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Abstract: We investigate the Chandrasekhar mass limit of white dwarfs in various models of
f (R) gravity. Two equations of state for stellar matter are used: the simple relativistic polytropic equa-
tion with polytropic index n = 3 and the realistic Chandrasekhar equation of state. For calculations,
it is convenient to use the equivalent scalar–tensor theory in the Einstein frame and then to return
to the Jordan frame picture. For white dwarfs, we can neglect terms containing relativistic effects
from General Relativity and we consider the reduced system of equations. Its solution for any model
of f (R) = R + βRm (m ≥ 2, β > 0) gravity leads to the conclusion that the stellar mass decreases in
comparison with standard General Relativity. For realistic equations of state, we find that there is
a value of the central density for which the mass of a white dwarf peaks. Therefore, in frames of
modified gravity, there is a lower limit on the radius of stable white dwarfs, and this minimal radius
is greater than in General Relativity. We also investigate the behavior of the Chandrasekhar mass
limit in f (R) gravity.

Keywords: white dwarfs; modified gravity; Chandrasekhar limit

1. Introduction

Modified gravity in its various forms [1–7] describes successfully the late-time ac-
celeration of the universe [8–10] and provides the possibility to explain also early-time
acceleration [11]. Although the most successful model for cosmological acceleration is the
Λ-Cold-Dark-Matter (ΛCDM) model, it suffers from some difficulties from the fundamental
physics viewpoint. Primarily, one needs to explain the so-called cosmological constant
problem, i.e., the very large discrepancy between the observed value of the Λ term and its
value predicted by any quantum field theory [12]. Another way to describe cosmological
acceleration in frames of General Relativity (GR) is the introduction of a scalar field. Analy-
sis of Planck observational data leads researchers to the conclusion that such a field may be
a phantom field with negative kinetic terms since the parameter of the state equation for
dark energy is allowed to have values marginally smaller than −1. Phantom fields are very
problematic from a quantum field theory perspective.

In modified gravity, we can explain not only data based on standard candles but also
anisotropy of microwave background [13], gravitational weak lensing [14], absorption
spectrum of Lyman-α-line [15] and other phenomena without a cosmological constant or
phantom scalars.

However, if we investigate gravitational theories different from General Relativity
(GR), we need to consider consequences not only on a cosmological level but also take into
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account possible manifestations for relativistic astrophysical objects such as white dwarfs,
neutron stars and black holes.

In this paper, we consider possible effects of f (R) gravity in white dwarfs. Models of
white dwarfs with polytropic EoS in Palatini f (R) gravity (without an additional degree of
freedom for the gravitational sector) are considered in [16,17]. Early in many papers, an-
other class of compact objects, neutron stars (NS), were considered in connection with mod-
ified gravity (see, for instance, [18–37] and a recent review paper [38]). The general feature
of the solution of the modified Tolman–Oppenheimer–Volkoff equations is that the scalar
curvature R outside the neutron star does not equal zero, as in the Schwarzschild solution,
but decreases asymptotically at spatial infinity. The gravitational mass enclosed within
the surface of star decreases in comparison with GR for the same central density of matter,
but the area around the star with non-zero curvature also contributes to the observed
gravitational mass. For a simple R2 gravity effective, the gravitational mass of an NS
increases. This result can help explain NSs with large mass [34,35,39–44] and therefore
gives a realistic description of some phenomena such as the recent GW190814 event.

The density and the scalar curvature in the central areas of white dwarfs are, of course,
not so large as those those inside NSs. However, radii of white dwarfs are two or three
orders of magnitude larger, and therefore some measurable effect may appear. In New-
tonian gravity and for polytropic equation of state equations describing star equilibria,
we are given the well-known Lane–Emden equation. From calculations, it follows that we
can neglect relativistic effects on a Newtonian background, but it is unknown if this is
true for the possible influence of modified gravity. The second important question is the
existence of stable stars in modified gravity for realistic EoSs for the branch of stable stellar
configurations dM/dρc > 0, where ρc is central density. As shown in [45], for a relativistic
polytropic EoS, gravitational mass decreases with central density for R2 gravity. In the
case of Chandrasekhar EoS, mass increases with central density. However, for very high
densities (ρc ∼ 1010 g/cm3), this EoS is not applicable. It is interesting to investigate the
stability of white dwarfs with this EoS in modified gravity. Since the scalar curvature is
relatively small, one can expect that the function f (R) can be represented as a power series
in R. Therefore, we should first consider a simple model of power–law gravity with an
additional term ∼ Rl for the scalar curvature.

The structure of this paper is as follows: In Sections 2 and 3, we briefly consider Tolman–
Oppenheimer–Volkoff equations in GR and f (R) gravity. We can neglect relativistic terms
for white dwarfs in the first case and obtain the well-known Lane–Emden equation for
polytropic EoSs. For f (R) gravity, the Einstein frame and the corresponding scalar–tensor
theory are used for calculations (with a subsequent return to the Jordan frame). Neglecting
same relativistic terms, we obtain a reduced system of equations that is easier for numerical
analysis. Then, we compare the two approaches to solve this system for simple R2 gravity
using a relativistic polytropic EoS with polytropic index n = 3. Firstly, we can use an
approximation for the scalar field. In this case, the scalar field decreases as the density
of the star decreases and drops to zero on the star’s surface. Stellar mass decreases in
comparison with GR. These results do not change qualitatively if we solve the reduced
system without any approximation. The realistic Chandrasekhar EoS is considered in
Section 5 for R2 gravity. Finally, we consider the existence of the mass limit for white
dwarfs in another model of f (R) gravity for a polytropic EoS. Assuming a perturbative
solution for the scalar field, one can obtain the analog of the Lane–Emden equation and
formulate the requirements of the gravity model for which the Chandrasekhar mass limit
increases or decreases.

2. Tolman–Oppenheimer–Volkoff Equations in GR

For relativistic non-rotating stars in equilibrium, the following equations
should be satisfied:

dm
dr

= 4πρr2, (1)
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dp
dr

= −(ρ + p)
m + 4πpr3

r2
(
1− 2m

r
) . (2)

Here, ρ and p are the density and the pressure of stellar matter, respectively. Function m
is the gravitational mass inside a sphere of radius r. Here, we use a natural system of units
in which the velocity of light and gravitational constant are c = G = 1.

For dense matter in white dwarfs, simple polytropic equation of state can be used

p = Kρ1+1/n , (3)

where K, n are constants. For polytropic EoSs, one can obtain simple equations for dimen-
sionless quantities and investigate the properties of the solutions of the TOV equations.

Let us introduce the dimensionless functions θ and µ and the coordinate x:

ρ = ρcθn, m = µρca3, r = ax,

where the length parameter a is

a =

(
(n + 1)Kρ1/n−1

c
4π

)1/2

.

Therefore, the first equation can be rewritten as

dµ

dx
= 4πx2θn, (4)

and the second equation can be reduced to

1
1 + 4πβθ/(n + 1)

dθ

dx
= − 1

4π

µ + 16π2(n + 1)−1x3βθn+1

x(x− 2βµ)
. (5)

The dimensionless parameter β is

β = ρca2 =
n + 1

4π
Kρ1/n

c << 1 ,

and is very small for the corresponding densities in white dwarfs. If we consider relativistic
electrons (ρc >> 106 g/cm3), then n = 3 and

K = 1.2435× 1015/µ4/3
e

in a CGS system. Parameter µe is the average molecular weight per one electron. For µe = 2,
we have that

β = 3.76× 10−5

(
ρc[g/cm3]

107

)1/3

If we neglect terms containing β in Equations (4) and (5), we obtain the usual
Lane–Emden equation:

d
dx

(
x2 dθ

dx

)
= −x2θn. (6)

For a relativistic polytrope with n = 3, the white dwarf mass does not depend on the
density in the center, and µ(x f ) = 25.362 for x f = 6.896. This is the Chandrasekhar limit
of white dwarf mass M = 1.456M�. By taking into account relativistic terms, the results
change negligibly.
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3. Spherically Symmetric Stars in f (R)-Gravity

For f (R) gravity, one needs to replace the standard Einstein–Hilbert action, which
contains the scalar curvature R, by some function of curvature f (R):

S =
1

16π

∫
d4x
√
−g f (R) + Smatter. (7)

Smatter describes the action of standard perfect fluid.
The metric for static stars is spherically symmetric, i.e.,

ds2 = −e2ψdt2 + e2λdr2 + r2dΩ2, (8)

where ψ and λ are two independent functions of r.
For our purposes, it is useful to consider the scalar–tensor theory of gravity, which

is equivalent to f (R) gravity. in the Einstein frame. The corresponding action for the
gravitational field is

Sg =
1

16π

∫
d4x
√
−g(ΦR−U(Φ)), (9)

where the scalar field is Φ = f ′(R) and the potential is U(Φ) = R f ′(R)− f (R). For the
redefined metric g̃µν = Φgµν, we rewrite the action as

Sg =
1

16π

∫
d4x
√
−g̃
(

R̃− 2g̃µν∂µφ∂νφ− 4V(φ)
)
, (10)

where φ =
√

3 ln Φ/2 and the potential V(φ) is

V(φ) = Φ−2(φ)U(Φ(φ))/4.

Intervals in Einstein and Jordan frames are linked by the relation

ds̃2 = Φds2 = −e2ψ̃dt2 + e2φ̃d̃r2
+ r̃2dΩ2. (11)

Here, we write ds̃2 in the form equivalent to (8) but with different functions ψ̃ and λ̃.
From Equation (11), we have that r̃2 = Φr2 and e2ψ̃ = Φe2ψ. Combining these

with equality
Φe2λdr2 = e2λ̃dr̃2,

we obtain that
e−2λ = e−2λ̃

(
1− r̃φ′(r̃)/

√
3
)2

.

By analogy with General Relativity, let us define function m(r) as

m(r) =
r
2

(
1− e−2λ

)
. (12)

Now we need to determine the sense of function m(r). Analysis of solutions of the
modified TOV equations in the case of neutron stars (R2 gravity) shows that scalar curvature
quickly drops to zero outside the star (see the results of [30,46,47]), and solutions outside
the star behave so that

lim
r→∞

r
2
(1− e−2λ) = M,

where M is a constant value. We have, therefore, a solution with a Schwarzschild asymp-
totic:

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2.
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M here is nothing other than gravitational mass measured by an infinitely distant
observer. In fact, the solution for outer space for neutron stars in R2 gravity for a reasonable
α reconciled with the Schwarzschild solution scales around 10–20 km.

In the case of a white dwarf, we can propose that the solution for outer space is
also very close to the Schwarzschild solution already available for some small distances
from the star’s surface because values of the gravitational field are smaller in comparison
with neutron stars, and therefore, possible deviations from General Relativity should be
negligible.

In light of this, it is useful to introduce function m(r) according to Equation (12)
because the asymptotic value of this function gives the gravitational mass of a compact
object for a distant observer. If the white dwarf is a component of a binary system, its
gravitational mass is defined by an asymptotical value of m(r).

Let us recall the ADM formalism proposed by R. Arnowitt, S. Deser and C.W. Mis-
ner [48]. According to this conception, to define the energy (or mass) in general relativity,
one needs to consider the metric tensor at infinity. For asymptotic Minkowski spacetime,
one can apply this approach. The ADM energy in the case of such spacetime is defined
as a function of the deviation of the metric tensor from its prescribed asymptotic form.
Therefore, the ADM energy is calculated as the strength of the gravitational field at spatial
infinity.

Obviously, this formalism can be applied to the case of R2 gravity because at spatial
infinity, R is so small, and the gravitational field equations coincide with the Einstein
equations in GR form.

Finally, we also note an important moment. In General Relativity, the value of m(r)
for r < rs, where rs is the star’s radius, means the gravitational mass inside a sphere with
radius r. For modified gravity, we can also interpret function m(r) so that outer layers
contribute to the gravitational force at distance r. However, we can say that m(r) is the
gravitational mass of a sphere with radius r that will be measured by a sufficiently distant
observer in the absence of outer layers for distances greater than r.

Further, we can define function m̃(r̃) by the same relation:

m̃(r̃) =
r̃
2

(
1− e−2λ̃

)
.

Note that function m(r) can be calculated from m̃(r̃) by using a simple relation

m(r̃) =
r̃
2

(
1−

(
1− 2m̃

r̃

)(
1− r̃φ′(r̃)/

√
3
)2
)

e−φ/
√

3. (13)

For r → ∞, dilaton field φ → 0, and, therefore, r̃ → r. The asymptotical value of m̃r̃
coincides with the asymptotical value of m(r).

For the metric functions, we obtain equations that are very similar to the TOV equa-
tions in GR with redefined energy and pressure and with contributions from the scalar field
to overall density and pressure φ being:

1
r̃2

dm̃
dr̃

= 4πe−4φ/
√

3ρ +
1
2

(
1− 2m̃

r̃

)(
dφ

dr̃

)2
+ V(φ), (14)

1
p + ρ

dp
dr̃

= − m̃ + 4πe−4φ/
√

3 pr̃3

r̃(r̃− 2m̃)
− r̃

2

(
dφ

dr̃

)2
+

r̃2V(φ)

r̃− 2m̃
+

1√
3

dφ

dr̃
. (15)

The second equation is obtained by using the condition of hydrostatic equilibrium:

dp
dr̃

= −(ρ + p)
(

dψ

dr̃
− 1√

3
dφ

dr̃

)
. (16)
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For the scalar field, the following equation should be satisfied:

4r̃φ− dV(φ)

dφ
= − 4π√

3
e−4φ/

√
3(ρ− 3p). (17)

Here, 4r̃ is the radial part of the Laplace operator for a spherically symmetric met-
ric (11):

4r̃ = e−2λ̃

(
2
r
+

dψ

dr
− dλ

dr

)
d
dr

+ e−2λ̃ d2

dr2 .

We rewrite Equations (14), (15) and (17) in terms of the dimensionless variables
introduced earlier:

dµ̃
dx

= 4πx̃2θne−4φ/
√

3 +
x̃2

β

(
1
2

(
1− 2βµ̃

x̃

)(
dφ

dx̃

)2
+ v(φ)

)
, (18)

1
1 + 4πβθ/(n + 1)

dθ

dx̃
= − 1

4π

µ̃+ 16π2βθn+1 x̃3e−4φ/
√

3

x̃(x̃− 2βµ̃)
− (19)

− x̃2

4πβ(x̃− 2βµ̃)

(
1
2

(
1− 2βµ̃

x̃

)(
dφ

dx̃

)2
− v(φ)

)
+

1
4
√

3πβ

dφ

dx̃

The variable v(φ) is nothing other than the dimensionless potential, i.e.,

v(φ) = a2V(φ).

The rewritten equation for the scalar field φ is(
1− 2βµ̃

x̃

)(
d2φ

dx̃2 +

(
2
x̃
− 4πβ

1 + 4πβ/(n + 1)
dθ

dx̃
+

1√
3

dφ

dx̃

)
dφ

dx̃

)
+ (20)

+

(
βµ̃

x̃2 −
β

x̃
dµ̃
dx̃

)
dφ

dx̃
− dv

dφ
= −4πβ√

3
e−4φ/

√
3θn(1− 12πβθ/(n + 1)).

Numerical integration of Equations (18) and (19) with (20) for various n gives the
parameter of stellar configuration. From previous analysis of TOV equations for the case of
white dwarfs, we know that terms proportional to small parameter β do not considerably
affect the solution. Assuming the same for the case of modified gravity, we can study the
“reduced” system of equations, leaving only terms with a scalar field in which parameter β
is in the denominator:

dµ̃
dx

= 4πx̃2θne−4φ/
√

3 +
x̃2

β

(
1
2

(
dφ

dx̃

)2
+ v(φ)

)
, (21)

dθ

dx̃
= − µ̃

4πx̃2 −
x̃

4πβ

(
1
2

(
dφ

dx̃

)2
− v(φ)

)
+

1
4
√

3πβ

dφ

dx̃
. (22)

In the l.h.s. of Equation (20), we also drop terms containing parameter β and terms
with the square of the first derivative of the scalar field. In the r.h.s. of this equation, we
leave only terms with the first power of β:

d2φ

dx̃2 +
2
x̃

dφ

dx̃
− dv

dφ
= −4πβ√

3
e−4φ/

√
3θn. (23)

One should impose the following conditions on unknown variables at the center of
a star:

θ(0) = 1, µ̃(0) = 0, φ(0) = φ0,
dφ(0)

dx̃
= 0.
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The condition of asymptotic flatness requires that

φ→ 0 at x → ∞.

We investigate the solution of the system of equations in the Einstein frame and then
go back to the physical frame. We are mainly interested in the effects of modified gravity,
and therefore, we consider a reduced system of Equations (21)–(23).

4. Simple Model of R2-Gravity: Perturbative Approach and Numerical Integration of
Reduced System

Considering simple R2 gravity with f (R) = R + αR2 gravity, we have that

v(φ) =
1

16α̃

(
1− e−2φ/

√
3
)2

, α̃ = α/a2. (24)

Usually, one assumes that α > 0, otherwise the model of R2 gravity leads to instabilities.
Because the scalar field is very small, we can expand the potential v(φ), leaving only the
first non-zero term:

v(φ) =
1

12α̃
φ2.

Assuming v(φ) is dominant and φ is very small, we can reduce Equation (23) to the
relation between the density and the scalar field:

φ

6α̃
=

4πβ√
3

θn. (25)

From this approximation, it follows that outside the star, φ = 0 and dφ
dx = 0. Therefore,

x̃ f = x f and µ̃(x̃ f ) = µ(x f ).
From observations of relativistic binaries [49], it follows that the upper limit on param-

eter α is ∼ 1015 cm2. For α = 1014 cm2, the results of the calculations are given in Table 1.

Table 1. Differences between results for stellar masses from exact solutions of reduced system
(M) and perturbative solution (Mp) for α = 1014 cm2. We also provide corresponding values of
dimensionless parameter α̃ and the relation φc/φp(0). Here, φc is the value of φ at r = 0, and φp(0) is
the value of the scalar field from the perturbative approximation.

ln ρc α̃, φc/φp(0) M, Mp,
10−3 M� M�

7 1.97 ∼1 1.448 1.448

7.5 4.25 ∼1 1.439 1.439

8 9.15 0.92203 1.419 1.418

8.5 19.71 0.76707 1.389 1.377

9 42.48 0.62547 1.334 1.295

9.5 91.52 0.46316 1.260 1.162

The analysis shows that the contribution of the scalar field on the pressure and the
density is very negligible. Only the last term in (22) gives a considerable effect on the
solution of the equations. It is very easy to understand why this happens. From the
approximation (25), it follows that dφ/dx ∼ αO(β), and therefore,

1
2

(
dφ

dx

)2
∼ 102α̃2O(β2), v(φ) ∼ 10α̃O(β2).
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The length parameter a varies from 2.25× 108 cm for ρc = 107 g/cm3 to 4.85× 107 cm
for ρc = 109 g/cm3. Therefore, even for the upper limit of the parameter α, the dimension-
less parameter α̃ < 1, and the contribution of the terms in brackets in (21) and (22) is O(β),
i.e., it is comparable with the relativistic effects from General Relativity in comparison with
Newtonian gravity.

Only for sufficiently large α̃ can one expect that the approximation (25) does not work;
this is because the square of the scalar field derivative is then comparable to the value of
the potential term.

We investigated solutions of the reduced system of equations without approxima-
tion (25) and found that using the more exact solution for the scalar field increases the
mass of the star. For α̃ < 0.02, this increase is less than 0.01M� in comparison to the per-
turbative solution. In the case of α = 1014 cm2, this corresponds to central densities up to
3.2× 108 g/cm3. For α = 1013 cm2, the approximation (25) can be used for central den-
sities ρc < 1010 g/cm3. In real white dwarfs, it is assumed that central densities are less.
For α = 1015 cm2, one needs to solve the exact equation for the scalar field. Of course,
such values of parameter α represent only a theoretical interest because the decrease in
white dwarf mass is very large in comparison with GR, which is difficult to reconcile with
available observational data.

The profile of the scalar field from the solution of (23) is a function that decreases
with coordinate x and follows the density profile. For illustration, we plot the solution
of (23) and the profile of the scalar field derived from (25) for various values of ρc and
α = 1014 cm2 (see Figure 1). For large α̃, the profile of the exact solution differs significantly
from the approximation. We also see that the “tail” of the scalar field outside the star’s
surface is very short and that this existence does not affect the stellar mass. We point out
that another situation takes place in neutron stars. Density sharply drops near the surface
of an NS, but the scalar field decreases more slowly, and therefore, in R2 gravity around
the surface of a neutron star, a “gravitational sphere” exists with scalar curvature R 6= 0
(or φ 6= 0 in the Einstein frame). This contributes to the gravitational mass, and for high
central densities and α > 0, NS mass increases.

Figure 1. Profile of scalar field (solid lines) as function of dimensionless variable x in comparison
with approximation (25) (black dotted line) for some central densities. Parameter α = 1014 cm2;
φ0 means φ(0). For the exact solution, the scalar field starts from smaller values (φ(0)/φ0 < 1).
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5. Realistic Equation of State

The next step is to consider more-realistic EoSs. We choose the Chandrasekhar EoS for
stellar matter, which can be written in parametric form:

ρ = By3, (26)

p = A
[
y(2y2 − 3)(1 + y2)1/2 + 3 ln(x + (1 + x2)1/2

]
,

B = 9.82× 105µe g/cm3, A = 6.02× 1022 dyne/cm2.

Again, it is useful to introduce dimensionless variables in Equations (14) and (15).
Taking into account characteristic radii and masses of white dwarfs, let us define:

r̃ = Re x̃, m̃ = M�µ̃,

ρ = ρcη, p = pcξ.

Here, Re means the radius of the Earth. Restoring G and c in the equations, we derive
the following equations for dimensionless variables µ̃, η, ξ and φ:

dµ̃
dx̃

= δ4πx̃2e−4φ/
√

3η +
1
2

Re

rg

(
1−

2rg

Re

µ̃

x̃

)(
dφ

dx̃

)2
+

Re

rg
v(φ), (27)

1
η + ξ/γ

dξ

dx̃
= −γ

rg

Re

µ̃

x̃(x̃− 2rgµ̃/Re)
− δ

rg

Re

4πe−4φ/
√

3 x̃3ξ

x̃(x̃− 2rgµ̃/Re)
+ (28)

+γ

(
− x̃

2

(
dφ

dx̃

)2
+

x̃2v(φ)
x̃− 2rgµ̃/Re

+
1√
3

dφ

dx̃

)
,

(
1−

2rg

Re

µ̃

x̃

)(
d2φ

dx̃2 +

(
2
x̃
− 1

γη + ξ

dξ

dx
+

1√
3

dφ

dx̃

)
dφ

dx̃

)
+ (29)

+
rg

Re

(
µ̃

x̃2 −
1
x̃

dµ̃
dx̃

)
dφ

dx̃
− dv

dφ
= −4πδ√

3

rg

Re
e−4φ/

√
3(η − 3ξ/γ),

where the dimensionless parameters δ and γ are introduced:

δ =
ρcR3

e
M�

, γ =
ρcc2

pc

and v(φ) = V(φ)R2
e . The parameter rg = GM�/c2. Again, we consider the reduced system

of equations, neglecting terms containing the relation rg/Re << 1 in the denominators and
taking into account that the parameter γ >> δ for white dwarfs, and we get

dµ̃
dx̃

= δ4πx̃2e−4φ/
√

3η +
Re

rg

((
1
2

dφ

dx̃

)2
+ v(φ)

)
, (30)

1
η

dξ

dx̃
= −γ

rg

Re

µ̃

x̃2 + γ

(
− x̃

2

(
dφ

dx̃

)2
+ x̃v(φ) +

1√
3

dφ

dx̃

)
, (31)

d2φ

dx̃2 +

(
2
x̃
+

1√
3

dφ

dx̃

)
dφ

dx̃
− dv

dφ
= −4πδ√

3

rg

Re
e−4φ/

√
3η. (32)

As in the previous case, we consider the potential for R2 gravity and compare results
from the perturbative approximation of the scalar field and the more exact solution of (32).
The main result is the same as for the relativistic polytrope: the stellar mass decreases in
comparison with GR for the same central density. For large densities, the perturbative



Symmetry 2023, 15, 1141 10 of 17

approximation is not valid. However, in the case of R2 gravity, the stellar mass has a
maximum for some central density, and then the mass decreases, although in GR, the mass
grows with density for the Chandrasekhar EoS.

In Figure 2, we depict the mass–density relation for the interval of densities between
107 and 1010 g/cm3 for various values of α. These results are important for establishing
the upper limit of parameter α in R2 gravity. According to the latest observations, white
dwarfs with masses M > 1.3M� are very rare [50]. The most massive white dwarf is
J1329 + 2549 with a mass of 1.351± 0.006M�. Considering 1.35M� as the lower limit of the
maximal value for white dwarf mass and assuming that the Chandrasekhar EoS is valid,
we conclude that α < 1013 cm2. Analyzing white dwarf radii and masses in R2 gravity for
realistic values of α can be performed using the approximation of the scalar field.

Figure 2. Mass–density relation in R2 gravity for some α in comparison with GR. The dotted lines
correspond to results obtained with simple approximations of the scalar field; α13 means that the
value of α is given in units of 1013 cm2.

From our results, it follows that for ρc > ρcrit
c , white dwarfs are unstable in R2 gravity.

The critical density and minimal radius of a white dwarf depends on the value of α. In light
of these results for masses and radii of white dwarfs near the Chandrasekhar limit, one can
define the upper limit of α more precisely.

The scalar field obtained from the numerical solution of Equations (30)–(32) decreases
from the center to the surface of the star in the same manner as for the case of a poly-
tropic EoS: it starts from φ(0) < φ0, where φ0 is the central value of the perturbative
solution, and then it follows the density profile (see Figure 3).
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Figure 3. Profile of the scalar field (solid lines) as a function of radial coordinates in comparison with
the approximation (25) (dotted lines) for ρc = 109 g/cm3 and Chandrasekhar EoS.

6. Chandrasekhar Limit of Mass in Another Model of Modified Gravity

We showed that in the case of white dwarfs in R2 gravity with realistic parameters,
we can neglect the derivatives of the scalar field in its field equation and use a simple
approximation for φ. As we showed, the profile of the scalar field is a monotonic function
of the radial coordinate. It is interesting to investigate another model of modified gravity.

Let us consider a model with f (R) = R + αl−1Rl , where l > 2. This representation is
chosen so that parameter α has a dimension of the square of length. The potential of the
scalar field theory in the corresponding equivalent scalar–tensor theory in this case is

V(Φ) = DΦ−2(Φ− 1)
l

l−1 , D =
l − 1

4l
l

l−1
α−1, Φ = e2φ/

√
3. (33)

Again, for very small values of scalar field φ, one can expand the expression for V(φ)
and obtain

V(φ) ≈ D
(

2√
3

) l
l−1

φ
l

l−1 .

If the potential term dominates, we can use approximation

φ ≈ l(2
√

3)l

4

( α

a2

)l−1
(

4πβ√
3

)l−1
θn(l−1). (34)

The dimensionless potential and the square of the scalar field derivative are, in order
of magnitude,

v(φ) ∼
( α

a2

)l−1
O(βl),

(
dφ

dx

)2
∼
( α

a2

)2(l−1)
O(β2l−2).

One can expect that for realistic values of α/a2 << 1, approximation of the scalar field
is valid. Further, as in the case of R2 gravity, the effects of the scalar field on the density
and the pressure are negligible. Moreover, for m ≥ 3, the effects of modified gravity are of
the next order of smallness on parameter β in comparison with the relativistic effects of GR
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in the background of Newton’s gravity. The square of the scalar field derivative is an order
lower in comparison with the potential term for l > 2.

Calculations for some l > 2 show the same pattern as for l = 2: the star mass decreases
with increasing central density. Some results are given in Figure 4. For α/a2 ∼ O(1), the
perturbative solution is not valid. Obviously, for a realistic Chandrasekhar EoS, we obtain
that the stellar mass has a maximum for a certain density.

Figure 4. Mass–density relation for polytrope with n = 3 in R + αl−1Rl gravity for (α = 1014 cm2,
l = 2.1, green lines) and (α = 5× 1014 cm2, l = 2.4, black lines). The dotted lines correspond to
results obtained with simple approximation of the scalar field.

If we assume that the perturbative approximation for the scalar field is valid, then the
scalar field is a monotonic function of φ because dv/dφ > 0, as follows from relation

dv
dφ

=
4πβ√

3
θn. (35)

Of course, θ is a monotonically decreasing function of coordinates for stable stellar
configurations. Therefore, for the scalar field, we can write that

φ = F(θ)

where F is a monotonic increasing function of its argument. The scalar field decreases with
the coordinate, and the potential tends to its minimum on the star’s surface. The following
conditions should be imposed on function F:

F(θ) = 0,
dF
dθ

= 0 for θ = 0. (36)

These conditions guarantee that the scalar field and its first derivative outside the star
vanish. Of course, for many potentials of the scalar field, we cannot explicitly obtain that a
relationship between φ and θ exists. The first derivative of the scalar field is

dφ

dx̃
=

dF
dθ

dθ

dx̃
.
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Equation (22), by taking into account the expression for the derivative of the scalar
field and without the term (dφ/dx)2, can be written as{

1− 1
4
√

3πβ

dF
dθ

}
dθ

dx
= − µ̃

4πx̃2 +
x̃

4πβ
v(φ). (37)

Then after some simple algebra, one obtains the analog of the Lane–Emden equation:

d
dx̃

{
x̃2

{
1− 1

4
√

3πβ

dF
dθ

}
dθ

dx

}
= −x̃2θne−4φ/

√
3 +

x̃2

2πβ
v(φ) +

x̃3
√

3
θn dF

dθ

dθ

dx̃
. (38)

To obtain the scalar field potential as a function of θ in the frame of our approximation,
one needs to take the following integral:

v(θ) =
4πβ√

3

∫ θ

0

dF
dθ

θndθ. (39)

Therefore, for a given F(θ), we obtain the potential in parametric form. Of course, the
explicit form of v(φ) can be written only for relatively simple functions F(θ). The function µ̃

is defined from the following relation:

µ̃(x) = −4πx̃2 dθ(x̃)
dx̃

+
x̃3

β
v(θ) +

x̃2
√

3β

dF
dθ

dθ(x̃)
dx̃

. (40)

Realistic solutions of Equation (38) for a chosen F(θ) posses the same property as the
solution of the Lane–Emden equation in Newtonian gravity: for some x̃ f , the function
θ vanishes. This x̃ f corresponds to the surface of the white dwarf. In the Jordan frame,
x f = x̃ f because scalar field φ is zero on the star’s surface, and therefore, Φ = 1. Because the
first derivative of the scalar field also vanishes on the surface, the gravitational mass of a
white dwarf is

µ = µ̃(x̃ f )

and therefore,

µ = −4πx̃2
f

dθ(x̃ f )

dx̃
because v(θ) = 0 and dF/dθ = 0 for θ = 0.

Because the curvature R in the case of white dwarfs is relatively small, one can propose
that f (R) can be represented as series in powers of R:

f (R) = R + α1R2 + α2
2R3 + . . .

For R → 0 and α1 6= 0, the corresponding potential of the equivalent scalar–tensor
theory is

v(φ)→ φ2

12α1
.

If α2 6= 0 and α1 = 0, the potential v(φ) ∼ φ3/2, and so on. Therefore, the first deriva-
tive of potential dv/dφ should contain terms ∼ φ1/(k−1), k = 2, 3 . . . , and the monotonic
function F(θ) is a sum

F(θ) = s1θn + s2θ2n + . . .

on interval 0 ≤ θ ≤ 1. From previous results, we conclude that stellar mass decreases for
this function F(θ) with increasing central density. Therefore, in the frame of the perturbative
approach for realistic f (R), one should expect that the mass of the white dwarf decreases
in comparison with the GR case for the same central density.
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If the function F(θ) decreases with its argument, this corresponds to an increasing
scalar field φ from the center to the surface. If the scalar field is defined from (35), this leads
to an increase in the potential term from the center to the surface. For R2 gravity, such
a situation takes place for α < 0. However, this model of gravity cannot be considered
realistic because it leads to instabilities.

Therefore, we conclude that in the frame of a perturbative approach, it is impossible
to construct solutions of the system (21)–(23) such that gravitational mass increases in
comparison with GR. Increases in the value take place only for unrealistic models of F(R)
gravity.

A non-monotonic function F(θ), as follows from (39), leads to the potential of the
scalar field being an ambiguous function of its argument. We consider if a solution of
(23) exists such that the derivative of the scalar field changes the sign. Let us assume
that this indeed happens once. The scalar field starts from some positive value at the
center of the star and reaches a minimum φmin < 0 at some point xs. At the vicinity of
the minimum d2φ/dx2 ≥ 0 and, therefore, dv/dφ > 0; the potential goes down. Then, the
scalar field increases and asymptotically tends to zero for large x. The asymptotical value
of the scalar field outside the star should correspond to the minimum of the potential. We
have, therefore, the situation, which, for example, can take place for potentials of the form
u ∼ φn, where n = 2k, k = 1, 2 . . . The scalar field reaches the minimum for some x < xs
and develops negative values and finally approaches zero and again the minimum of the
potential. However, our consideration shows that for such potentials, we can construct
solutions when the scalar field is a monotonic decreasing function from center to surface.

7. Concluding Remarks

We investigated the question of the maximal white dwarf mass limit in f (R) gravity.
Our analysis involved a polytropic EoS with n = 3 and a more-realistic Chandrasekhar
EoS. Additionally, the equivalent scalar–tensor theory in the Einstein frame was used,
with a subsequent transition to the Jordan picture. For f (R) gravity, one can consider the
reduced system of equations because relativistic effects of GR in the case of white dwarfs
are negligible in the Newtonian gravity background. In models with f (R) = R + αl−1Rl ,
for any l ≥ 2, the mass of white dwarfs decreases in comparison with GR for αl−1 > 0.
For realistic values of α, the perturbative approach is valid. It is sufficient to account
for only potential terms in the equation for the scalar field and obtain a relation for its
field. For stable stars, the density should decrease from the center to the surface, and the
corresponding profile of the scalar field also decreases. It is important to note that the
contribution of the scalar field to energy density is around O(βl−1), where β = ρca2G/c2

is a small relativistic parameter. This contribution is comparable (for R2 gravity) with the
effect from the relativistic corrections to solutions of the Lane–Emden equation or even less
(for l > 2). Applicability of the perturbative approach is defined by the relation (α/a2)l−1.
More-precise calculations show that the scalar field starts from some value κφp(0) at the
center of the star, where 0 < κ < 1, and φp(0) is the central value of the scalar field from
approximation. Our main result is that, in the case of f(R) gravity for a realistic equation of
state, a limit of mass exists for some central density. For ρc > ρ0, mass decreases. For GR
in the case of the Chandrasekhar EoS, M → Mmax for ρ → ∞ (of course this limit is
formal because, in reality, white dwarf densities in every case are so far from the densities
of neutron stars). Precise estimations of the maximal value of white dwarf mass from
astronomical observations has significance for constraining the upper limit of parameter α.
If the Chandrasekhar EoS is valid, we can reconcile observational data for white dwarfs
in R2 gravity only for α < 1013 cm2. In comparison with NSs, it is worth noting that, as
believed, the EoS is known to be much more accurate. Therefore, one can hope that the
possible effects of modified gravity will not be disguised by uncertainty in the knowledge
of the equation of state. For NSs, the solution of the scalar field also has the following
feature, namely around the area of the star for which φ 6= 0 exists: this area contributes to
the gravitational mass, and the net effect for neutron mass with masses M > 1.5M� is an
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increasing in mass. For white dwarfs, there are no significant “scalar tails”, because near
the surface, the perturbative solution is valid with high accuracy, and therefore, the scalar
field is mainly defined by density. In the Einstein frame, this means that scalar curvature
near the surface is close to its value in GR, namely R ≈ 8π(ρ− 3p), and drops to zero
outside the star very quickly.

In conclusion, we note one more interesting point. White dwarfs, as well known, are
progenitor stars of SNIa type supernovae, which are considered standard candles. We
question if the effects of modified gravity on the Chandrasekhar mass would affect the
interpretation of SNIa supernovae as standard candles. The detailed answer requires, of
course, numerical analysis of the physics of an SNe explosion. As we mentioned in the text
of paper, the maximal mass of a white dwarf from observation in any case is 1.35 or more
solar masses, i.e., it is very close to the canonical Chandrasekhar limit (1.44 solar masses).
We propose that if the luminosity of an SNe is a little less than it is for the canonical limit,
one needs to slightly reconsider luminosity distances for candles to the side of decreasing
them. Therefore, in principle, this may lead to some corrections to the energy budget of the
universe (relation between the densities of dark energy and matter). However, it is unlikely
that this correction is very large and goes beyond a few percent.
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