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1 Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
s.eldeeb@qu.edu.sa or shezaeldeeb@yahoo.com

2 Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
* Correspondence: luminita.cotirla@math.utcluj.ro
† Current address: Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University,

Buraydah 51911, Saudi Arabia.
‡ These authors contributed equally to this work.
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1. Introduction, Definitions and Preliminaries

Assume that A is the class of analytic functions in the open disc Λ := {ζ ∈ C : |ζ| < 1}
of the form

Υ(ζ) = ζ +
+∞

∑
t=2

atζ
t, ζ ∈ Λ. (1)

If the function h ∈ A is given by

h(ζ) = ζ +
+∞

∑
t=2

ctζ
t, ζ ∈ Λ. (2)

The Hadamard (or convolution) product of Υ and h is defined by

(Υ ∗ h)(ζ) := ζ +
+∞

∑
t=2

atctζ
t, ζ ∈ Λ.

A function Υ ∈ A belongs to the class S∗(η) if

<
{

1 +
1
η

(
ζΥ
′
(ζ)

Υ(ζ)
− 1

)}
> 0 (ζ ∈ Λ; η ∈ C∗ = C\{0}). (3)

Furthermore, a function Υ ∈ A be in the class C(η) if

<
{

1 +
1
η

ζΥ
′′
(ζ)

Υ′(ζ)

}
> 0 (ζ ∈ Λ; η ∈ C∗). (4)

The classes S∗(η) and C(η) were studied by Nasr and Aouf [1,2] and Wiatrowski [3].
In a wide range of applications in the mathematical, physical, and engineering

sciences, the theory of q-calculus is important. Jackson [4,5] was the first to use the q-
calculus in various applications and to introduce the q-analogue of the standard derivative

Symmetry 2023, 15, 1133. https://doi.org/10.3390/sym15061133 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15061133
https://doi.org/10.3390/sym15061133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4052-391X
https://orcid.org/0000-0002-0269-0688
https://doi.org/10.3390/sym15061133
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15061133?type=check_update&version=1


Symmetry 2023, 15, 1133 2 of 9

and integral operators; see [6–10]. About coefficients’ interesting results, see [11–16]. The q-
shifted factorial is defined for λ, q ∈ C and n ∈ N0 = N∪ {0} as follows

(λ; q)t =

{
1 t = 0,

(1− λ)(1− λq) . . .
(
1− λqt−1) t ∈ N.

Using the q-gamma function Γq(ζ), we obtain

(
qλ; q

)
t
=

(1− q)t Γq(λ + t)
Γq(λ)

, (t ∈ N0),

where

Γq(ζ) = (1− q)1−ζ (q; q)∞(
qζ ; q

)
∞

, (|q| < 1).

In addition, we note that

(λ; q)∞ =
∞

∏
t=0

(
1− λqt), (|q| < 1),

and the q-gamma function Γq(ζ) is known

Γq(ζ + 1) = [ζ]q Γq(ζ),

where [t]q denotes the basic q-number defined as follows

[t]q :=


1−qt

1−q , t ∈ C,

1 +
t−1
∑

j=1
qj, t ∈ N

. (5)

Using the definition Formula (5), we have the next two products:

(i) For any non negative integer t, the q-shifted factorial is given by

[t]q! :=


1, if t = 0,

t
∏

n=1
[n]q, if t ∈ N.

(ii) For any positive number r, the q-generalized Pochhammer symbol is defined by

[r]q,t :=


1, if t = 0,
r+t−1

∏
n=r

[n]q, if t ∈ N.

It is known in terms of the classical (Euler’s) gamma function Γ(ζ), that

Γq(ζ)→ Γ(ζ) as q→ 1−.

In addition, we observe that

lim
q→1−

{ (
qλ; q

)
t

(1− q)t

}
= (λ)t,

where (λ)t is given by

(λ)t =

{
1, if t = 0,
λ(λ + 1) . . . (λ + t− 1), if t ∈ N.

.
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For 0 < q < 1. El-Deeb et al. [17] defined that the q-derivative operator for Υ ∗ h is
defined by

Dq(Υ ∗ h)(ζ) := Dq

(
ζ +

+∞

∑
t=2

atctζ
t

)

=
(Υ ∗ h)(ζ)− (Υ ∗ h)(qζ)

ζ(1− q)
= 1 +

+∞

∑
t=2

[t]qatctζ
t−1, ζ ∈ Λ,

Let ϑ > −1 and 0 < q < 1; El-Deeb et al. [17] defined the linear operatorRϑ,q
h : A→ A

as follows:
Rϑ,q

h Υ(ζ) ∗ Nq,ϑ+1(ζ) = ζ Dq(Υ ∗ h)(ζ), ζ ∈ Λ,

where the functionMq,ϑ+1 is given by

Nq,ϑ+1(ζ) := ζ +
+∞

∑
t=2

[ϑ + 1]q,t−1

[t− 1]q!
ζt, ζ ∈ Λ.

A simple computation shows that

Rϑ,q
h Υ(ζ) := ζ +

+∞

∑
t=2

[t]q!
[ϑ + 1]q,t−1

atctζ
t, ζ ∈ Λ (ϑ > −1, 0 < q < 1). (6)

Remark 1 ([17]). From the definition relation (6), we can obtain that the next relations hold for all
Υ ∈ A:

(i) [ϑ + 1]qRϑ,q
h Υ(ζ) = [ϑ]qRϑ+1,q

h Υ(ζ) + qϑ ζDq

(
Rϑ+1,q

h Υ(ζ)
)

, ζ ∈ Λ;

(ii) Iϑ
h Υ(ζ) := lim

q→1−
Rϑ,q

h Υ(ζ) = ζ +
+∞

∑
t=2

t!
(ϑ + 1)t−1

atctζ
t, ζ ∈ Λ. (7)

Remark 2 ([17]). By taking different particular cases for the coefficients ct, El-Deeb et al. [17]
observed the following special cases for the operatorRϑ,q

h :

(i) For ct =
(−1)t−1Γ(ρ + 1)

4t−1(t− 1)!Γ(t + ρ)
, ρ > 0, El-Deeb and Bulboacă [18] and El-Deeb [19] obtained

the operator N ϑ
ρ,q studied by:

N ϑ
ρ,qΥ(ζ) := ζ +

+∞

∑
t=2

(−1)t−1Γ(ρ + 1)
4t−1(t− 1)!Γ(t + ρ)

·
[t]q!

[ϑ + 1]q,t−1
atζ

t

= ζ +
+∞

∑
t=2

[t]q!
[ϑ + 1]q,t−1

ψtatζ
t, ζ ∈ Λ, (ρ > 0, ϑ > −1, 0 < q < 1), (8)

where

ψt :=
(−1)t−1Γ(ρ + 1)

4t−1(t− 1)!Γ(t + ρ)
; (9)

(ii) For ct =

(
m + 1
m + t

)α

, α > 0, m ≥ 0, El-Deeb and Bulboacă [20] and Srivastava and

El-Deeb [21] obtained the operator N ϑ,α
m,1,q =:Mϑ,α

m,q studied by:

Mϑ,α
m,qΥ(ζ) := ζ +

+∞

∑
t=2

(
m + 1
m + t

)α

·
[t]q!

[ϑ + 1]q,t−1
atζ

t, ζ ∈ Λ; (10)

(iii) For ct =
nt−1

(t− 1)!
e−n, n > 0, El-Deeb et al. [17] obtained the q-analogue of Poisson operator

defined by:
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Iϑ,n
q Υ(ζ) := ζ +

+∞

∑
t=2

nt−1

(t− 1)!
e−n ·

[t]q!
[ϑ + 1]q,t−1

atζ
t, ζ ∈ Λ; (11)

(iv) For ct =

[
1 + `+ λ(t− 1)

1 + `

]n
, n ∈ Z, ` ≥ 0, λ ≥ 0, El-Deeb et al. [17] obtained the

q-analogue of Prajapat operator defined by

J ϑ,n
q,`,λΥ(ζ) := ζ +

+∞

∑
t=2

[
1 + `+ λ(t− 1)

1 + `

]n
·

[t]q!
[ϑ + 1]q,t−1

atζ
t, ζ ∈ Λ. (12)

In this paper, we define the following subclasses SCϑ,q
h (η, γ, β) and N ϑ,q

h (η, γ, β, m, µ)
(η ∈ C∗, 0 ≤ γ ≤ 1, 0 ≤ β < 1, ϑ > −1, 0 < q < 1, m ∈ N∗ = N\{1} = {2, 3, 4, . . . }, µ ∈
R\(−∞,−1]) as follows:

Definition 1. For a function Υ has the form (1) and h is defined by (2), the function Υ belongs to
the class SCϑ,q

h (η, γ, β) if

<

1 +
1
η


ζ

[
(1− γ)Rϑ,q

h Υ(ζ) + γζ
(
Rϑ,q

h Υ(ζ)
)′]′

(1− γ)Rϑ,q
h Υ(ζ) + γζ

(
Rϑ,q

h Υ(ζ)
)′ − 1


 > β

(η ∈ C∗; 0 ≤ γ ≤ 1; 0 ≤ β < 1; ϑ > −1, 0 < q < 1; ζ ∈ Λ). (13)

Remark 3.

(i) For q → 1−, we obtain that lim
q→1−

SCϑ,q
h (η, γ, β) =: Gϑ

h (η, γ, β), where Gϑ
h (η, γ, β) repre-

sents the functions Υ ∈ A that satisfies (13) forRϑ,q
h replaced with Iϑ

h (7).

(ii) For ct =
(−1)t−1Γ(ρ + 1)

4t−1(t− 1)!Γ(t + ρ)
, ρ > 0, we obtain the subclass Bϑ,q

ρ (η, γ, β), that represents

the functions Υ ∈ A that satisfies (13) forRϑ,q
h replaced with N ϑ

ρ,q (8).

(iii) For ct =

(
m + 1
m + t

)α

, α > 0, m ≥ 0, we obtain the classMϑ,q
m,α(η, γ, β), that represents the

functions Υ ∈ A that satisfies (13) forRϑ,q
h replaced withMϑ,α

m,q (10).

(iv) For ct =
nt−1

(t− 1)!
e−n, n > 0, we obtain the class Iϑ,q

t (η, γ, β), that represents the functions

Υ ∈ A that satisfies (13) forRϑ,q
h replaced with Iϑ,t

q (11).

(v) For ct =

[
1 + `+ λ(t− 1)

1 + `

]n
, n ∈ Z, ` ≥ 0, λ ≥ 0, we obtain the class J ϑ,q

n,`,λ(η, γ, β),

that represents the functions Υ ∈ A that satisfies (13) forRϑ,q
h replaced with J ϑ,n

q,`,λ (12).

The following lemma must be used in to show our study results:

Definition 2. A function Υ ∈ A belongs to the classN ϑ,q
h (η, γ, β, m, µ) if it satisfies the following

non-homogeneous Cauchy–Euler type differential equation of order m:

ζm dmw
dζm +

(
m
1

)
(µ + m− 1)ζm−1 dm−1w

dζm−1 + · · ·+
(

m
m

)
w

m−1

∏
j=0

(µ + j) = g(ζ)
m−1

∏
j=0

(µ + j + 1)

(
w = Υ(ζ); g(ζ) ∈ SCϑ,q

h (η, γ, β); η ∈ C∗, 0 ≤ γ ≤ 1, 0 ≤ β < 1; ϑ > −1; 0 < q < 1;

m ∈ N∗; µ ∈ R\(−∞,−1]).
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Remark 4.

(i) Putting q → 1−, we obtain that lim
q→1−

N ϑ,q
h (η, γ, β, m, µ) =: T ϑ

h (η, γ, β, m, µ), where

T ϑ
h (η, γ, β, m, µ) represents the functions Υ ∈ A that satisfies (13) for Rϑ,q

h replaced with
Iλ

h (7).

(ii) Putting ct =
(−1)t−1Γ(ρ + 1)

4t−1(t− 1)!Γ(t + ρ)
, ρ > 0, we get the subclass Pϑ,q

ρ (η, γ, β, m, µ), that

represents the functions Υ ∈ A that satisfies (13) forRϑ,q
h replaced with N ϑ

ρ,q (8).

(iii) Putting ct =

(
m + 1
m + t

)α

, α > 0, m ≥ 0, we have the class Rϑ,q
m,α(η, γ, β, m, µ), that

represents the functions Υ ∈ A that satisfies (13) forRϑ,q
h replaced withMϑ,α

m,q (10).

(iv) Putting ct =
nt−1

(t− 1)!
e−n, n > 0, we get the class Dϑ,q

n (η, γ, β, m, µ), that represents the

functions Υ ∈ A that satisfies (13) forRϑ,q
h replaced with Iϑ,n

q (11).

(v) Putting ct =

[
1 + `+ λ(t− 1)

1 + `

]n
, n ∈ Z, ` ≥ 0, λ ≥ 0, we have the class

J ϑ,q
n,`,λ(η, γ, β, m, µ), that represents the functions Υ ∈ A that satisfies (13) forRϑ,q

h replaced

with J ϑ,n
q,`,λ (12).

The main object of the present investigation is to derive some coefficient bounds for
functions in the subclasses SCϑ,q

h (η, γ, β) and N ϑ,q
h (η, γ, β, m, µ) of A.

2. Coefficient Estimates for the Function Class SCϑ,q
h (η, γ, β)

Unless otherwise mentioned, we assume throughout this paper that:
η ∈ C∗, 0 ≤ γ ≤ 1, 0 ≤ β < 1; m ∈ N∗; µ ∈ R\(−∞,−1], ϑ > −1; 0 < q < 1, ζ ∈ Λ.

Theorem 1. Assume that the function Υ given by (1) belongs to the class SCϑ,q
h (η, γ, β), then

|at| ≤
[ϑ + 1]q,t−1

t−2
∏
i=0

[i + 2(1− β)|η|]

(t− 1)![1 + γ(t− 1)][t]q!ct
(t ∈ N∗). (14)

Proof. The function Υ ∈ A be given by (1) and let the function F (ζ) be defined by

F (ζ) = (1− γ)Rϑ,q
h Υ(ζ) + γζ

(
Rϑ,q

h Υ(ζ)
)′

.

Then from (13) and the definition of the function F (ζ) above, it is easily seen that

<
{

1 +
1
η

(
ζF ′(ζ)
F (ζ) − 1

)}
> β

with

F (ζ) = ζ +
+∞

∑
t=2

Θtζ
t
(

Θt =
[t]q !

[ϑ+1]q,t−1
[1 + γ(t− 1)]at ct; t ∈ N∗

)
.

Thus, by setting

1 + 1
η

(
ζF ′ (ζ)
F (ζ) − 1

)
− β

1− β
= g(ζ)
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or, equivalently,
ζF ′(ζ) = [1 + η(1− β)(g(ζ)− 1)]F (ζ), (15)

we get

g(ζ) = 1 + d1ζ + d2ζ2 + . . . . . . . (16)

Since <{g(ζ)} > 0, we conclude that |dt| ≤ 2 (t ∈ N) (see [14]).
We get from (15) and (16) that

(t− 1)Θt = η(1− β)[d1Θt−1 + d2Θt−2 + · · ·+ dt−1].

For t = 2, 3, 4, we have

Θ2 = η(1− β)d1 ⇒ |Θ2| ≤ 2(1− β)|η|,

2Θ3 = η(1− β)(d1Θ2 + d2) ⇒ |Θ3| ≤
2(1− β)|η|[1 + 2(1− β)|η|]

2!
,

and

3Θ4 = η(1− β)(d1Θ3 + d2Θ2 + d3) ⇒ |Θ4| ≤
2(1− β)|η|[1 + 2(1− β)]|η|[2 + 2(1− β)|η|]

3!
,

respectively. Using the principle of mathematical induction, we obtain

|Θt| ≤

t−2
∏
i=0

[i + 2(1− β)|η|]

(t− 1)!
(t ∈ N∗). (17)

Using the relationship between the functions Υ(ζ) and F (ζ), we get

Θt =
[t]q !

[ϑ+1]q,t−1
[1 + γ(t− 1)]at ct (t ∈ N∗), (18)

and then we get

|at| ≤
[ϑ + 1]q,t−1

t−2
∏
i=0

[i + 2(1− β)|η|]

(t− 1)![1 + γ(t− 1)][t]q!ct
(t ∈ N∗).

This completes the proof of Theorem 1.

Putting q→ 1− in Theorem 1, we obtain the following corollary:

Corollary 1. If the function Υ given by (1) belongs to the class Gϑ
h (η, γ, β), then

|at| ≤
(ϑ + 1)t−1

t−2
∏
i=0

[i + 2(1− β)|η|]

t[(t− 1)!]2[1 + γ(t− 1)]ct
(t ∈ N∗). (19)

Taking ct =
(−1)t−1Γ(ρ + 1)

4t−1(t− 1)!Γ(t + ρ)
, ρ > 0 in Theorem 1, we obtain the following spe-

cial case:

Example 1. If the function Υ given by (1) belongs to the class Bϑ,q
ρ (η, γ, β), then
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|at| ≤
4t−1Γ(t + ρ)[ϑ + 1]q,t−1

t−2
∏
i=0

[i + 2(1− β)|η|]

(−1)t−1Γ(ρ + 1)[1 + γ(t− 1)][t]q!
(t ∈ N∗).

Considering ct =

(
m + 1
m + t

)α

, α > 0, m ≥ 0 in Theorem 1, we obtain the following result:

Example 2. If the function Υ given by (1) belongs to the classMϑ,q
m,α(η, γ, β), then

|at| ≤
(m + t)α[ϑ + 1]q,t−1

t−2
∏
i=0

[i + 2(1− β)|η|]

(t− 1)![1 + γ(t− 1)][t]q!(m + 1)α (t ∈ N∗).

Putting ct =
nt−1

(t− 1)!
e−n, n > 0 in Theorem 1, we obtain the following special case:

Example 3. If the function Υ given by (1) belongs to the class Iϑ,q
n (η, γ, β), then

|at| ≤
[ϑ + 1]q,t−1

t−2
∏
i=0

[i + 2(1− β)|η|]

nt−1[1 + γ(t− 1)][t]q!e−n (t ∈ N∗).

Putting ct =

[
1 + `+ λ(t− 1)

1 + `

]n
, n ∈ Z, ` ≥ 0, λ ≥ 0 in Theorem 1, we obtain the

following special case:

Example 4. If the function Υ given by (1) belongs to the class J ϑ,q
n,`,λ(η, γ, β, m, µ), then

|at| ≤
(1 + `)n[ϑ + 1]q,t−1

t−2
∏
i=0

[i + 2(1− β)|η|]

(t− 1)![1 + γ(t− 1)][t]q!(1 + `+ λ(t− 1))n (t ∈ N∗).

Putting ct = 1 and ϑ = 1 in Corollary 1, we obtain the following special case:

Example 5. If the function Υ given by (1) belongs to the class G1
ζ

1−ζ

(η, γ, β), then

|at| ≤

t−2
∏
i=0

[i + 2(1− β)|η|]

(t− 1)![1 + γ(t− 1)]
(t ∈ N∗).

3. Coefficient Estimates for the Function Class N ϑ,q
h (η, γ, β, m, µ)

Our main coefficient bounds for function in the class N ϑ,q
h (η, γ, β, m, µ) are given by

Theorem 2 below.

Theorem 2. If the function Υ given by (1) belongs to the class N ϑ,q
h (η, γ, β, m, µ), then

|at| ≤
[ϑ + 1]q,t−1

t−2
∏
i=0

[i + 2(1− β)|η|]
m−1
∏
i=0

(µ + i + 1)

(t− 1)![1 + γ(t− 1)][t]q!
m−1
∏
i=0

(µ + i + t)ct

(t ∈ N∗). (20)
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Proof. Let the function Υ ∈ A be given by (1) and let the function g define as follows

g(ζ) = ζ +
+∞

∑
t=2

dtζ
t ∈ SCϑ,q

h (η, γ, β), (21)

so that

at =

m−1
∏
i=0

(µ + i + 1)

m−1
∏
i=0

(µ + i + t)
dt (t, m ∈ N∗; µ ∈ R\(−∞,−1]). (22)

|at| ≤
[ϑ + 1]q,t−1

t−2
∏

r=0
[r + 2(1− β)|η|]

m−1
∏
i=0

(µ + i + 1)

(t− 1)![1 + γ(t− 1)][t]q!
m−1
∏
i=0

(µ + i + t)ct

(j ∈ N∗).

Thus, by using Theorem 1, we readily complete the proof of Theorem 2.

Putting q→ 1− in Theorem 1, we obtain the following corollary:

Corollary 2. If the function Υ given by (1) belongs to the class T ϑ
h (η, γ, β, m, µ), then

|at| ≤
(ϑ + 1)t−1

t−2
∏

r=0
[r + 2(1− β)|η|]

m−1
∏
i=0

(µ + i + 1)

t[(t− 1)!]2[1 + γ(t− 1)]
m−1
∏
i=0

(µ + i + t)ct

(t ∈ N∗).

Putting ct = 1 and ϑ = 1 in Corollary 2, we obtain the following example:

Example 6. If the function Υ given by (1) belongs to the class T 1
ζ

1−ζ

(η, γ, β, m, µ), then

∣∣aj
∣∣ ≤

t−2
∏

r=0
[r + 2(1− β)|η|]

m−1
∏
i=0

(µ + i + 1)

(t− 1)![1 + γ(t− 1)]
m−1
∏
i=0

(µ + i + t)
(t ∈ N∗).

4. Conclusions

We investigated certain subclasses of analytic functions of complex order combined
with the linear q-convolution operator. For the functions in this new class, we obtained the
coefficient bounds and introduced here by means of a certain non-homogeneous Cauchy–
Euler-type differential equation of order m. There was also consideration of several interest-
ing corollaries and applications of the results by suitably fixing the parameters, as illustrated
in Remark 1.
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