖σ‖∞ = sup
t∈J
|σ(t)| ≤ ς, σ ∈ C(J,R)}. Where the positive, finite

solution of the Equation (22) is denoted by the symbol ς.

|λ1|
p

∑
l=1

(k1ς)lε1(l) + |λ2|
q

∑
l=1

ςlε2(l) + (ξ − |f|)ς + ‖F‖∞ = 0, (22)

and k1 is an upper bound of |M2(t, x)|. Considering (3) and setting the following two operators

(P1σ1)(t) =
1
fF (t)−

1
f

b1∫
b0

[
H(t, x)− λ1

t∫
b0

Sp(t, y; 1)M2(y, x)dy

− λ2

b1∫
b0

Sq(t, y; 1)M2(y, x)dy

]
σ(x)dx,

(P2σ2)(t) =
λ1

f

t∫
b0

p

∑
l=2
Sp(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx)

l

dy

+
λ2

f

b1∫
b0

q

∑
l=2
Sq(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy,
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where σ1, σ2 are two arbitrary functions in the set ∇ς. Now,

|(P1σ1)(t)| ≤ 1
|f| |F (t)|+

ς

|f|

b1∫
b0

|H(t, x)|dx+ |λ1|ς
|f|

t∫
b0

b1∫
b0

|Sp(t, y; 1)||M2(y, x)|dxdy

+ |λ2 |ς
|f|

b1∫
b0

b1∫
b0

|Sq(t, y; 1)||M2(y, x)|dxdy

≤ 1
|f| |F (t)|+

ξς
|f| +

k1|λ1|pς

|f|(b1 − b0)p−3

b1∫
b0

|Ψ(t, y)|
|(`1 − `2)y+ (`2b1 − `1b0)|1−p dy

+
|λ2|qς

|f|(b1 − b0)q−3

b1∫
b0

|Ψ(t,y)|
|(`1−`2)y+(`2b1−`1b0)|1−q dy

≤ 1
|f| |F (t)|+

ξς
|f| + k1|λ1|

p(b1 − b0)
5
2 (Υ1(1))

1
2 ς

|f|(2p− 1)
1
2

(
b1∫

b0

(Ψ(x, y))2dy)
1
2

+|λ2|
q(b1 − b0)

5
2 (Υ2(1))

1
2 ς

|f|(2q− 1)
1
2

(
b1∫

b0

(Ψ(t, y))2dy)
1
2

≤ 1
|f| ‖F (t)‖∞ +

1
|f| (ξ + (k1|λ1|ε1(1) + |λ2|ε2(1))ς. (23)

By using the same arguments as above, we can deduce

|(P2σ2)(t)| ≤
|λ1|
|f|

t∫
b0

p
∑

l=2
|Sp(t, y; l)|

(
b1∫

b0

|M2(y, x)σ(x)|dx
)l

dy

+ |λ2|
|f|

b1∫
b0

q
∑

l=2
|Sp(t, y; l)|

(
b1∫

b0

|M2(y, x)σ(x)|dx
)l

dy

≤ |λ1|
p
∑

l=2
(p

l )
(b1−b0)

2l+ 1
2 (Υ1(l))

1
2 (k1ς)l

|f|(2p−2l+1)
1
2

(
b1∫

b0

(Ψ(t, y))2dy

) 1
2

+ |λ2|
q
∑

l=2
(q

l)
(b1−b0)

2l+ 1
2 (Υ2(l))

1
2 ςl

|f|(2q−2l+1)
1
2

(
b1∫

b0

(Ψ(t, y))2dy

) 1
2

≤ 1
|f|

(
|λ1|

p

∑
l=2

(k1ς)lε1(l) + |λ2|
q

∑
l=2

ςlε2(l)

)
. (24)

From Equations (23) and (24), it follows that

‖P1(σ1) +P2(σ2)‖∞ ≤ ‖P1(σ1)‖∞ + ‖P2(σ2)‖∞

≤ 1
|f| ‖F (t)‖∞ +

ς

|f| (ξ + (k1|λ1|ε1(1) + |λ2|ε2(1))

+ 1
|f|

(
|λ1|

p
∑

l=2
ε1(l)(k1ς)l + |λ2|

q
∑

l=2
ε2(l)ςl

)
= ς.

(25)

Therefore,
P1(σ1) +P2(σ2) ∈ ∇ς, ∀σ1, σ2 ∈ ∇ς.

Now, if t1, t2 are two elements in J, without loss generality t1 < t2. Applying the
conditions (H1)–(H3) and using the continuous functions F ,H1 andH2 in t, we have
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|(P1σ1)(t2)− (P1σ1)(t1)| ≤
1
|f| |F (t2)−F (t1)|+

ς

|f|(b1 − b0)

t1∫
b0

|H1(t2, x)−H1(t1, x)|dx

+
ς

|f|(b1 − b0)

t1∫
b0

|H2(t2, x)−H2(t1, x)|dx+
t1∫

b0

|H1(t2, t)−H2(t1, x)|dx

+
pςk1|λ1|

(b1 − b0)p−3|f|
×

b1∫
b0

∣∣Ψ(t2, y)−Ψ(t1, y)
∣∣∣∣(`1 − `2)y+ (`2b1 − `1b0)
∣∣1−p dy

+
|λ2|qς

|f|(b1 − b0)q−3 ×
b1∫

b0

∣∣Ψ(t2, y)−Ψ(t1, y)
∣∣∣∣(`1 − `2)y+ (`2b1 − `1b0)
∣∣1−q dy.

(26)

We can conclude that the right-hand side of Equation (26) is independent of σ ∈ ∇ς.
In addition, it tends zero when t2 − t1 tends zero. Therefore, this leads to |(P1σ1)(t2)−
(P1σ1)(t1)| approaches zero.

Also, we have

|(P2σ2)(t2)− (P2σ2)(t1)| ≤
|λ1|
|f|

p

∑
l=2

(
p
l

)
(b1 − b0)

3l−p(k1ς)l

×
b1∫

b0

∣∣Ψ(t2, y)−Ψ(t1, y)
∣∣∣∣(`1 − `2)y+ (`2b1 − `1b0)
∣∣2l−2p dy

+
|λ2|
|f|

q

∑
l=2

(
q
l

)
(b1 − b0)

3l−q ςl ×
b1∫

b0

∣∣Ψ(t2, y)−Ψ(t1, y)
∣∣∣∣(`1 − `2)y+ (`2b1 − `1b0)
∣∣2l−2q dy. (27)

Considering Equation (27), if t2 − t1 approaches zero, then dy tends zero. Hence, the
set (P1 +P2)∇ς is equicontinuous. Also, we have P1σ1 and P2σ2 are two elements in
(J,R). As a result, considering ∇ς, P1 + P2 is a self-operator. If σ and σ∗ are any two
functions, then they belong to P1ς. Therefore,

‖P1(σ)−P1(σ
∗)‖∞ ≤

1
|f| (ξ + k1|λ1|ε1(1) + |λ2|ε2(1))‖σ− σ∗‖∞, (28)

and according to the condition (5), P1 is a contraction operator on ∇ς.

‖P1(σ)−P1(σ
∗)‖∞ ≤ ‖σ− σ∗‖∞.

Let {σn}n∈N with σn ∈ ∇ς be a sequence such that σn approaches σ whereas n tends
to ∞. Then, for any two elements σn, σ which contains in ∇ς and ∀t ∈ J, we have
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|(P2σn)(t)− (P2σ)(t)| ≤ |λ1|
|f|

t∫
b0

p

∑
l=2
|Sp(t, y; l)|

×


 b1∫

b0

M2(y, x)σn(x)dx

l

−

 b1∫
b0

M2(y, x)σ(x)dx

ldy

+
|λ2|
|f|

b1∫
b0

q

∑
l=2
|Sq(t, y; l)|


 b1∫

b0

M2(y, x)σn(x)dx

l

−

 b1∫
b0

M2(y, x)σ(x)dx

ldy

≤ |λ1|
|f|

t∫
b0

p

∑
l=2
|Sp(t, y; l)|ρ1(l)

 b1∫
b0

M2(y, x)|σn(x)− σ(x)|dx

dy

+
|λ2|
|f|

b1∫
b0

q

∑
l=2
|Sq(t, y; l)|ρ2(l)

 b1∫
b0

M2(y, x)|σn(x)− σ(x)|dx

dy.

By applying (1), it follows that

lim
n→∞
|(P2σn)(t)− (P2σ)(t)|

≤ |λ1|
|f|

t∫
b0

p

∑
l=2
|Sp(t, y; l)|ρ1(l)

 b1∫
b0

M2(y, x) lim
n→∞
|σn(x)− σ(x)|dx

dy

+
|λ2|
|f|

b1∫
b0

q

∑
l=2
|Sq(t, y; l)|ρ2(l)

 b1∫
b0

M2(y, x) lim
n→∞
|σn(x)− σ(x)|dx

dy = 0,

where ρ1(l) and ρ2(l) are finite positive real numbers that depend on l. As a result, the
operator P2 is a sequentially continuous operator on ∇ς.

The sequence P2(σn) is uniformly bounded on J since

|P2σ(t)| ≤ 1
|f|

(
|λ1|

p

∑
l=2

(k1ς)lε1(l) + |λ2|
q

∑
l=2

ςlε2(l)

)
.

Furthermore, the sequence P2(σn) is equicontinuous because

|P2(σn)(t2)−P2(σn)(t1)| < ε, as |t2 − t1| < ξ, ∀n ∈ N.

The sequence P2(σn) has a subsequence P2{σnk}k∈N which uniformly converges
according to the Arzela–Ascoli theorem (4). Furthermore, the operator P2 is completely
continuous and the collection P2∇ς is compact. After satisfying all of the conditions of the
Krasnosel’skii theorem (5), the operator P1 +P2 has at least one fixed point in ∇ς, which
is a solution to the NVFIE (3).

Theorem 8. The NVFIE (21) has a unique solution, whenever the conditions (H1)–(H3) and
(H5) are satisfied.

Proof. It is obvious that the operator P1 +P2 is a self-adjoint operator on ∇ς. By using
the same method used in Equation (28), we have

‖P1(σ)−P1(σ
∗)‖∞ ≤

1
|f| (ξ + k1|λ1|ε1(1) + |λ2|ε2(1))‖σ− σ∗‖∞.
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Also, ∀σ, σ∗ ∈ ∇ς, we have

‖P2(σ)−P2(σ
∗)‖∞ ≤

1
|f|

(
|λ1|

p

∑
l=2

ρ1(l)kl
1ε1(l)

(b1 − b0)3l−3 + |λ2|
q

∑
l=2

ρ2(l)ε2(l)
(b1 − b0)3l−3

)
‖σ− σ∗‖∞. (29)

By using Equation (28) with ρ1(1) = 1 = ρ2(1) and (29), it follows that

‖(P1 +P2)(σ)− (P1 +P2)(σ
∗)‖∞

≤ ‖(P1)(σ)− (P1)(σ
∗)‖∞ + ‖(P2)(σ)− (P2)(σ

∗)‖∞

≤ 1
|f| (ξ + |λ1|k1ε1(1) + |λ2|ε2(1))‖σ− σ∗‖∞

+
1
|f|

(
|λ1|

p

∑
l=2

ρ1(l)kl
1ε1(l)

(b1 − b0)3l−3 + |λ2|
q

∑
l=2

ρ2(l)ε2(l)
(b1 − b0)3l−3

)
‖σ− σ∗‖∞

≤ 1
|f| (ξ + |λ1|Λ1 + |λ2|Λ2)‖σ− σ∗‖∞.

Hence, one can have

‖(P1 +P2)(σ)− (P1 +P2)(σ
∗)‖∞ ≤ ‖σ− σ∗‖∞. (30)

We conclude that the operator is contraction on∇ς according to the Banach contraction
principal (3) and the condition (H5). As a result, the NVFIE (21) has a unique continuous
solution in ∇ς.

2. Methods of Solutions

Our main section is divided into two subsections that deal with the solution technique
for the given nonlinear problem including the modified Adomain decomposition and
homotopy analysis methods.

2.1. The Modified Adomain Decomposition Method Solution

If the criteria of Theorem 8 hold, then the next section will explain how can we apply
the MADM to get an approximate solution to the NVFIE (21). Assume that the formula can
be used to estimate the unknown function σ(t) of the Equation (21)

σ(t) =
∞

∑
n=0

σn(t). (31)

If F (t) = F1(t) +F2(t), then we have

σ0(t) =
1
fF1(t), (32)

σ1(t) =
1
fF2(t)

− 1
f


b1∫

b0

H(t, x)− λ1

t∫
b0

Sp(t, y; 1)M2(y, x)dy− λ2

b1∫
b0

Sq(t, y; 1)M2(y, x)dy

σ0(x)dx


+

λ1

f

t∫
b0

p

∑
l=2
Sp(t, y; l)A0(y, x)dy+

λ2

f

b1∫
b0

q

∑
l=2
Sq(t, y; l)A0(y, x)dy, (33)
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σn(t) = −
1
f

{ b1∫
b0

[
H(t, x)− λ1

t∫
b0

Sp(t, y; 1)M2(y, x)dy

− λ2

b1∫
b0

Sq(t, y; 1)H2(y, x)dy
]
σn−1(x)dx

}

+
λ1

f

t∫
b0

p

∑
l=2
Sp(t, y; l)An−1(y, x)dy+

λ2

f

b1∫
b0

q

∑
l=2
Sq(t, y; l)An−1(y, x)dy, ∀n ≥ 2, (34)

An(σn(t), y; l) =
1
n!

 dn

dνn

 b1∫
b0

M2(y, x)
∞

∑
i=0

νiσi(x)dx

l∣∣∣∣
ν=0

, (35)

where An is an Adomain’s polynomial, for n = 0, 1, 2, . . ..
The following theorem holds if the conditions of Theorem 8 are satisfied:

Theorem 9. The NVFIE (21) converges to the exact solution σ(t), whenever the approximate
solution established by Equations (32)–(34).

Proof. Define a sequence of partial sum {Sk(t)} as follows:

Sk(t) =
k

∑
i=0

σi(t).

For each pair of positive integers n, m with n > m and m ≥ 1, we have

‖Sn(t)− Sm(t)‖∞

= |
n

∑
i=m+1

σi(t)|

≤ 1
|f|

b1∫
b0

|H(t, x)
n−1

∑
i=m

σi(x)|dx+
|λ1|
|f|

b1∫
b0

t∫
b0

|Sp(t, y; 1)M2(y, x)
n−1

∑
i=m

σi(x)|dydx

+
|λ2|
|f|

b1∫
b0

b1∫
b0

|Sq(t, y; 1)M2(y, x)
n−1

∑
i=m

σi(x)|dydx

+
|λ1|
|f|

t∫
b0

p

∑
l=2
|Sp(t, y; l)

n−1

∑
i=m

Ai(y, x)|dydx+
|λ2|
|f|

b1∫
b0

q

∑
l=2
|Sq(t, y; l)

n−1

∑
i=m

Ai(y, x)|dydx
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≤ ξ

|f| ‖Sn−1 − Sm−1‖∞ +
k1|λ1|
|f| (b1 − b0)

3
b1∫

b0

|Sp(t, y; 1)
n−1

∑
i=m

σi(x)|dx

+
|λ2|
|f| (b1 − b0)

3
b1∫

b0

|Sq(t, y; 1)
n−1

∑
i=m

σi(x)|dx

+
|λ1|
|f|

t∫
b0

p

∑
l=2

∣∣Sp(t, y; l)

 b1∫
b0

n−1

∑
i=m

σi(x)dx

l ∣∣dy+ |λ2|
|f|

b1∫
b0

q

∑
l=2

∣∣Sq(t, y; l)

 b1∫
b0

n−1

∑
i=m

σi(x)dx

l ∣∣dy
≤ 1
|f| (ξ + (k1|λ1|ε1(1) + |λ2|ε2(1)))‖Sn−1 − Sm−1‖∞

+
|λ1|
|f|

t∫
b0

p

∑
l=2

(b1 − b0)
3ρ1(l)

∣∣Sp(t, y; l)
∣∣dy+ |λ2|

|f|

b1∫
b0

q

∑
l=2

(b1 − b0)
3ρ2(l)

∣∣Sq(t, y; l)
∣∣dy

≤ 1
|f|

(
ξ + k1|λ1|ε1(1) + |λ2|ε2(1) + |λ1|

p

∑
l=2

ρ1(l)kl
1ε1(l)

(b1 − b0)3l−3

)
‖Sn−1 − Sm−1‖∞

+
1
|f|

(
|λ2|

q

∑
l=2

ρ2(l)ε2(l)
(b1 − b0)3l−3

)
‖Sn−1 − Sm−1‖∞.

By setting ρ1(1), ρ2(1) = 1, we have

‖Sn(t)− Sm(t)‖∞

≤ 1
|f|

(
ξ + |λ1|

p

∑
l=1

ρ1(l)kl
1ε1(l)

(b1 − b0)3l−3 + |λ2|
q

∑
l=1

ρ2(l)ε2(l)
(b1 − b0)3l−3

)
‖Sn−1 − Sm−1‖∞

=
1
|f| (ξ + |λ1|Λ1 + |λ2|Λ2)‖Sn−1 − Sm−1‖∞

= ϑ‖Sn−1(t)− Sm−1(t)‖∞, (36)

where ϑ =
(A+ |λ1|Λ1 + |λ2|Λ2)

|f| , and ϑ < 1. Take n = m + 1 to get

‖Sm+1 − Sm‖∞ ≤ ϑ‖Sm(t)− Sm−1(t)‖∞

≤ ϑ2‖Sm−1(t)− Sm−2(t)‖∞

≤ · · · ≤ ϑm‖S1(t)− S0(t)‖∞

= ϑm‖σ1‖∞.

(37)

Substituting the inequality (37) into the inequality (36), setting n > m > N ∈ N, and
applying the triangle inequality, we get

‖Sn − Sm‖∞ ≤
ϑn

1− ϑ
‖σ1‖∞ = ε,

where
lim

n→∞
ϑn = 0.

Therefore,
∀n, m ∈ N, ‖Sn − Sm‖∞ < ε.

As a result, the sequence {Sk(t)} is a Cauchy in the Banach space C(J,R), and hence,

lim
n→∞

Sn(t) = σ(t).
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2.2. The Homotopy Analysis Method Solution

In this section, we analyse for the NVFIE (21) under the conditions of Theorem 8 by
applying the HAM (see [27]) to (2) as follows: If the criteria of Theorem 8 hold, then the
HAM will be used to obtain an approximate solution to the NVFIE (21) in the section that
follows. Equation (2) provides that

σ(t) +
1
f

 b1∫
b0

H(t, x)− λ1

t∫
b0

Sp(t, y; 1)M2(y, x)dy− λ2

b1∫
b0

Sq(t, y; 1)M2(y, x)dy

σ(x)dx



− 1
fF (t) +

λ1
f

t∫
b0

p

∑
l=2
Sp(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy

− λ2
f

b1∫
b0

q

∑
l=2
Sq(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy = 0. (38)

We define the nonlinear operator N by

N [σ(t)] = σ(t)

+
1
f

 b1∫
b0

H(t, x)− λ1

t∫
b0

Sp(t, y; 1)M2(y, x)dy− λ2

b1∫
b0

Sq(t, y; 1)M2(y, x)dy

σ(x)dx



− 1
fF (t)−

λ1
f

t∫
b0

p

∑
l=2
Sp(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy

− λ2
f

b1∫
b0

q

∑
l=2

Rq(t, y; l)

 b1∫
b0

M2(y, x)σ(x)dx

l

dy. (39)

From Equations (38) and (39), we get

N [σ(t)] = 0, for all t ∈ J. (40)

The following explanation for the homotopy of the unknown function σ(t) can
be considered

F ∗[M(t; h, )] = (1− )L(M(t; h, )− σ0(t))− hN[M(t; h, )]. (41)

1. The function σ0(t) is the initial approximate solution of the unknown function σ(t);
2. The rate of convergence parameter h ∈ R− {0} is used to the method suggested;
3. Equation (41) embeds the homotopy parameter  ∈ [0, 1].
4. The operator L is known as an auxiliary linear operator if (t) = 0 when L[(t)] = 0;
5. If the Equation (39) is denoted by the operator N , then we obtain
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N [M(t; h, )] =M(t; h, )

+
1
f

{ b1∫
b0

[
H(t, x)− λ1

t∫
b0

Sp(t, y; 1)M2(y, x)dy− λ2

b1∫
b0

Sq(t, y; 1)M2(y, x)dy
]
M(x; h, )dx

}

− 1
fF (t)−

λ1

f

t∫
b0

p

∑
l=2
Sp(t, y; l)

 b1∫
b0

M(x; h, )M2(y, x)dx

l

dy

− λ2

f

b1∫
b0

q

∑
l=2
Sq(t, y; l)

 b1∫
b0

M(x; h, )M2(y, x)dx

l

dy, (42)

and
F ∗[M(t; h, )] = 0. (43)

Solving Equation (43) yields

(1− )L[M(t; h, )− σ0(t)] = hN [M(t; h, )]

σ(t) =
∞

∑
n=0

σn(t) = σ0(t) +
∞

∑
n=1

σn(t), (44)

where

σn(t) =
1
n!

∂n

∂n
M(t; h, )

∣∣∣∣
=0

;

σ1(t) = hR1[σ0(t)];

σn(t) = σn−1(t) + hRnσn−1(t), ∀n ≥ 2;

σn−1(t) = (σ0(t), σ1(t), . . . , σn−1(t));

Rn[σn−1(t)] =
1

(n− 1)!

[
∂n−1

∂n−1N
(

∞

∑
i=0

σi(t)i

)∣∣∣∣
=0

]
.

3. Numerical Results

As an application of the construction of the above algorithms in Theorems 7 and 8, we
can now present some numerical examples. Data calculations and graphs are implemented
by MATLAB 2022a.

Example 1. Our first example considers the boundary value problem

fφ′′(t) + 2φ′(t) = f(t) + λ1

∫ t

0
t(3s2 − 2)φ3(s)ds + λ2

∫ 1

0
t(3s2 − 2)φ2(s)ds (45)

where f(t) = 6ft + 6t2 − 4 − λ1(
t(t3−2t+1)4

4 − t
4 ) + λ2

t
3 and the exact solution φ(t) =

t3− 2t+ 1, t ∈ [0, 1] with boundary conditions φ(0) = 1, φ(1) = 0 and f = 5× 103, λ1 = 1
300 ,

and λ2 = 1
400 . Considering the postulate (H3),

[∫ 1

0

(
t(3y2 − 2)

)2
dy
] 1

2

≤ 3√
5

,
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postulate (H4),

(ξ + k1|λ1|ε1(1) + |λ2|ε2(1)) = 2.0099 ≤ |f|,
where ξ = 2, k1 = 1,

λ1 =
1

300
, ε1(1) =

9
5

,

λ2 =
1

400
, ε2(1) =

6√
15

,

and postulate (H5),

(ξ + |λ1|Λ1 + |λ2|Λ2) = 2.0254 ≤ |f|,

where ξ = 2, λ1 =
1

300
, λ2 =

1
400

,

Λ1 = 5.4654, Λ2 = 2.8908,

respectively. These confirm the convergence of the problem.
Repeating the above process as in Section 1 by setting σ(t) = φ′′(t), we can deduce a nonlinear

Volterra–Fredholm integral equation in the form of (3). Moreover, (45) can satisfy the condition
postulate (H5)it has a unique solution. Thus, Theorem 8 confirms the uniqueness of solution of this
problem. Finally, we tabulate the numerical results in Table 1 with h = −0.3333064738985 for the
proposed methods and their absolute errors between them with the exact value. Moreover, we have
drawn it graphically in Figure 1 for the same value of h.

Table 1. Numerical solutions for Example 1 solved by the MADM (σMADM) and HAM (σHAM).

t σexact σMADM σH AM ‖σexact − σMADM‖ ‖σexact − σH AM‖
0 0 0.000000000018898 −0.000266659995017 0.000000000018898 0.000266659995017

0.200000000000000 1.200000000000000 1.200000011921477 1.199658611206104 0.000000011921477 0.000341388793896
0.400000000000000 2.400000000000000 2.400000086393681 2.399647950502708 0.000000086393681 0.000352049497292
0.600000000000000 3.600000000000000 3.600000175841783 3.599701327382030 0.000000175841783 0.000298672617970
0.800000000000000 4.800000000000001 4.800000247296660 4.799818687831255 0.000000247296660 0.000181312168746
1.000000000000000 6.000000000000000 6.000000295194053 5.999999999994251 0.000000295194053 0.000000000005749

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-1

0

1

2

3

4

5

6

7

Exact

MADM

HAM

Figure 1. Plot of the proposed methods compared with the exact solution of Example 1.

For several values of h = [−0.333306473899000 − 0.333306473898500 − 0.333306473898000],
the best approximations of σHAM can be deduced as tabulated in Table 2.
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Table 2. Different values of σHAM with respect to the values of h.

h = −0.333306473899 h = −0.3333064738985 h = −0.333306473898

−0.000266659995017 −0.000266659995017 −0.000266659995017
1.199658611207904 1.199658611206104 1.199658611204305
2.399647950506308 2.399647950502708 2.399647950499109
3.599701327387429 3.599701327382030 3.599701327376630
4.799818687838455 4.799818687831255 4.799818687824056
6.000000000003250 5.999999999994251 5.999999999985251

It is worth mentioning that the h values can confirm the convergence of the approximate
solution, which are demonstrated in Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-1

0

1

2

3

4

5

6

7

H
A

M

Figure 2. σHAM solutions for some values of h in Example 1.

Example 2. Consider the following boundary value problem:

fφ′′(t) = f(t) + λ1

t∫
0

sin(t− s)φ2(s)ds + λ2

π
2∫

0

sin(t− s)φ(s)ds (46)

with boundary conditions
φ(0) = 1 and φ(

π

2
) = 0,

where f(t) = −f cos(t) − λ1

(
sin2(t)−cos(t)+1

3

)
− λ2

(
π sin(t)−2 cos(t)

4

)
, φ(t) = cos(t) is

exact solution, for all t ∈ [0, π
2 ], f = 4× 103, λ1 = 1

400 and λ2 = 1
1200 .

Observe that the postulate (H3) :

[∫ π
2

0
((sin(t− y))2dy

] 1
2

≤
√

π

2
,

postulate (H4) :

(ξ + k1|λ1|ε1(1) + |λ2|ε2(1)) = 0.0102 ≤ |f|,
where ξ = 0, k1 = 1,

λ1 =
1

400
, ε1(1) = 3.1646,

λ2 =
1

1200
, ε2(1) = 2.7406,
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and postulate (H5) :

(ξ + |λ1|Λ1 + |λ2|Λ2) = 0.0260 ≤ |f|,

where ξ = 0, λ1 =
1

400
, λ2 =

1
1200

,

Λ1 = 4.9093, Λ2 = 2.7406,

respectively. These confirm the convergence of the problem.
By repeating the approach described in Section 1 and setting σ(t) := φ”(t), we may get a

nonlinear Volterra–Fredholm integral equation in the form of (3). Furthermore, (46) meets the
requirement postulate (H5). Thus, Theorem 8 confirms the uniqueness of this problem’s solution.
Finally, we arrange the numerical results for the suggested approaches and their absolute errors with
the exact value in Table 3 with h = −0.3335010. Furthermore, we have illustrated it graphically
in Figure 3 for the same value of h. Table 2 illustrates the average absolute infinity norm errors
between the exact and approximate solutions (MADM and HAM) with h = −0.3335010.

Table 3. Numerical solutions for Example 1 solved by the MADM (σMADM) and HAM (σH AM).

t σexact σMADM σH AM ‖σExact − σMADM‖ ‖σExact − σH AM‖
0 −1.000000000000000−1.000000843016519 −1.000503767496914 0.000000843016519 0.000503767496914

0.314159265358979 −0.951056516295154−0.951056973274357 −0.951535349824139 0.000000456979203 0.000478833528985
0.628318530717959 −0.809016994374947−0.809017188656542 −0.809424201820296 0.000000194281594 0.000407207445348
0.942477796076938 −0.587785252292473−0.587785364820836 −0.588081184954149 0.000000112528363 0.000295932661675
1.256637061435917 −0.309016994374947−0.309017207000090 −0.309172883226273 0.000000212625142 0.000155888851325
1.570796326794897 −0.000000000000000−0.000000440291301 −0.000000736172456 0.000000440291300 0.000000736172456
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Figure 3. Plot of the proposed methods compared with the exact solution of Example 2.

In addition, Figure 4 illustrates the absolute errors of infinity of the σMADM, (σHAM, with
h = −0.33330490) and the exact solution at the same points used in Table 2.
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Figure 4. σHAM solutions for some values of h in Example 2.

Again, there are many values of h = [−0.33350120 − 0.33350110 − 0.3335010] which give
the best approximations of σHAM as shown in Table 4.

Table 4. Different values of σHAM with respect to the values of h.

h = −0.33350120 h = −0.33350110 h = −0.3335010

−1.000504367497397 −1.000504067497155 −1.000503767496914
−0.951535920505433 −0.951535635164786 −0.951535349824139
−0.809424687324857 −0.809424444572576 −0.809424201820296
−0.588081537766754 −0.588081361360451 −0.588081184954149
−0.309173068825120 −0.309172976025696 −0.309172883226273
−0.000000736408373 −0.000000736290414 −0.000000736172456

4. Conclusions and Future Directions

The main theme of this research is focused on the solution and analysis of a nonlinear
boundary value problems for a Volterra–Fredholm integro equation with specific boundary
conditions. We explicitly build the existence and uniqueness of an auxiliary problem with
the simplified right-hand side using Arzela–Ascoli and Krasnoselskii fixed point theorems.
Furthermore, using the theory of the Banach contraction principle index, we demonstrate the
existence of at least one continuous solution to the original issue, as stated in Theorem 7. We
have included some numerical talks and clear graphical representations for Volterra–Fredholm
integro issues for several eigenvalues and homotopy parameters to help you grasp the re-
sultant boundary models. Many solutions have been found and are depicted in Figures 1–3.
In addition, efficiency of the proposed schemes is also presented in tables by calculating
absolute errors.

The Volterra–Fredholm integro fractional differential problems have a bright future
as a type of highly integrated boundary value problem in integrated fractional operators;
however, there is still room for improvement in transmission efficiency and numerical
solutions, which is also the future direction of our work.
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