Coefficient Bounds for Symmetric Subclasses of q-Convolution-Related Analytical Functions

Sheza M. El-Deeb ${ }^{1, t, \ddagger(\mathbb{D}}$ and Luminita-Ioana Cotîrlă ${ }^{2, *, \ddagger(\mathbb{D})}$
1 Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt; s.eldeeb@qu.edu.sa or shezaeldeeb@yahoo.com
2 Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
* Correspondence: luminita.cotirla@math.utcluj.ro
\dagger Current address: Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraydah 51911, Saudi Arabia.
\ddagger These authors contributed equally to this work.

Abstract

By using q-convolution, we determine the coefficient bounds for certain symmetric subclasses of analytic functions of complex order, which are introduced here by means of a certain non-homogeneous Cauchy-Euler-type differential equation of order m.

Keywords: convolution; fractional derivative; coefficients bounds; q-derivative, non-homogeneous Cauchy-Euler-type

1. Introduction, Definitions and Preliminaries

Assume that \mathbb{A} is the class of analytic functions in the open disc $\Lambda:=\{\zeta \in \mathbb{C}:|\zeta|<1\}$ of the form

$$
\begin{equation*}
\mathrm{Y}(\zeta)=\zeta+\sum_{t=2}^{+\infty} a_{t} \zeta^{t}, \zeta \in \Lambda \tag{1}
\end{equation*}
$$

If the function $h \in \mathbb{A}$ is given by

$$
\begin{equation*}
h(\zeta)=\zeta+\sum_{t=2}^{+\infty} c_{t} \zeta^{t}, \zeta \in \Lambda . \tag{2}
\end{equation*}
$$

The Hadamard (or convolution) product of Y and h is defined by

$$
(\mathrm{Y} * h)(\zeta):=\zeta+\sum_{t=2}^{+\infty} a_{t} \mathcal{c}_{t} \zeta^{t}, \zeta \in \Lambda
$$

A function $\mathrm{Y} \in \mathcal{A}$ belongs to the class $\mathcal{S}^{*}(\eta)$ if

$$
\begin{equation*}
\Re\left\{1+\frac{1}{\eta}\left(\frac{\zeta \mathrm{Y}^{\prime}(\zeta)}{\mathrm{Y}(\zeta)}-1\right)\right\}>0\left(\zeta \in \Lambda ; \eta \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right) \tag{3}
\end{equation*}
$$

Furthermore, a function $\mathrm{Y} \in \mathcal{A}$ be in the class $\mathcal{C}(\eta)$ if

$$
\begin{equation*}
\Re\left\{1+\frac{1}{\eta} \frac{\zeta \mathrm{Y}^{\prime \prime}(\zeta)}{\mathrm{Y}^{\prime}(\zeta)}\right\}>0\left(\zeta \in \Lambda ; \eta \in \mathbb{C}^{*}\right) \tag{4}
\end{equation*}
$$

The classes $\mathcal{S}^{*}(\eta)$ and $\mathcal{C}(\eta)$ were studied by Nasr and Aouf [1,2] and Wiatrowski [3].
In a wide range of applications in the mathematical, physical, and engineering sciences, the theory of q-calculus is important. Jackson [4,5] was the first to use the q calculus in various applications and to introduce the q-analogue of the standard derivative
and integral operators; see [6-10]. About coefficients' interesting results, see [11-16]. The q shifted factorial is defined for $\lambda, q \in \mathbb{C}$ and $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ as follows

$$
(\lambda ; q)_{t}=\left\{\begin{array}{cc}
1 & t=0, \\
(1-\lambda)(1-\lambda q) \ldots\left(1-\lambda q^{t-1}\right) & t \in \mathbb{N} .
\end{array}\right.
$$

Using the q-gamma function $\Gamma_{q}(\zeta)$, we obtain

$$
\left(q^{\lambda} ; q\right)_{t}=\frac{(1-q)^{t} \Gamma_{q}(\lambda+t)}{\Gamma_{q}(\lambda)}, \quad\left(t \in \mathbb{N}_{0}\right)
$$

where

$$
\Gamma_{q}(\zeta)=(1-q)^{1-\zeta} \frac{(q ; q)_{\infty}}{\left(q^{\zeta} ; q\right)_{\infty}}, \quad(|q|<1)
$$

In addition, we note that

$$
(\lambda ; q)_{\infty}=\prod_{t=0}^{\infty}\left(1-\lambda q^{t}\right), \quad(|q|<1)
$$

and the q-gamma function $\Gamma_{q}(\zeta)$ is known

$$
\Gamma_{q}(\zeta+1)=[\zeta]_{q} \Gamma_{q}(\zeta)
$$

where $[t]_{q}$ denotes the basic q-number defined as follows

$$
[t]_{q}:=\left\{\begin{array}{ll}
\frac{1-q^{t}}{1-q}, & t \in \mathbb{C} \tag{5}\\
1+\sum_{j=1}^{t-1} q^{j}, & t \in \mathbb{N}
\end{array} .\right.
$$

Using the definition Formula (5), we have the next two products:
(i) For any non negative integer t, the q-shifted factorial is given by

$$
[t]_{q}!:=\left\{\begin{array}{lll}
1, & \text { if } & t=0 \\
\prod_{n=1}^{t}[n]_{q}, & \text { if } & t \in \mathbb{N} .
\end{array}\right.
$$

(ii) For any positive number r, the q-generalized Pochhammer symbol is defined by

$$
[r]_{q, t}:=\left\{\begin{array}{lll}
1, & \text { if } & t=0 \\
r+t-1 \\
\prod_{n=r}[n]_{q}, & \text { if } & t \in \mathbb{N} .
\end{array}\right.
$$

It is known in terms of the classical (Euler's) gamma function $\Gamma(\zeta)$, that

$$
\Gamma_{q}(\zeta) \rightarrow \Gamma(\zeta) \quad \text { as } q \rightarrow 1^{-} .
$$

In addition, we observe that

$$
\lim _{q \rightarrow 1^{-}}\left\{\frac{\left(q^{\lambda} ; q\right)_{t}}{(1-q)^{t}}\right\}=(\lambda)_{t}
$$

where $(\lambda)_{t}$ is given by

$$
(\lambda)_{t}= \begin{cases}1, & \text { if } t=0 \\ \lambda(\lambda+1) \ldots(\lambda+t-1), & \text { if } t \in \mathbb{N}\end{cases}
$$

For $0<q<1$. El-Deeb et al. [17] defined that the q-derivative operator for $\mathrm{Y} * h$ is defined by

$$
\begin{gathered}
\mathcal{D}_{q}(\mathrm{Y} * h)(\zeta):=\mathcal{D}_{q}\left(\zeta+\sum_{t=2}^{+\infty} a_{t} c_{t} \zeta^{t}\right) \\
=\frac{(\mathrm{Y} * h)(\zeta)-(\mathrm{Y} * h)(q \zeta)}{\zeta(1-q)}=1+\sum_{t=2}^{+\infty}[t]_{q} a_{t} c_{t} \zeta^{t-1}, \zeta \in \Lambda,
\end{gathered}
$$

Let $\vartheta>-1$ and $0<q<1$; El-Deeb et al. [17] defined the linear operator $\mathcal{R}_{h}^{\vartheta, q}: \mathbb{A} \rightarrow \mathbb{A}$ as follows:

$$
\mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta) * \mathcal{N}_{q, \vartheta+1}(\zeta)=\zeta \mathcal{D}_{q}(\mathrm{Y} * h)(\zeta), \zeta \in \Lambda
$$

where the function $\mathcal{M}_{q, \vartheta+1}$ is given by

$$
\mathcal{N}_{q, \vartheta+1}(\zeta):=\zeta+\sum_{t=2}^{+\infty} \frac{[\vartheta+1]_{q, t-1}}{[t-1]_{q}!} \zeta^{t}, \zeta \in \Lambda .
$$

A simple computation shows that

$$
\begin{equation*}
\mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta):=\zeta+\sum_{t=2}^{+\infty} \frac{[t]_{q}!}{[\vartheta+1]_{q, t-1}} a_{t} c_{t} \zeta^{t}, \zeta \in \Lambda \quad(\vartheta>-1,0<q<1) . \tag{6}
\end{equation*}
$$

Remark 1 ([17]). From the definition relation (6), we can obtain that the next relations hold for all $\mathrm{Y} \in \mathcal{A}$:

$$
\begin{align*}
& \text { (i) }[\vartheta+1]_{q} \mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta)=[\vartheta]_{q} \mathcal{R}_{h}^{\vartheta+1, q} \mathrm{Y}(\zeta)+q^{\vartheta} \zeta \mathcal{D}_{q}\left(\mathcal{R}_{h}^{\vartheta+1, q} \mathrm{Y}(\zeta)\right), \zeta \in \Lambda ; \\
& \text { (ii) } \mathcal{I}_{h}^{\vartheta} \mathrm{Y}(\zeta):=\lim _{q \rightarrow 1^{-}} \mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta)=\zeta+\sum_{t=2}^{+\infty} \frac{t!}{(\vartheta+1)_{t-1}} a_{t} c_{t} \zeta^{t}, \quad \zeta \in \Lambda . \tag{7}
\end{align*}
$$

Remark 2 ([17]). By taking different particular cases for the coefficients c_{t}, El-Deeb et al. [17] observed the following special cases for the operator $\mathcal{R}_{h}{ }^{\vartheta, q}$:
(i) For $c_{t}=\frac{(-1)^{t-1} \Gamma(\rho+1)}{4^{t-1}(t-1)!\Gamma(t+\rho)}, \rho>0$, El-Deeb and Bulboacă [18] and El-Deeb [19] obtained the operator $\mathcal{N}_{\rho, q}^{\vartheta}$ studied by:

$$
\begin{gather*}
\mathcal{N}_{\rho, q}^{\vartheta} \mathrm{Y}(\zeta):=\zeta+\sum_{t=2}^{+\infty} \frac{(-1)^{t-1} \Gamma(\rho+1)}{4^{t-1}(t-1)!\Gamma(t+\rho)} \cdot \frac{[t]_{q}!}{[\vartheta+1]_{q, t-1}} a_{t} \zeta^{t} \\
=\zeta+\sum_{t=2}^{+\infty} \frac{[t]_{q}!}{[\vartheta+1]_{q, t-1}} \psi_{t} a_{t} \zeta^{t}, \zeta \in \Lambda,(\rho>0, \vartheta>-1,0<q<1), \tag{8}
\end{gather*}
$$

where

$$
\begin{equation*}
\psi_{t}:=\frac{(-1)^{t-1} \Gamma(\rho+1)}{4^{t-1}(t-1)!\Gamma(t+\rho)} \tag{9}
\end{equation*}
$$

(ii) For $c_{t}=\left(\frac{m+1}{m+t}\right)^{\alpha}, \alpha>0, m \geq 0$, El-Deeb and Bulboacă [20] and Srivastava and El-Deeb [21] obtained the operator $\mathcal{N}_{m, 1, q}^{\vartheta, \alpha}=: \mathcal{M}_{m, q}^{\vartheta, \alpha}$ studied by:

$$
\begin{equation*}
\mathcal{M}_{m, q}^{\vartheta, \alpha} \mathrm{Y}(\zeta):=\zeta+\sum_{t=2}^{+\infty}\left(\frac{m+1}{m+t}\right)^{\alpha} \cdot \frac{[t]_{q}!}{[\vartheta+1]_{q, t-1}} a_{t} \zeta^{t}, \zeta \in \Lambda ; \tag{10}
\end{equation*}
$$

(iii) For $c_{t}=\frac{n^{t-1}}{(t-1)!} e^{-n}, n>0$, El-Deeb et al. [17] obtained the q-analogue of Poisson operator defined by:

$$
\begin{equation*}
\mathcal{I}_{q}^{\vartheta, n} \mathrm{Y}(\zeta):=\zeta+\sum_{t=2}^{+\infty} \frac{n^{t-1}}{(t-1)!} e^{-n} \cdot \frac{[t]_{q}!}{[\vartheta+1]_{q, t-1}} a_{t} \zeta^{t}, \zeta \in \Lambda ; \tag{11}
\end{equation*}
$$

(iv) For $c_{t}=\left[\frac{1+\ell+\lambda(t-1)}{1+\ell}\right]^{n}, n \in \mathbb{Z}, \ell \geq 0, \lambda \geq 0$, El-Deeb et al. [17] obtained the q-analogue of Prajapat operator defined by

$$
\begin{equation*}
\mathcal{J}_{q, \ell, \lambda}^{\vartheta, n} \mathrm{Y}(\zeta):=\zeta+\sum_{t=2}^{+\infty}\left[\frac{1+\ell+\lambda(t-1)}{1+\ell}\right]^{n} \cdot \frac{[t]_{q}!}{[\vartheta+1]_{q, t-1}} a_{t} \zeta^{t}, \zeta \in \Lambda . \tag{12}
\end{equation*}
$$

In this paper, we define the following subclasses $\mathcal{S C}_{h}^{\theta, q}(\eta, \gamma, \beta)$ and $\mathcal{N}_{h}^{\vartheta, \eta}(\eta, \gamma, \beta, m, \mu)$ $\left(\eta \in \mathbb{C}^{*}, 0 \leq \gamma \leq 1,0 \leq \beta<1, \vartheta>-1,0<q<1, m \in \mathbb{N}^{*}=\mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}, \mu \in\right.$ $\mathbb{R} \backslash(-\infty,-1])$ as follows:

Definition 1. For a function Y has the form (1) and h is defined by (2), the function Y belongs to the class $\mathcal{S C}_{h}^{\vartheta, q}(\eta, \gamma, \beta)$ if

$$
\begin{align*}
& \Re\left\{1+\frac{1}{\eta}\left[\frac{\zeta\left[(1-\gamma) \mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta)+\gamma \zeta\left(\mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta)\right)^{\prime}\right]^{\prime}}{(1-\gamma) \mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta)+\gamma \zeta\left(\mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta)\right)^{\prime}}-1\right]\right\}>\beta \\
&\left(\eta \in \mathbb{C}^{*} ; 0 \leq \gamma \leq 1 ; 0 \leq \beta<1 ; \vartheta>-1,0<q<1 ; \zeta \in \Lambda\right) . \tag{13}
\end{align*}
$$

Remark 3.

(i) For $q \rightarrow 1^{-}$, we obtain that $\lim _{q \rightarrow 1^{-}} \mathcal{S C}_{h}^{\vartheta, q}(\eta, \gamma, \beta)=: \mathcal{G}_{h}^{\vartheta}(\eta, \gamma, \beta)$, where $\mathcal{G}_{h}^{\vartheta}(\eta, \gamma, \beta)$ represents the functions $\mathrm{Y} \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{I}_{h}^{\vartheta}$ (7).
(ii) For $c_{t}=\frac{(-1)^{t-1} \Gamma(\rho+1)}{4^{t-1}(t-1)!\Gamma(t+\rho)}$, $\rho>0$, we obtain the subclass $\mathcal{B}_{\rho}^{\vartheta, q}(\eta, \gamma, \beta)$, that represents the functions $\mathrm{Y} \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{N}_{\rho, q}^{\vartheta}$ (8).
(iii) For $c_{t}=\left(\frac{m+1}{m+t}\right)^{\alpha}, \alpha>0, m \geq 0$, we obtain the class $\mathcal{M}_{m, \alpha}^{\vartheta, q}(\eta, \gamma, \beta)$, that represents the functions $\mathrm{Y} \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{M}_{m, q}^{\vartheta, \alpha}$ (10).
(iv) For $c_{t}=\frac{n^{t-1}}{(t-1)!} e^{-n}, n>0$, we obtain the class $\mathcal{I}_{t}^{\vartheta, q}(\eta, \gamma, \beta)$, that represents the functions $\mathrm{Y} \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{I}_{q}^{\vartheta, t}$ (11).
(v) For $c_{t}=\left[\frac{1+\ell+\lambda(t-1)}{1+\ell}\right]^{n}, n \in \mathbb{Z}, \ell \geq 0, \lambda \geq 0$, we obtain the class $\mathcal{J}_{n, \ell, \lambda}^{\vartheta, q}(\eta, \gamma, \beta)$, that represents the functions $\mathrm{Y} \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{J}_{q, \ell, \lambda}^{\vartheta, n}$ (12).

The following lemma must be used in to show our study results:
Definition 2. A function $Y \in \mathbb{A}$ belongs to the class $\mathcal{N}_{h}^{\vartheta, q}(\eta, \gamma, \beta, m, \mu)$ if it satisfies the following non-homogeneous Cauchy-Euler type differential equation of order m :

$$
\begin{gathered}
\zeta^{m} \frac{d^{m} w}{d \zeta^{m}}+\binom{m}{1}(\mu+m-1) \zeta^{m-1} \frac{d^{m-1} w}{d \zeta^{m-1}}+\cdots+\binom{m}{m} w \prod_{j=0}^{m-1}(\mu+j)=g(\zeta) \prod_{j=0}^{m-1}(\mu+j+1) \\
\left(w=\mathrm{Y}(\zeta) ; g(\zeta) \in \mathcal{S C}_{h}^{\vartheta, q}(\eta, \gamma, \beta) ; \eta \in \mathbb{C}^{*}, 0 \leq \gamma \leq 1,0 \leq \beta<1 ; \vartheta>-1 ; 0<q<1\right. \\
\left.m \in \mathbb{N}^{*} ; \mu \in \mathbb{R} \backslash(-\infty,-1]\right)
\end{gathered}
$$

Remark 4.

(i) Putting $q \rightarrow 1^{-}$, we obtain that $\lim _{q \rightarrow 1^{-}} \mathcal{N}_{h}^{\vartheta, q}(\eta, \gamma, \beta, m, \mu)=: \mathcal{T}_{h}^{\vartheta}(\eta, \gamma, \beta, m, \mu)$, where $\mathcal{T}_{h}^{\vartheta}(\eta, \gamma, \beta, m, \mu)$ represents the functions $\mathrm{Y} \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{I}_{h}^{\lambda}(7)$.
(ii) Putting $c_{t}=\frac{(-1)^{t-1} \Gamma(\rho+1)}{4^{t-1}(t-1)!\Gamma(t+\rho)}$, $\rho>0$, we get the subclass $\mathcal{P}_{\rho}^{\vartheta, q}(\eta, \gamma, \beta, m, \mu)$, that represents the functions $Y \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{N}_{\rho, q}^{\vartheta}$ (8).
(iii) Putting $c_{t}=\left(\frac{m+1}{m+t}\right)^{\alpha}, \alpha>0, m \geq 0$, we have the class $\mathcal{R}_{m, \alpha}^{\vartheta, q}(\eta, \gamma, \beta, m, \mu)$, that represents the functions $\mathrm{Y} \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{M}_{m, q}^{\vartheta, \alpha}$ (10).
(iv) Putting $c_{t}=\frac{n^{t-1}}{(t-1)!} e^{-n}, n>0$, we get the class $\mathcal{D}_{n}^{\vartheta, \eta}(\eta, \gamma, \beta, m, \mu)$, that represents the functions $Y \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{I}_{q}^{\vartheta, n}$ (11).
(v) Putting $c_{t}=\left[\frac{1+\ell+\lambda(t-1)}{1+\ell}\right]^{n}, n \in \mathbb{Z}, \ell \geq 0, \lambda \geq 0$, we have the class $\mathcal{J}_{n, \ell, \lambda}^{\vartheta, q}(\eta, \gamma, \beta, m, \mu)$, that represents the functions $Y \in \mathbb{A}$ that satisfies (13) for $\mathcal{R}_{h}^{\vartheta, q}$ replaced with $\mathcal{J}_{q, \ell, \lambda}^{\mathcal{\vartheta}, n}(12)$.

The main object of the present investigation is to derive some coefficient bounds for functions in the subclasses $\mathcal{S C}_{h}^{\vartheta, q}(\eta, \gamma, \beta)$ and $\mathcal{N}_{h}^{\vartheta, q}(\eta, \gamma, \beta, m, \mu)$ of \mathbb{A}.
2. Coefficient Estimates for the Function Class $\mathcal{S}_{h}^{\vartheta, q}(\eta, \gamma, \beta)$

Unless otherwise mentioned, we assume throughout this paper that: $\eta \in \mathbb{C}^{*}, 0 \leq \gamma \leq 1,0 \leq \beta<1 ; m \in \mathbb{N}^{*} ; \mu \in \mathbb{R} \backslash(-\infty,-1], \vartheta>-1 ; 0<q<1, \zeta \in \Lambda$.

Theorem 1. Assume that the function Y given by (1) belongs to the class $\mathcal{S C}_{h}^{\vartheta, q}(\eta, \gamma, \beta)$, then

$$
\begin{equation*}
\left|a_{t}\right| \leq \frac{[\vartheta+1]_{q, t-1} \prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{(t-1)![1+\gamma(t-1)][t]_{q}!c_{t}}(t \in \mathbb{N} *) \tag{14}
\end{equation*}
$$

Proof. The function $Y \in \mathbb{A}$ be given by (1) and let the function $\mathcal{F}(\zeta)$ be defined by

$$
\mathcal{F}(\zeta)=(1-\gamma) \mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta)+\gamma \zeta\left(\mathcal{R}_{h}^{\vartheta, q} \mathrm{Y}(\zeta)\right)^{\prime}
$$

Then from (13) and the definition of the function $\mathcal{F}(\zeta)$ above, it is easily seen that

$$
\Re\left\{1+\frac{1}{\eta}\left(\frac{\zeta \mathcal{F}^{\prime}(\zeta)}{\mathcal{F}(\zeta)}-1\right)\right\}>\beta
$$

with

$$
\mathcal{F}(\zeta)=\zeta+\sum_{t=2}^{+\infty} \Theta_{t} \zeta^{t} \quad\left(\Theta_{t}=\frac{[t]_{q}!}{[\vartheta+1]_{q, t-1}}[1+\gamma(t-1)] a_{t} c_{t} ; t \in \mathbb{N}^{*}\right)
$$

Thus, by setting

$$
\frac{1+\frac{1}{\eta}\left(\frac{\zeta \mathcal{F}^{\prime}(\zeta)}{\mathcal{F}(\zeta)}-1\right)-\beta}{1-\beta}=g(\zeta)
$$

or, equivalently,

$$
\begin{equation*}
\zeta \mathcal{F}^{\prime}(\zeta)=[1+\eta(1-\beta)(g(\zeta)-1)] \mathcal{F}(\zeta) \tag{15}
\end{equation*}
$$

we get

$$
\begin{equation*}
g(\zeta)=1+d_{1} \zeta+d_{2} \zeta^{2}+\ldots \ldots . \tag{16}
\end{equation*}
$$

Since $\Re\{g(\zeta)\}>0$, we conclude that $\left|d_{t}\right| \leq 2(t \in \mathbb{N})$ (see [14]).
We get from (15) and (16) that

$$
(t-1) \Theta_{t}=\eta(1-\beta)\left[d_{1} \Theta_{t-1}+d_{2} \Theta_{t-2}+\cdots+d_{t-1}\right]
$$

For $t=2,3,4$, we have

$$
\begin{gathered}
\Theta_{2}=\eta(1-\beta) d_{1} \quad \Rightarrow\left|\Theta_{2}\right| \leq 2(1-\beta)|\eta| \\
2 \Theta_{3}=\eta(1-\beta)\left(d_{1} \Theta_{2}+d_{2}\right) \Rightarrow\left|\Theta_{3}\right| \leq \frac{2(1-\beta)|\eta|[1+2(1-\beta)|\eta|]}{2!}
\end{gathered}
$$

and
$3 \Theta_{4}=\eta(1-\beta)\left(d_{1} \Theta_{3}+d_{2} \Theta_{2}+d_{3}\right) \quad \Rightarrow\left|\Theta_{4}\right| \leq \frac{2(1-\beta)|\eta|[1+2(1-\beta)]|\eta|[2+2(1-\beta)|\eta|]}{3!}$,
respectively. Using the principle of mathematical induction, we obtain

$$
\begin{equation*}
\left|\Theta_{t}\right| \leq \frac{\prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{(t-1)!}\left(t \in \mathbb{N}^{*}\right) \tag{17}
\end{equation*}
$$

Using the relationship between the functions $\mathrm{Y}(\zeta)$ and $\mathcal{F}(\zeta)$, we get

$$
\begin{equation*}
\Theta_{t}=\frac{[t]_{q}!}{[\vartheta+1]_{q, t-1}}[1+\gamma(t-1)] a_{t} c_{t}\left(t \in \mathbb{N}^{*}\right) \tag{18}
\end{equation*}
$$

and then we get

$$
\left|a_{t}\right| \leq \frac{[\vartheta+1]_{q, t-1} \prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{(t-1)![1+\gamma(t-1)][t]_{q}!c_{t}}\left(t \in \mathbb{N}^{*}\right)
$$

This completes the proof of Theorem 1.

Putting $q \rightarrow 1^{-}$in Theorem 1, we obtain the following corollary:
Corollary 1. If the function Y given by (1) belongs to the class $\mathcal{G}_{h}^{\vartheta}(\eta, \gamma, \beta)$, then

$$
\begin{equation*}
\left|a_{t}\right| \leq \frac{(\vartheta+1)_{t-1} \prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{t[(t-1)!]^{2}[1+\gamma(t-1)] c_{t}}\left(t \in \mathbb{N}^{*}\right) \tag{19}
\end{equation*}
$$

Taking $c_{t}=\frac{(-1)^{t-1} \Gamma(\rho+1)}{4^{t-1}(t-1)!\Gamma(t+\rho)}, \rho>0$ in Theorem 1, we obtain the following special case:

Example 1. If the function Y given by (1) belongs to the class $\mathcal{B}_{\rho}^{\vartheta, q}(\eta, \gamma, \beta)$, then

$$
\left|a_{t}\right| \leq \frac{4^{t-1} \Gamma(t+\rho)[\vartheta+1]_{q, t-1} \prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{(-1)^{t-1} \Gamma(\rho+1)[1+\gamma(t-1)][t]_{q}!}\left(t \in \mathbb{N}^{*}\right)
$$

Considering $c_{t}=\left(\frac{m+1}{m+t}\right)^{\alpha}, \alpha>0, m \geq 0$ in Theorem 1, we obtain the following result:
Example 2. If the function Y given by (1) belongs to the class $\mathcal{M}_{m, \alpha}^{\vartheta, q}(\eta, \gamma, \beta)$, then

$$
\left|a_{t}\right| \leq \frac{(m+t)^{\alpha}[\vartheta+1]_{q, t-1} \prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{(t-1)![1+\gamma(t-1)][t]_{q}!(m+1)^{\alpha}}\left(t \in \mathbb{N}^{*}\right)
$$

Putting $c_{t}=\frac{n^{t-1}}{(t-1)!} e^{-n}, n>0$ in Theorem 1, we obtain the following special case:
Example 3. If the function Y given by (1) belongs to the class $\mathcal{I}_{n}^{\vartheta, q}(\eta, \gamma, \beta)$, then

$$
\left|a_{t}\right| \leq \frac{[\vartheta+1]_{q, t-1} \prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{n^{t-1}[1+\gamma(t-1)][t]_{q}!e^{-n}}\left(t \in \mathbb{N}^{*}\right)
$$

Putting $c_{t}=\left[\frac{1+\ell+\lambda(t-1)}{1+\ell}\right]^{n}, n \in \mathbb{Z}, \ell \geq 0, \lambda \geq 0$ in Theorem 1, we obtain the following special case:

Example 4. If the function Y given by (1) belongs to the class $\mathcal{J}_{n, \ell, \lambda}^{\vartheta, q}(\eta, \gamma, \beta, m, \mu)$, then

$$
\left|a_{t}\right| \leq \frac{(1+\ell)^{n}[\vartheta+1]_{q, t-1} \prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{(t-1)![1+\gamma(t-1)][t]_{q}!(1+\ell+\lambda(t-1))^{n}}\left(t \in \mathbb{N}^{*}\right)
$$

Putting $c_{t}=1$ and $\vartheta=1$ in Corollary 1, we obtain the following special case:
Example 5. If the function Y given by (1) belongs to the class $\mathcal{G}_{\frac{\zeta}{1-\zeta}}^{1}(\eta, \gamma, \beta)$, then

$$
\left|a_{t}\right| \leq \frac{\prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|]}{(t-1)![1+\gamma(t-1)]}\left(t \in \mathbb{N}^{*}\right)
$$

3. Coefficient Estimates for the Function Class $\mathcal{N}_{h}^{\vartheta, \eta}(\eta, \gamma, \beta, m, \mu)$

Our main coefficient bounds for function in the class $\mathcal{N}_{h}^{\vartheta, \eta}(\eta, \gamma, \beta, m, \mu)$ are given by Theorem 2 below.

Theorem 2. If the function Y given by (1) belongs to the class $\mathcal{N}_{h}^{\vartheta, \eta}(\eta, \gamma, \beta, m, \mu)$, then

$$
\begin{equation*}
\left|a_{t}\right| \leq \frac{[\vartheta+1]_{q, t-1} \prod_{i=0}^{t-2}[i+2(1-\beta)|\eta|] \prod_{i=0}^{m-1}(\mu+i+1)}{(t-1)![1+\gamma(t-1)][t]_{q}!\prod_{i=0}^{m-1}(\mu+i+t) c_{t}}\left(t \in \mathbb{N}^{*}\right) . \tag{20}
\end{equation*}
$$

Proof. Let the function $Y \in \mathbb{A}$ be given by (1) and let the function g define as follows

$$
\begin{equation*}
g(\zeta)=\zeta+\sum_{t=2}^{+\infty} d_{t} \zeta^{t} \in \mathcal{S C}_{h}^{\vartheta, q}(\eta, \gamma, \beta) \tag{21}
\end{equation*}
$$

so that

$$
\begin{gather*}
a_{t}=\frac{\prod_{i=0}^{m-1}(\mu+i+1)}{\prod_{i=0}^{m-1}(\mu+i+t)} d_{t}\left(t, m \in \mathbb{N}^{*} ; \mu \in \mathbb{R} \backslash(-\infty,-1]\right) . \tag{22}\\
\left|a_{t}\right| \leq \frac{[\vartheta+1]_{q, t-1} \prod_{r=0}^{t-2}[r+2(1-\beta)|\eta|] \prod_{i=0}^{m-1}(\mu+i+1)}{(t-1)![1+\gamma(t-1)][t]]!\prod_{i=0}^{m-1}(\mu+i+t) c_{t}}\left(j \in \mathbb{N}^{*}\right) .
\end{gather*}
$$

Thus, by using Theorem 1, we readily complete the proof of Theorem 2.
Putting $q \rightarrow 1^{-}$in Theorem 1, we obtain the following corollary:
Corollary 2. If the function Y given by (1) belongs to the class $\mathcal{T}_{h}^{\vartheta}(\eta, \gamma, \beta, m, \mu)$, then

$$
\left|a_{t}\right| \leq \frac{(\vartheta+1)_{t-1} \prod_{r=0}^{t-2}[r+2(1-\beta)|\eta|] \prod_{i=0}^{m-1}(\mu+i+1)}{t[(t-1)!]^{2}[1+\gamma(t-1)] \prod_{i=0}^{m-1}(\mu+i+t) c_{t}}\left(t \in \mathbb{N}^{*}\right)
$$

Putting $c_{t}=1$ and $\vartheta=1$ in Corollary 2, we obtain the following example:
Example 6. If the function Y given by (1) belongs to the class $\mathcal{T}_{\frac{\zeta}{1-\zeta}}^{1}(\eta, \gamma, \beta, m, \mu)$, then

$$
\left|a_{j}\right| \leq \frac{\prod_{r=0}^{t-2}[r+2(1-\beta)|\eta|] \prod_{i=0}^{m-1}(\mu+i+1)}{(t-1)![1+\gamma(t-1)] \prod_{i=0}^{m-1}(\mu+i+t)}\left(t \in \mathbb{N}^{*}\right)
$$

4. Conclusions

We investigated certain subclasses of analytic functions of complex order combined with the linear q-convolution operator. For the functions in this new class, we obtained the coefficient bounds and introduced here by means of a certain non-homogeneous Cauchy-Euler-type differential equation of order m. There was also consideration of several interesting corollaries and applications of the results by suitably fixing the parameters, as illustrated in Remark 1.

Author Contributions: Conceptualization, S.M.E.-D. and L.-I.C.; methodology, S.M.E.-D. and L.-I.C.; software, S.M.E.-D. and L.-I.C.; validation, S.M.E.-D. and L.-I.C.; formal analysis, S.M.E.-D. and L.-I.C.; investigation, S.M.E.-D. and L.-I.C.; resources, S.M.E.-D. and L.-I.C.; data curation, S.M.E.-D. and L.-I.C.; writing-original draft preparation, S.M.E.-D. and L.-I.C.; writing-review and editing, S.M.E.-D. and L.-I.C.; visualization, S.M.E.-D. and L.-I.C.; supervision, S.M.E.-D. and L.-I.C.; project administration, S.M.E.-D. and L.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nasr, M.A.; Aouf, M.K. On convex functions of complex Order. Mansoura Sci. Bull. Egypt 1982, 9, 565-582.
2. Nasr, M.A.; Aouf, M.K. Starlike function of complex order. J. Natur. Sci. Math. 1985, 25, 1-12.
3. Waitrowski, P. On the coefficients of some family of holomorphic functions. Zeszyty Nauk. Univ. Lodzk. Nauk. Math. Przyrod. Ser. II Zeszyt Math. 1971, 2, 75-85.
4. Jackson, F.H. On q-functions and a certain difference Operator. Trans. R. Soc. Edinb. 1909, 46, 253-281. [CrossRef] Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193-203.
Risha, M.H.A.; Annaby, M.H.; Ismail, M.E.H.; Mansour, Z.S. Linear q-difference equations. Z. Anal. Anwend. 2007, 26, 481-494. [CrossRef]
5. Breaz, D.; Cotîrlă, L.I. The study of coefficient estimates and Fekete-Szegö inequalities for the new classes of m-fold symmetric bi-univalent functions defined using an operator. J. Inequalities Appl. 2023, 2023, 15. [CrossRef]
6. Totoi, A.; Cotîrlă, L.I. Preserving classes of meromorphic functions through integral operators. Symmetry 2022, 14, 1545. [CrossRef]
7. Oros, G.I.; Cotîrlă, L.I. Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [CrossRef]
8. Oluwayemi, M.O.; Alb Lupaş, A.; Catas, A. Results on a class of analytic functions with finitely many fixed coefficients related to a generalised multiplier transformation. Sci. Afr. 2022, 15, e01115. [CrossRef]
9. Orhan, H.; Răducanu, D.; Çağlar, M.; Bayram, M. Coefficient Estimates and Other Properties for a Class of Spirallike Functions Associated with a Differential Operator. Abstr. Appl. Anal. 2013, 2013, 415319. [CrossRef]
10. Çağlar, M.; Deniz, E.; Orhan, H. Coefficient bounds for a subclass of starlike functions of complex order. Appl. Math. Comput. 2011, 218, 693-698. [CrossRef]
11. Shah, S.; Hussain, S.; Sakar, F.M.; Rasheed, A.; Naeem, M. Uniformly convex and starlike functions related with Liu-Owa integral operator. Punjab Univ. J. Math. 2022, 54, 645-657. [CrossRef]
12. Naeem, M.; Hussain, S.; Sakar, F.M.; Mahmood, T.; Rasheed, A. Subclasses of uniformly convex and starlike functions associated with Bessel functions. Turk. J. Math. 2019, 43, 2433-2443. [CrossRef]
13. Al-Khafaji, S.N.; Al-Fayadh, A.; Hussain, A.H.; Abbas, S.A. Toeplitz determinant whose its entries are the coefficients for class of non Bazilevic functions. J. Phys. Conf. Ser. 2020, 1660, 012091. [CrossRef]
14. Srivastava, H.M.; Wanas, A.K. Initial Maclaurin Coefficient Bounds for New Subclasses of Analytic and m-Fold Symmetric Bi-Univalent Functions Defined by a Linear Combination. Kyungpook Math. J. 2019, 59, 493-503.
15. El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin Coefficient Estimates of Bi-Univalent Functions Connected with the q -Derivative. Mathematics 2020, 8, 418. [CrossRef]
16. El-Deeb, S.M.; Bulboacă, T. Fekete-Szegő inequalities for certain class of analytic functions connected with q-anlogue of Bessel function. J. Egyptian Math. Soc. 2019, 27, 42. [CrossRef]
17. El-Deeb, S.M. Maclaurin Coefficient Estimates for New Subclasses of Biunivalent Functions Connected with a q-Analogue of Bessel Function. Abstr. Appl. Analy. 2020, 2020, 8368951. [CrossRef]
18. El-Deeb, S.M.; Bulboacă, T. Differential sandwich-type results for symmetric functions connected with a q-analog integral operator. Mathematics 2019, 7, 1185. [CrossRef]
19. Srivastava, H.M.; El-Deeb, S.M. A certain class of analytic functions of complex order connected with a q-analogue of integral operators. Miskolc Math. Notes 2020, 21, 417-433. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

