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Abstract: As a key part of data preprocessing, namely attribute reduction, is effectively applied
in the rough set field. The purpose of attribute reduction is to prevent too many attributes from
affecting classifier operations and reduce the dimensionality of data space. Presently, in order to
further improve the simplification performance of attribute reduction, numerous researchers have
proposed a variety of methods. However, given the current findings, the challenges are: to reasonably
compress the search space of candidate attributes; to fulfill multi-perspective evaluation; and to
actualize attribute reduction based on guidance. In view of this, forward greedy searching to κ-reduct
based on granular ball is proposed, which has the following advantages: (1) forming symmetrical
granular balls to actualize the grouping of the universe; (2) continuously merging small universes
to provide guidance for subsequent calculations; and (3) combining supervised and unsupervised
perspectives to enrich the viewpoint of attribute evaluation and better improve the capability of
attribute reduction. Finally, based on three classifiers, 16 UCI datasets are used to compare our
proposed method with six advanced algorithms about attribute reduction and an algorithm without
applying any attribute reduction algorithms. The experimental results indicate that our method can
not only ensure the result of reduction has considerable performance in the classification test, but
also improve the stability of attribute reduction to a certain degree.

Keywords: approximation quality; attribute reduction; conditional entropy; granular ball; rough set;
sample division

1. Introduction

With the rapid increase in data, attributes have become redundant and uncertain.
Uncertainty mainly consists of the five following aspects: incompleteness, inconsistency,
incompatibility, fuzziness and randomness. Consequently, finding valuable information
from high-dimensional data is a challenge for the research field.

With the intention of effectively disposing of ambiguous, incomplete, and inaccurate
data, Polish scholar Pawlak first put forward rough set theory [1] in 1982, which has
been extensively adopted in data mining, pattern recognition, decision analysis [2–4], and
other domains. Based on rough set theory, many extensions and improvements have been
proposed, such as neighborhood rough set [5], fuzzy rough set [6], decision-theoretic rough
set [7], and Pythagorean fuzzy set [8]. Attribute reduction [9–13], as a common dimensional
reduction method, can efficaciously remove redundant components in information systems,
choose the optimal minimum attribute subset and further improve the effectiveness of data
knowledge discovery. Obviously, attribute reduction has grown to be a paramount research
branch of rough set theory.

Generally speaking, simplified searching strategies can be split into two general
classes: exhaustive search and heuristic search [14]. In the process of data analysis, the final
reduction result is directly related to the given constraint which can be implemented by
constructing different measurement criteria.

As a mature heuristics-based search, The forward greedy strategy has a wide range of
measures [15–17], such as approximation quality and conditional entropy [18–21]. These
measures are especially used for assessing attributes and exporting reduction results.
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However, in the exploration of attribute reduction, many researchers only take into ac-
count the single view measure to determine the constraint. For instance, Jiang et al. [22]
studied the supervised neighborhood attribute reduction; Zhang et al. [23] investigated
a semi-supervised attribute reduction method that combined the collaborative learning
theory; and Yuan et al. [24] introduced a fuzzy complementary entropy measure and
proposed an unsupervised attribute reduction algorithm for mixed data. In order to fully
consider the diversity of evaluation, multi-view measures are necessary to be proposed in
attribute reduction.

The neighborhood rough set provides a flexible granular representation, but it requires
determining the size of a neighborhood radius through grid search frequently, which is time-
consuming. To overcome this problem, many strategies for determining the radius without
parameters have been introduced. As an example, Xia et al. [25] put forward the concept of
granular balls and enhanced the efficacy of a classifier based on granular computing by
generating granular balls; Zhou et al. [26] proposed the concept of a gap neighborhood
when resolving the problem of online feature selection, which can automatically determine
the neighborhood size according to the distance difference between samples.

Through the above discussion, in order to effectively obtain the salient features of
multiple views [25–27] and improve the classification performance of attribute reduction,
we propose a new strategy in this paper: forward greedy searching to κ-reduct based on
granular ball. The key of our strategy includes three phases: (1) grouping the samples in the
whole universe (the universe is a finite set of all samples) based on generated symmetric
granular balls; (2) attribute search for sample groups based on guidance; and (3) attribute
reduction based on multiple perspectives. The first stage is to automatically create granular
balls in accordance with the distribution of data itself, and merge granular balls which have
small number of samples. Therefore, it can realize the division of the universe. In addition,
the second stage is guidance-based evaluations, aiming to compress the search space related
to candidate attributes. Therefore, the time needed for attribute reduction can be made
faster because fewer candidate attributes need to be evaluated. Finally, the third stage
blends supervised and unsupervised perspectives [28] and uses the quality-to-entropy ratio
as a measure to attribute reduction. Therefore, it is feasible to identify attributes and labels
with accuracy, and quantitatively characterize the uncertainty of data itself [29,30].

To sum up, the main contributions of our research are: (1) decreasing the size of
samples by grouping different granular balls which adaptively generate; (2) enhancing
attribute reduction efficiencies by achieving guidance-based search; and (3) utilizing the
quality-to-entropy ratio which combines two perspectives to improve the accuracy of
recognizing eligible attributes.

The remainder of this paper is organized as follows. Section 2 introduces the basic
concepts of rough set, granular computing, and attribute reduction. Section 3 describes
the fundamental framework and specific procedures of the new proposed method. Com-
parative experimental results of datasets and analysis are reported in Section 4. Finally,
Section 5 is a summary of the algorithm and points for further work.

2. Preliminaries
2.1. Neighborhood Rough Set

Formally, a decision system can be defined as a binary group, expressed as
DS = 〈U, AT ∪ {d}〉: the universe of discourse U = {x1, x2, · · · , xn} is a set of non-empty
finite samples; AT = {a1, a2, · · · am} is the set of all conditional attributes; and d is the
decision attribute. According to the decision values of all samples, it is not difficult to
obtain a partition like U/IND(d) = {X1, X2, · · · , Xn} which induced by decision attribute
d on universe U: IND(d) = {(xi, xj) ∈ U ×U : d(xi) = d(xj)}; ∀xi ∈ U, d(xi) is the label
of sample xi. It is especially worth noting that IND(d) is a relation of equivalence with sym-
metry, reflexivity, and transitivity. The following definitions are the form of conventional
rough sets.
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Definition 1. For a given decision system DS, a given radius δ ≥ 0, ∀A ⊆ AT, ∀xi ∈ U, the
neighborhood of δA(xi) is defined as:

δA(xi) =
{

x ∈ U : ∆A
(
xi, xj

)
≤ δ

}
, (1)

in which ∆A
(

xi, xj
)

represents the distance function between sample xi and xj with respect to A.

Immediately, from Definition 1, it can be obviously known that the size of the generated
neighborhood relies on the value of given δ, i.e., the neighborhood becomes larger as the
value of δ increases.

As the fundamental units of the neighborhood rough set, the specific definitions of
upper and lower approximations are given in the following Definition 2.

Definition 2. For a given decision system DS, ∀X ⊆ U, ∀A ⊆ AT, the lower and upper
approximations of X are defined as

NX = {xi ∈ U : δA(xi) ⊆ X}, (2)

NX = {xi ∈ U : δA(xi) ∩ X 6= ∅}. (3)

The neighborhood rough set is built on the foundation of the standard rough set. It can
not only deal with complex data, but also possess a multi-granularity structure by giving
various radii. However, finding the appropriate radius generally requires a large number
of trials or a certain parameter searching strategy, which is very time-consuming.

2.2. Granular Ball Computing

Considering that using the neighborhood relationship takes significant time to obtain
the optimal radius, Xia et al. [31] proposed the concept of granular ball. In rough set theory,
granule is the division of a sample set, and granular ball is based on the concept of granule.
Xia et al. [25] regard hyper-ball with a completely symmetrical structure as granular ball.

The granular ball has a straightforward geometric shape with two parameters, i.e.,
center and radius. Compared with the neighborhood, the granular ball method has higher
searching efficiency and robustness. The detailed definitions are as follows.

Definition 3. For a given decision system DS, ∀A ⊆ AT, ∀GBS ⊆ U, GBS is a granular ball
induced by conditional attribute set A if and only if C is the center point of GBS, r is the average of
distances from all samples in the granular ball to C. The C and r of the granular ball are expressed
as follows

C =
1
|GBS|

|GBs |

∑
i=1

xi, (4)

r =
1
|GBS|

|GBs |

∑
i=1

∆A(xi, C), (5)

in which |GBS| indicates the number of samples in the granular ball.

In the following, GBU
A is defined as the set of all granular balls induced by conditional

attribute set A on universe U.

Definition 4. For a given decision system DS, ∀A ⊆ AT, ∀GBS ⊆ GBU
A , d(GBS) is recorded as

the overall label of GBS, i.e., d(GBS) is the label corresponding to samples with the same label and
maximum proportion in the granular ball.
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Definition 5. For a given decision system DS, ∀A ⊆ AT, ∀GBS ⊆ GBU
A , the average purity of

GBS is defined as

Pure(GBs) =
|{xi ∈ GBs : d(xi) = d(GBs)}|

|GBs|
. (6)

in which d(xi) indicates the label of the sample xi.

Furthermore, Pure(GBU
A) can be recorded as the mean purity of all granular balls

induced by conditional attribute set A.
In the process of generating granular balls, the main idea is using an iterative two-

means algorithm. The concrete procedures are given as follows.
(1) Consider the entire universe U as an initial granular ball and set n = 1 (n is the

number of existing granular balls).
(2) Cluster each cluster by the two-means algorithm.
(3) Compute the center point of each cluster and the average distance between each

cluster’s samples and the center point.
(4) Obtain the granular ball and calculate the granular ball’s purity.
(5) Traverse all currently existent granular balls; if each granular ball’s purity is below

the given threshold, end this step; otherwise, return to (2).
On the basis of the aforementioned method of obtaining granular balls, Xia et al. [31]

further put forward the concept of granular ball rough set, as shown in Definition 6.

Definition 6. For a given decision system DS, ∀A ⊆ AT, ∀XP ∈ U
/

IND(d), according to the
conditional attribute set A, the upper and lower approximations of Xp are, respectively, defined as

GBU
A
(
Xp
)
=
{

xi : ∃GBS ∈ GBU
A , xi ∈ GBS, GBS ∩ Xp 6= ∅

}
, (7)

GBU
A
(
Xp
)
=
{

xi : ∃GBS ∈ GBU
A , xi ∈ GBS, GBS ⊆ Xp

}
. (8)

2.3. Attribute Reduction

Rough set is a powerful tool to handle fuzzy data, and we need to deal with high-
dimensional data through attribute reduction. By searching the minimum attribute subset
which satisfies the given constraints, attribute reduction can not only reduce the dimension,
but also enhance the generalization performance.

To date, various kinds of attribute reduction have been proposed for different re-
quirements [9–13,18,32], whereas Yao et al. [33] indicated that the majority of them have
analogous structures. There are two mainstream learning perspectives, i.e., supervised
learning and unsupervised learning. Then, we pick the approximation quality [34] and con-
ditional entropy [19,35–39] as two custom measures to better comprehend and investigate
the essence of attribute reduction in terms of the neighborhood rough set.

2.3.1. Supervised Attribute Reduction

Supervised attribute reduction refers to the process of screening attributes using given
labels in datasets so as to determine the important subsets of attributes which can best
distinguish different categories.

Definition 7. For a given decision system DS and a radius δ ≥ 0, ∀A ⊆ AT, the supervised
approximation quality of d in terms of A is defined as

γA(d) =

∣∣∣Uq
k=1δA(xk)

∣∣∣
|U| , (9)

in which |X| is the cardinality of set X.
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Apparently, it is not difficult to obtain that γA(d) ∈ [0, 1] holds. The approximation
quality reflects the proportion of samples in the lower approximation of the decision class,
and it is used to describe the dependency between attributes. Note that by Definition 7, the
degree of dependency increases as the value of approximation quality increases. Generally
speaking, the majority of samples in U can be told apart from each other.

Definition 8. For a given decision system DS and a radius δ ≥ 0, ∀A ⊆ AT, the supervised
conditional entropy of d based on A is defined as

CEA(d) = −
1
|U| ∑

x∈U
|δA(x) ∩ [x]d| log

|δA(x) ∩ [x]d|
|δA(x)| . (10)

It is proven that CEA(d) ∈
[
0, |U|e

]
holds [19]. As another important measure of the

neighborhood rough set, conditional entropy reflects the discriminating performance of
conditional attribute set A over decision attribute d. Following Definition 8, it is obvious
that, as the value of the conditional entropy decreases, the discrimination of A relative to d
increases.

Definition 9. For a given decision system DS and a constraint condition CU
ρ , which is associated

with measure ρ on the universe U, ∀A ⊆ AT, A is deemed as a CU
ρ -reduct if and only if

(1) A meets CU
ρ ,

(2) ∀A1 ⊂ A, A1 does not meet CU
ρ .

From Definition 9, it is uncomplicated to conclude that A is an ideal and minimal
subset which satisfies the constraint condition. Without loss of generality, the constraint is
closely related to the used measure. We will discuss it from the two following aspects:

(1) If the measure is of approximation quality [28,40], the constraint condition may be
γA(d) ≥ γAT(d);

(2) If the measure is conditional entropy [41], the constraint condition may be CEA(d) ≤
CEAT(d).

2.3.2. Unsupervised Attribute Reduction

As we all know, supervised attribute reduction depends on the labels of samples to a
great extent, so it is time-consuming to obtain the labels of samples. However, unsupervised
attribute reduction does not need obtain such labels.

In an unsupervised perspective, if approximate quality or conditional entropy is still
needed as a measure, how to make labels for samples is an urgent problem. In order to
solve the problem, Yang et al. [42] used the conditional attribute information of samples to
construct pseudo-labels. Based on the pseudo-label strategy, it is not arduous to give the
following definitions.

Definition 10. For a given unsupervised decision IS and a radius δ ≥ 0, ∀A ⊆ AT, a ∈ A, the
unsupervised approximation quality in terms of A is defined as

γA =
1
|A| ∑

a∈A

(
γA−{a}(d

a)
)

, (11)

in which da is a pseudo-label decision that records conditional attribute a to contain the pseudo-labels
of samples.

In analogy with Definition 7, γA ∈ [0, 1] apparently holds. The approximate quality in
Definition 10 represents the correlation between a set of attributes and a single attribute.
Naturally, the higher the value of unsupervised approximation quality is, the greater the
degree of such correlation.
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Definition 11. For a given unsupervised decision IS and a radius δ ≥ 0, ∀A ⊆ AT, a ∈ A, the
unsupervised conditional entropy with respect to A is defined as

CEA =
1
|A| ∑

a∈A

(
CEA−{a}(d

a)
)

, (12)

in which da is a derived decision that employs conditional attribute a to contain the pseudo-labels
of samples.

Similarly to Definition 8, the CEA ∈
[
0, |U|e

]
constant holds in an unsupervised

perspective. Undoubtedly, the certainty of the pseudo-label neighborhood judgment
system increases as the value of the conditional entropy decreases.

Definition 12. For a given unsupervised decision IS, a measure ρ and CU
ρ is a constraint condition,

∀A ⊆ AT, A is deemed as a ρ-reduct if and only if:

(1) A meets the constraint CU
ρ ;

(2) ∀A1 ⊂ A, A1 does not meet the constraint CU
ρ .

Analogous to Definition 9, the constraint condition determined by ρ will depend
on the type of measure. The constraint condition may be γA ≥ γAT if the unsupervised
approximation quality is used as a measure; it may be CEA ≤ CEAT if the unsupervised
conditional entropy is used as a measure.

3. Proposed Method
3.1. Theoretical Foundations
3.1.1. Quality-to-Entropy Ratio

Many researchers frequently use measures based on single view for attribute reduc-
tion, such as the one of supervised and unsupervised attribute reduction mentioned in
Section 2.3. However, when considering only one perspective, some limitations may exist
and crucial attributes cannot be effectively obtained.

Therefore, we propose a new measure which combines the supervised and unsu-
pervised perspectives. Specifically, the supervised perspective selects the measure of
approximation quality [40] and the unsupervised perspective uses conditional entropy [43].
The new measure can quantitatively describe the relationship between attributes and labels,
and uncover the internal structure of data itself.

Evidently, from Definitions 7 and 11, it is known that the relationship between these
two measures and the importance of attributes is completely opposite. Therefore, we adopt
the form of ratio to unify the relationships. In addition, expressing the conditional entropy
as an exponential function can significantly increase the relationship between conditional
entropy and the importance of the attribute. The specific definition is as follows.

Definition 13. For a given decision system DS and a radius δ ≥ 0, ∀A ⊆ AT, the quality-to-
entropy ratio is defined as

κA(d) =
γA(d)

exp(CEA)
, (13)

in which γA(d) is the approximation quality of d in terms of A as given in Definition 7 and CEA is
the unsupervised conditional entropy over A as given in Definition 11.

According to the form of the quality-to-entropy ratio, when the value of γA(d) is higher
and the value of CEA is lower, the value of κA(d) is higher. From Sections 2.3.1 and 2.3.2,
it can be seen that the higher the value of γA(d), the greater the influence of conditional
attributes on the discriminant performance of decision d; the lower the value of CEA, the
stronger the ability of distinguishing conditional attributes from pseudo-labels. Thus, the
higher the value of κA(d), the stronger the discriminant ability of conditional attributes
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relative to decision making. To sum up, the conclusion is in line with the ultimate goal of
attribute reductions.

Theorem 1. For a given decision system DS, a radius δ ≥ 0, ∀A ⊆ AT, κA(d) ∈ [0, 1].

Proof. γA(d) ∈ [0, 1] holds in accordance with the property of approximate quality in
Definition 7. Similarly, CEA ∈

[
0, |U|e

]
holds in accordance with the property of conditional

entropy in Definition 11, so we can infer that exp(CEA) ∈ [1, e
|U|

e ] holds. Immediately, the
quality-to-entropy ratio κA(d) ∈ [0, 1] holds. Specifically, if γA(d) = 0 and exp(CEA) =

e
|U|

e , κa(d) = 0; if γA(d) = 1 and exp(CEA) = 1, κa(d) = 1.

Definition 14. For a given decision system DS and a threshold θ ∈ [0, 1], ∀A ⊆ AT, A is defined
as a κ-reduct if and only if

(1) κA(d)
κAT(d)

≥ θ;

(2) ∀A1 ⊂ A,
κA1

(d)
κAT(d)

< θ.

By the above definition, it is observed that, as a minimal subset of attributes, κ-reduct
improves the quality-to-entropy ratio. However, the issue of how such reduct can be found
urgently needs to be solved. Generally speaking, we need to evaluate the significance of
attributes in AT, eliminate low-quality attributes from the reduct pool, and select qualified
attributes. Based on the greedy searching for attribute reduction [44–46], Definition 15
provides a significance attribute about our proposed quality-to-entropy ratio.

Definition 15. For a given decision system DS, ∀A ⊆ AT, ∀a ∈ AT − A, we define the
significance about the quality-to-entropy ratio as

Sigκa(d) = κA∪{a}(d)− κA(d). (14)

Obviously, Sigκa(d) ∈ [0, 1] holds. Definition 15 shows that the significance of con-
ditional attributes increases as the value of Sigκa(d) rises. Moreover, the attributes with
high significance are likely to be selected and put into the reduct pool. For example, if
we assume that Sigκa1

(d) < Sigκa2
(d), a1, a2 ∈ AT − A, then κA∪{a1}(d) < κA∪{a2}(d) can

be known. The result illustrates that we prefer a2 to a1 as an element in the candidate
attribute subset.

3.1.2. Forward Greedy Searching to κ-Reduct Based on Granular Ball (GBFGS-κ)

Looking back on the above research, regardless of the searching methods mentioned
in Section 2.3 or the quality-to-entropy ratio mentioned in Section 3.1.1, it is not difficult to
obverse that: (1) searching methods obtain the information granulation based on the whole
universe; and (2) in each iteration, the information granulation in the universe needs to
be recalculated.

From the above reasons, the efficiency of searching methods depends on the size of
the universe. Therefore, in this section, we will propose a forward greedy searching to
κ-reduct based on granular ball. This strategy takes granular balls as groups to reduce the
number of information granulation which need to be recalculated in each iteration. Note
that Figures 1 and 2 describe its basic framework.
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Figure 1. The structure of the granular ball part.

Supervised learning

Unsupervised learning

Figure 2. The structure of the κ-reduct part.

The key steps of our proposed strategy will be explained as follows:
(1) The whole universe U is regarded as a granular ball. Cluster each granular ball by

the two-means algorithm and repeatedly cluster until all balls’ purity are reached.
(2) Generate a new empty granular ball. Transfer samples into this empty granular

ball if the number of samples in an existing granular ball is less than 4.
(3) Record the number of existing granular balls as n, and divide the whole universe

U into n mutually asymmetric groups (U1, U2, · · ·Un). Granular balls correspond to groups
one by one.

(4) Calculate the attribute reduction result A1 on U1 firstly by using the quality-to-
entropy ratio. Then, the attribute reduction result A2 on U1 ∪U2 will be calculated on the
basis of the result A1.

(5) When the constraints are satisfied, a reduction result An is obtained which is the
ultimate attribute reduction result of universe U.

Given the foregoing, it is not formidable to conclude that the forward greedy searching
to the κ-reduct based on granular ball has the following benefits.

• Reduction in the number of iterations and time consumption: the merging of granular
balls with fewer samples into a new ball reduces the number of iterations required,
which decreases the time consumption for the subsequent calculations.

• Iterative refinement implemented in a part of the universe: based on the guiding idea,
our strategy does not need to iteratively refine the information of the whole universe.
This helps improve the efficiency of the attribute reduction process.

• Consideration of diversity evaluation [47,48] and complex constraints [32]: our strat-
egy combines supervised and unsupervised learning methods to identify more signifi-
cant attributes and eliminate issues that may arise from a single perspective.
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3.2. Detailed Algorithm

According to the discussion in Section 3.1, our new strategy firstly generates granular
balls by iteratively applying two-means clustering on the whole dataset. Then, we merge
granular balls with fewer samples. The specific algorithm of this step is given in Algorithm 1.

Algorithm 1: Modified generation of granular balls.
Input: Decision system DS, the threshold θ.
Output: Granular balls’ index of each sample.

1 Create two granular balls: Di
1 and Di

2, using the two-means clustering algorithm
on the decision system DS, with i initialized to 1 indicating the number of
iterations;

2 For each Di
j do

3 The center C of Di
j is the center point of all samples;

4 The radius r is the average of the distances from all samples in the Di
j to C;

5 The purity of purei
j can be indicative of the proportion of all samples with the

same label as pellets in Di
j;

6 If purei
j is lower than θ Then

7 two-means algorithm is used to decompose Di
j;

8 End
9 End

10 If the Purity of each granular ball is higher than θ Then
11 End;
12 Else
13 i = i + 1;
14 Go to Step 2;
15 End
16 End
17 Generate a new granular ball to store granular balls with less data;
18 Traverse each created granular ball and put samples in granular balls with less

than 4 samples into the new granular ball;
19 Return granular balls’ index of each sample.

Secondly, we select any one of granular balls, quickly identify the data in this granular
ball, and obtain the attributes which meet the constraints by κ-reduct. Algorithm 2 explains
the above process to us.
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Algorithm 2: Forward greedy searching to κ-reduct (FGS-κ).
Input: Decision system DS, the threshold θ, and a radius δ.
Output: A κ-reduct A.

1 A = ∅;
2 Compute the supervised approximation quality γAT(d);
3 For each a ∈ AT do
4 a is used to generate pseudo labels of samples in U;
5 End
6 Compute the unsupervised conditional entropy CEAT ;
7 Compute quality-to-entropy ratio κAT(d);
8 Repeat
9 For each a ∈ AT − A do

10 Compute γA
⋃{a}(d);

11 Compute CEA
⋃{a};

12 Compute κA
⋃{a}(d);

13 End
14 Select attribute b = argmax{Sigκa(d) : ∀a ∈ AT − A};
15 A = A ∪ {b};
16 Compute κA(d);

17 Until
κA(d)
κAT(d)

< θ;

18 Return A.

Finally, by constantly merging small universes, the reduction results obtained from
previous merged small universes can be used as a guide for subsequent calculations. In
other words, attributes are added on the basis of the results which obtained before merging,
so as to improve the stability of reduction.

The complete algorithm of our proposed strategy is given in Algorithm 3.

Algorithm 3: Forward greedy searching to κ-reduct based on granular ball
(GBFGS-κ).

Input: Decision system DS, the threshold θ, and a radius δ.
Output: A reduct A.

1 Obtain granular balls’ index of each sample by using Algorithm 1;
2 Compute the number of generated granular balls, which is the value of n;
3 Divide the whole universe U into n groups correspondingly based on the number

of granular balls, such as U1, U2, · · ·Un ;
4 Obtain reduct A1 over U1 by using Algorithm 2;
5 For i = 2 : n do
6 Ai = Ai−1;
7 Repeat
8 For each a ∈ AT − Ai do
9 Compute γAi

⋃{a}(d);
10 Compute CEAi

⋃{a};
11 Compute κAi

⋃{a}(d);
12 End
13 Select attribute b = argmax{Sigκa(d) : ∀a ∈ AT − Ai} with a standard;
14 Ai = Ai ∪ {b};
15 Compute κAi (d);

16 Until
κAi (d)
κAT(d)

< θ;

17 End
18 Return A.
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In line with the process of Algorithm 3, it is not difficult to calculate the time complexity
of forward greedy searching to κ-reduct based on a granular ball.

The first and foremost, in the process of generating granular balls, the universe U
will be clustered into

∣∣GBU
AT

∣∣ granular balls, resulting in a maximum of (|U| ×
∣∣GBU

AT

∣∣)
iterations. There is one more point: when employing the κ-reduct method, pseudo-labels
produced by k-means clustering have a time complexity of O(k · T · |U| · |AT|), where k is
the number of clusters and T is the total number of k-means iterations. Last but not the
least, in the process of recursively calculating κA(d), the worst case may require adding
all of the attributes in AT to the reduct pool. Obviously, the total number of times of
traversing κA(d) will reach (|AT|+ (|AT| − 1) + (|AT| − 2) + · · ·+ 2 + 1). In summary,
the time complexity of Algorithm 3 is |U| ×

∣∣GBU
AT

∣∣+ |AT| × |AT|3.

4. Experimental Analysis
4.1. Datasets

We use 16 UCI datasets for verification to demonstrate the effectiveness of our forward
greedy searching to κ-reduct based on the granular ball (GBFGS-κ). Table 1 provides a
thorough explanation of the various datasets.

Table 1. Dataset descriptions.

ID Datasets Samples Attributes Labels

1 Cardiotocography 2126 21 10
2 Climate Model Simulation Crashes 540 20 2
3 Diabetic Retinopathy Debrecen 1151 19 2
4 Forest Type Mapping 523 27 4
5 Ionosphere 351 34 2
6 Libras Movement 360 90 15
7 Parkinson Speech 1208 26 2
8 Pen-Based Recognition of Handwritten Digits 10,992 16 10
9 Statlog (Image Segmentation) 2310 18 7

10 Statlog (Landsat Satellite) 6435 36 7
11 Statlog (Vehicle Silhouettes) 846 18 4
12 Twonorm 7400 19 2
13 Ultrasonic Flowmeter Diagnostics-Meter D 180 43 4
14 Urban Land Cover 675 147 9
15 Wall-Following Robot Navigation 5456 24 3
16 Wisconsin Diagnostic Breast Cancer 569 30 2

4.2. Experimental Configuration

All experiments were conducted on a personal computer with Windows 10, Intel
Core i7-10510U CPU(2.30 GHz) and 8.00 GB memory. The programming environment is
MATLAB R2020a.

In the following experiment, the two-means algorithm was used to iteratively create
granular balls, k-means clustering [44,49] was utilized to create pseudo-labels of samples,
and quality-to-entropy ratio was the measure used in attribute reduction. It is rather
remarkable that the value of k should be consistent with the number of decision classes in
the data. In addition, the result of the neighborhood rough set largely depends on the given
radius. In order to demonstrate the applicability and universality of our proposed method,
all experiments employed 20 radii with a step size of 0.02, which are 0.02, 0.04,. . ., 0.40.

Moreover, the deduction simplification process was verified by 10-fold cross-validation.
That is to say, for each radius, the samples in universe U were divided into ten groups, i.e.,
U1, U2, · · ·U10, then, nine of them were used as training groups and the rest was used as
the test group. Repeat 10-fold cross-validation process for 10 times to ensure each group
serves as a test group, so as to test the classification performance and obtain a reliable and
stable model.
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Finally, we used K-nearest neighbor (KNN, K = 3) [50,51], support vector machine
(SVM) [52] and classification and regression tree (CART) [53] to compare our proposed
method with six progressive algorithms in terms of attribute reduction as well as with the
algorithm without applying any attribute reduction methods (No-reduct classification). The
performance of the derived reducers was mainly tested from the aspects of classification
stability, classification accuracy, reduced stability, and elapsed time. The attribute reduction
algorithms used for comparison are as follows:

(1) Dissimilarity Based Searching for Attribute Reduction (DBSAR) [54];
(2) Knowledge Change Rate (KCR) [55];
(3) Attribute Group (AG) [56];
(4) Ensemble Selector For Attribute Reduction (ESAR) [47];
(5) Multi-criterion Neighborhood Attribute Reduction (MNAR) [32];
(6) Robust Attribute Reduction Based On Rough Sets (RARR) [57].

4.3. Comparison of Classification Accuracy

In this section, we will use KNN, SVM and CART to predict the test samples to weigh
up the classification accuracy of each algorithm. Immediately, for attribute reduction
algorithms, given a decision system DS, the classification accuracy applied to reduction is
defined as

Accred =
|{xi ∈ red|Prered(xi) = d(xi)}|

|U| , (15)

in which Prered(xi) is the prediction label made using reduct red for xi.
Table 2 displays the detailed classification accuracy results for each algorithm on

16 datasets and Figure 3 illustrates the radar charts for each dataset under the three clas-
sifiers with three different colors. The following conclusions can easily be reached by
observing Table 2 and Figure 3.

(1) For the majority of datasets, regardless of whether the KNN, SVM, or CART classifier
is used, the classification accuracies related to GBSAR-κ outperform other compari-
son algorithms. Taking the dataset “Parkinson Speech (ID: 7)” as an example, when
KNN classifier is adopted, the classification accuracies of GBSAR-κ, DBSAR, BCKCR,
AG, ESAR, MMAR, RAAR, and No-reduct classification each are 0.7259, 0.7063, 0.7008,
0.7093, 0.7031, 0.7253, 0.7095, and 0.6984, respectively; when using the SVM classifier,
the classification accuracies of GBSAR-κ, DBSAR, BCKCR, AG, ESAR, MMAR, RAAR,
and No-reduct classification are 0.6661, 0.6532, 0.6521, 0.6548, 0.6543, 0.6639, 0.6539, and
0.6488, respectively; by employing CART, the classification accuracies of GBSAR-κ, DB-
SAR, BCKCR, AG, ESAR, MMAR, RAAR, and No-reduct classification are 0.6433, 0.6429,
0.6420, 0.6413, 0.6424, 0.6307, 0.6421, and 0.6419 respectively. Therefore, the simplification
derived from our GBSAR-κ can offer an effective categorization performance.

(2) From the average classification accuracy of each algorithm, the classification accuracy
associated with GBSAR-κ is comparable or even more significant than that of DBSAR,
BCKCR, AG, ESAR, MMAR, RAAR, and No-reduct classification. When using the
KNN classifier, GBSAR-κ’s classification accuracy is 0.8258, which is at most 32.21%
higher than those of others; when the SVM classifier is utilized, GBSAR-κ’s classi-
fication accuracy is 0.7903, which is at most 34.12% higher than those of others; by
employing CART, GBSAR-κ’s classification accuracy is 0.8090, which is at most 27.35%
higher than those of others.
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Table 2. The comparisons of the classification accuracies.

Classifier ID GBSAR-κ DBSAR BCKCR AG ESAR MNAR RARR No-Reduct
Classification

KNN

1 0.7654 0.7526 0.7576 0.7633 0.7602 0.3995 0.7532 0.7318
2 0.9266 0.9080 0.9265 0.9120 0.9041 0.8926 0.8942 0.9059
3 0.6147 0.6078 0.6144 0.6114 0.6103 0.5104 0.6121 0.6061
4 0.8729 0.8670 0.8604 0.8728 0.8649 0.7086 0.8684 0.8476
5 0.8947 0.8699 0.8790 0.8869 0.8864 0.7086 0.8944 0.8714
6 0.6976 0.6746 0.6585 0.6674 0.6578 0.6583 0.5349 0.6544
7 0.7259 0.7063 0.7008 0.7093 0.7031 0.7253 0.7095 0.6984
8 0.9742 0.9670 0.9658 0.9683 0.9657 0.2732 0.2093 0.9605
9 0.9444 0.9435 0.9418 0.9413 0.9343 0.5268 0.1589 0.9367
10 0.8897 0.8897 0.8890 0.8934 0.8890 0.5176 0.4929 0.8883
11 0.6546 0.6464 0.6386 0.6528 0.6409 0.4722 0.6139 0.6323
12 0.9131 0.8997 0.8958 0.8979 0.8971 0.6034 0.6065 0.8954
13 0.8391 0.7658 0.7767 0.8014 0.7700 0.7889 0.8389 0.7681
14 0.6801 0.6702 0.6701 0.6929 0.7004 0.5941 0.6879 0.7556
15 0.8596 0.8619 0.8690 0.8670 0.8631 0.7314 0.5795 0.8534
16 0.9604 0.9549 0.9511 0.9533 0.9550 0.8825 0.9602 0.9499

Average 0.8258 0.8116 0.8122 0.8182 0.8126 0.6246 0.6509 0.8097
↑1.75% ↑1.68% ↑0.93% ↑1.62% ↑32.21% ↑26.87% ↑1.98%

SVM

1 0.7723 0.7460 0.7452 0.7542 0.7534 0.4579 0.7564 0.7406
2 0.9208 0.9089 0.9200 0.9104 0.9074 0.9074 0.9077 0.9092
3 0.6371 0.6280 0.6227 0.6285 0.6279 0.5435 0.6356 0.6210
4 0.8717 0.8671 0.8548 0.8671 0.8650 0.6419 0.8635 0.8381
5 0.8939 0.8369 0.8366 0.8644 0.8826 0.8000 0.8937 0.8014
6 0.5454 0.4736 0.4717 0.4697 0.4922 0.4306 0.3679 0.4567
7 0.6661 0.6532 0.6521 0.6548 0.6543 0.6639 0.6539 0.6488
8 0.9353 0.9128 0.9145 0.9192 0.9186 0.3233 0.3015 0.9041
9 0.9279 0.9168 0.9149 0.9179 0.9105 0.4740 0.1498 0.9102
10 0.8615 0.8572 0.8612 0.8611 0.8579 0.5750 0.5740 0.8466
11 0.6342 0.6230 0.6046 0.6313 0.6141 0.3988 0.5934 0.5872
12 0.9401 0.9266 0.9217 0.9239 0.9248 0.6624 0.6773 0.9196
13 0.6391 0.5833 0.5617 0.5911 0.5961 0.5833 0.6389 0.6478
14 0.7387 0.7269 0.7537 0.7613 0.7399 0.4889 0.7210 0.7267
15 0.6808 0.6635 0.6572 0.6755 0.6602 0.6020 0.4574 0.6575
16 0.9805 0.9688 0.9641 0.9645 0.9689 0.8754 0.9794 0.9602

Average 0.7903 0.7683 0.7660 0.7747 0.7734 0.5893 0.6357 0.7610
↑2.87% ↑3.17% ↑2.02% ↑2.20% ↑34.12% ↑24.32% ↑3.86%

CART

1 0.8090 0.7946 0.8022 0.8046 0.8021 0.4673 0.7978 0.7906
2 0.9280 0.9071 0.9275 0.9139 0.8936 0.8611 0.8768 0.8982
3 0.6157 0.6066 0.6052 0.6094 0.6137 0.5783 0.6047 0.6017
4 0.8100 0.8013 0.7943 0.8096 0.8074 0.7124 0.8014 0.8005
5 0.8833 0.8651 0.8669 0.8664 0.8793 0.8114 0.8827 0.8613
6 0.5038 0.4939 0.4908 0.4885 0.4718 0.4528 0.4156 0.4861
7 0.6433 0.6429 0.6420 0.6413 0.6424 0.6307 0.6421 0.6419
8 0.9270 0.9186 0.9244 0.9261 0.9258 0.3539 0.3045 0.9218
9 0.9506 0.9502 0.9465 0.9501 0.9444 0.5654 0.1498 0.9416
10 0.8513 0.8468 0.8493 0.8510 0.8451 0.5848 0.5910 0.8400
11 0.6794 0.6603 0.6515 0.6748 0.6572 0.5077 0.6391 0.6641
12 0.8205 0.8160 0.8160 0.8160 0.8168 0.5886 0.5966 0.8091
13 0.8782 0.8467 0.8339 0.8531 0.8183 0.8056 0.8778 0.8667
14 0.7311 0.7199 0.7567 0.7670 0.7686 0.6341 0.7583 0.7282
15 0.9847 0.9830 0.9824 0.9844 0.9819 0.7402 0.6216 0.9817
16 0.9286 0.9238 0.9283 0.9196 0.9250 0.8702 0.9087 0.9174

Average 0.8090 0.7986 0.8011 0.8047 0.7996 0.6353 0.6543 0.7969
↑1.31% ↑0.99% ↑0.53% ↑1.18% ↑27.35% ↑23.65% ↑1.52%
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4.4. Comparison of Classification Stability

In this section, similarly to Section 4.3, we will evaluate the classification stability of
each algorithm under KNN, SVM, and CART based on six advanced attribute reduction
algorithms and a classification algorithm without applying any attribute reduction. Higher
values of classification stability imply that the predicted label result is more stable and less
susceptible to interference from the training samples.

Following the use of three classifiers on 16 datasets, Table 3 and Figure 4 show the
classification stability findings of each algorithm. The following conclusions can easily be
drawn in Table 3 and Figure 4.

(a) ID-1 (b) ID-2 (c) ID-3 (d) ID-4

(e) ID-5 (f) ID-6 (g) ID-7 (h) ID-8

(i) ID-9 (j) ID-10 (k) ID-11 (l) ID-12

(m) ID-13 (n) ID-14 (o) ID-15 (p) ID-16

Figure 3. Classification accuracies of three classifiers.

(1) For most datasets, our GBSAR-κ algorithm plays a leading role in classification sta-
bility compared with other algorithms. Moreover, predictions based on the features
related to GBSAR-κ gain absolute advantages for some datasets. Consider the dataset
“Twonorm (ID: 12)” as an example: when the KNN classifier is used, the classification
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accuracies of GBSAR-κ, DBSAR, BCKCR, AG, ESAR, MMAR, RAAR, and No-reduct
classification are 0.9300, 0.8934, 0.8747, 0.8744, 0.8809, 0.5300, 0.7139, and 0.8772, re-
spectively; when adopting the SVM classifier, the classification accuracies of GBSAR-κ,
DBSAR, BCKCR, AG, ESAR, MMAR, RAAR, and No-reduct classification are 0.9693,
0.9333, 0.9140, 0.9116, 0.9224, 0.5582, 0.8164, and 0.9458, respectively; when using
CART, the classification accuracies of GBSAR-κ, DBSAR, BCKCR, AG, ESAR, MMAR,
RAAR, and No-reduct classification are 0.7723, 0.7600, 0.7531, 0.7491, 0.7564, 0.5216,
0.6803, and 0.7512, respectively. Therefore, from the standpoint of classifier stability,
GBSAR-κ can indeed provide a more stable classification performance.

(2) In terms of average classification accuracy, the classification stability connected with
GBSAR-κ is far superior to the other algorithms. Moreover, when employing KNN
classifier, the classification stability of GBSAR-κ is 0.9015, which is at most 24.52%
higher than those of other methods; the classification stability of GBSAR-κ using
SVM classifier is 0.9336, which is at most 14.67% higher than those of others; the
classification stability of GBSAR-κ through the use of CART classifier is 0.8301, which
is at most 12.92% higher than those of others.

Table 3. The comparisons of classification stabilities.

Classifier ID GBSAR-κ DBSAR BCKCR AG ESAR MNAR RARR No-Reduct
Classification

KNN

1 0.8855 0.8822 0.8750 0.8540 0.8708 0.6706 0.8762 0.8719
2 0.9707 0.9395 0.9359 0.9308 0.9458 0.9704 0.9658 0.9380
3 0.7943 0.7933 0.7683 0.7726 0.7814 0.4713 0.7890 0.7660
4 0.9338 0.9295 0.9103 0.9232 0.9246 0.6990 0.9285 0.9017
5 0.9223 0.8661 0.8633 0.8704 0.8936 0.6057 0.9363 0.8601
6 0.8032 0.7596 0.7556 0.7538 0.7826 0.7611 0.7019 0.7517
7 0.8165 0.8249 0.8068 0.8062 0.8142 0.8573 0.8274 0.8046
8 0.9787 0.9677 0.9664 0.9591 0.9628 0.6905 0.8602 0.9555
9 0.9925 0.9770 0.9738 0.9688 0.9661 0.5948 0.9909 0.9678
10 0.9461 0.9427 0.9428 0.9377 0.9388 0.8824 0.8378 0.9360
11 0.8358 0.8252 0.8156 0.8144 0.8247 0.6379 0.8350 0.8138
12 0.9300 0.8934 0.8747 0.8744 0.8809 0.5300 0.7139 0.8772
13 0.9453 0.8531 0.8744 0.8708 0.8997 0.7944 0.9444 0.8544
14 0.7976 0.7657 0.7493 0.7527 0.7866 0.6519 0.8101 0.7554
15 0.9061 0.9066 0.9023 0.8904 0.9001 0.9351 0.9043 0.9010
16 0.9658 0.9599 0.9581 0.9530 0.9618 0.8316 0.9654 0.9542

Average 0.9015 0.8804 0.8733 0.8708 0.8834 0.7240 0.8680 0.8642
↑2.40% ↑3.23% ↑3.53% ↑2.05% ↑24.52% ↑3.87% ↑3.70%

SVM

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9722
2 0.9974 0.9973 0.9845 0.9944 1.0000 1.0000 0.9994 0.9870
3 0.9244 0.9322 0.9220 0.9207 0.9261 1.0000 0.9239 0.9160
4 0.9669 0.9645 0.9535 0.9565 0.9638 0.7752 0.9654 0.9586
5 0.9337 0.8710 0.8967 0.8977 0.9313 0.9143 0.9586 0.9543
6 0.7925 0.7518 0.7608 0.7489 0.7728 0.6861 0.7393 0.7717
7 0.9618 0.9361 0.9381 0.9259 0.9420 0.9610 0.9454 0.9396
8 0.9708 0.9477 0.9500 0.9266 0.9458 0.6466 0.9566 0.9632
9 0.9806 0.9796 0.9748 0.9677 0.9640 0.7281 0.7455 0.9699
10 0.9738 0.9697 0.9732 0.9670 0.9674 0.8678 0.8876 0.9680
11 0.8917 0.8851 0.8770 0.8747 0.8782 0.6580 0.8773 0.8568
12 0.9693 0.9333 0.9140 0.9116 0.9224 0.5582 0.8164 0.9458
13 0.7781 0.7575 0.7475 0.7542 0.7575 0.7556 0.7778 0.6333
14 0.8753 0.8667 0.8574 0.8661 0.8476 0.6133 0.9049 0.8959
15 0.9246 0.9375 0.9310 0.9014 0.9286 0.9991 1.0000 0.9434
16 0.9968 0.9894 0.9861 0.9817 0.9857 0.8632 0.9954 0.9865

Average 0.9336 0.9200 0.9167 0.9122 0.9208 0.8142 0.9058 0.9114
↑1.48% ↑1.85% ↑2.35% ↑1.39% ↑14.67% ↑3.06% ↑1.88%



Symmetry 2023, 15, 996 16 of 21

Table 3. Cont.

Classifier ID GBSAR-κ DBSAR BCKCR AG ESAR MNAR RARR No-Reduct
Classification

CART

1 0.8366 0.8268 0.8358 0.8081 0.8282 0.7040 0.8150 0.8055
2 0.9245 0.9013 0.9203 0.9053 0.9031 0.8852 0.8993 0.9037
3 0.6464 0.6440 0.6401 0.6371 0.6347 0.5330 0.6394 0.6390
4 0.9016 0.8905 0.8726 0.8879 0.8947 0.7771 0.9013 0.8776
5 0.9144 0.8330 0.8679 0.8514 0.8939 0.9143 0.9036 0.8600
6 0.6468 0.6396 0.6689 0.6472 0.6631 0.6556 0.6583 0.6028
7 0.6419 0.6411 0.6382 0.6338 0.6392 0.6315 0.6375 0.6259
8 0.9258 0.9087 0.9140 0.9040 0.9158 0.6673 0.9499 0.9088
9 0.9484 0.9479 0.9422 0.9453 0.9390 0.6264 0.7732 0.9383
10 0.8582 0.8537 0.8579 0.8565 0.8557 0.8662 0.8368 0.8457
11 0.7363 0.7129 0.6980 0.7243 0.7275 0.6793 0.7121 0.7244
12 0.7723 0.7600 0.7531 0.7491 0.7564 0.5216 0.6803 0.7512
13 0.8836 0.8431 0.8369 0.8472 0.8406 0.8278 0.8833 0.8356
14 0.7221 0.7430 0.7545 0.7552 0.7499 0.7452 0.7760 0.7628
15 0.9811 0.9808 0.9796 0.9805 0.9791 0.9333 0.8933 0.9771
16 0.9417 0.9312 0.9411 0.9261 0.9267 0.7947 0.9246 0.9298

Average 0.8301 0.8161 0.8201 0.8162 0.8217 0.7352 0.8052 0.8118
↑1.72% ↑1.23% ↑1.71% ↑1.02% ↑12.92% ↑3.09% ↑2.26%

4.5. Comparison of Reduced Stability

In this section, we will show the reduced stability of the attribute reduction corre-
sponding to 16 datasets. The specific results are given in Table 4.

The information shown in Table 4 indicates that the reduced stability of GBSAR-κ
is slightly lower than RARR, but still in a leading position. Obviously, compared with
DBSAR, BCKCR, AG, ESAR, and MMAR, the average reduced stability value of GBSAR-κ
is increased by 17.21%, 27.74%, 46.53%, 10.99%, and 111.21%, while it only decreases by
0.93% compared with RARR.

In general, although the reduced stability of our GBSAR-κ is not inferior to the result
of RAAR for many datasets, its result is better than the six advanced algorithms in terms
of attribute reduction in some cases. For instance, as far as the dataset “Climate Model
Simulation Crashes (ID: 2)” is concerned, the reduced stabilities of GBSAR-κ, DBSAR,
BCKCR, AG, ESAR, MMAR, and RAAR are 0.6605, 0.3265, 0.5284, 0.3483, 0.5814, 0.0545,
and 0.3773, respectively. Compared with other algorithms, the result of GBSAR-κ is
improved by 102.29%, 25.00%, 89.64%, 13.61%, 1111.93%, and 75.06%, respectively.

Therefore, it should be pointed out that using GBSAR-κ is more conducive to selecting
attributes which are more suitable for sample changes.

4.6. Comparisons of Elapsed Time

In this section, we will compare the time taken to derive a simplification using different
algorithms. The detailed results are reported in Table 5.

Following a thorough analysis of Table 5, it is not difficult to come to the findings that
are listed below.

Considering the reduced stability mentioned in Section 4.5 and the reduced length
conflict with each other, it can be concluded that the higher the value of reduced stability,
the longer the reduced length. Apparently, the reduced length of GBSAR-κ is longer, which
indicates that, in the simplification process, our algorithm needs to be strengthened in
terms of the time speed.
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(a) ID-1 (b) ID-2 (c) ID-3 (d) ID-4

(e) ID-5 (f) ID-6 (g) ID-7 (h) ID-8

(i) ID-9 (j) ID-10 (k) ID-11 (l) ID-12

(m) ID-13 (n) ID-14 (o) ID-15 (p) ID-16

Figure 4. Classification stabilities of three classifiers.

From the view of the average elapsed time, it is worth mentioning that the value
of GBSAR-κ is 56.42% and 65.42% lower than BCKCR and RARR, respectively. Taking
the dataset “Pen-Based Recognition of Handwritten Digits (ID: 8)” as an example, the
speed-up ratios of GBSAR-κ algorithm reached 0.9777, 7.6960, 1.3714, 1.9355, 0.0891, and
8.4364, respectively, when the elapsed times of GBSAR-κ, DBSAR, BCKCR, AG, ESAR,
MMAR, and RAAR each are 175.1957, 171.2967, 1348.3062, 240.2581, 339.0988, 15.6138, and
1478.0267 s. Therefore, the elapsed time of GBSAR-κ for attribute reduction is lower than
that of AG and ESAR under some circumstances.

From the above discussion, it is observed that, even though the elapsed time of our new
algorithm is better than BCKCR and RARR in some datasets, GBSAR-κ’s speed performance
still has to be improved.
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Table 4. The reduced stabilities of deriving reducts.

ID GBSAR-κ DBSAR BCKCR AG ESAR MNAR RARR

1 0.9145 0.9280 0.8327 0.8258 0.8707 0.2000 0.9916
2 0.6605 0.3265 0.5284 0.3483 0.5814 0.0545 0.3773
3 0.9270 0.9356 0.7868 0.8032 0.8979 0.4000 0.9223
4 0.7816 0.7437 0.6017 0.6037 0.7164 0.1601 0.8677
5 0.5760 0.3647 0.2902 0.2940 0.5003 0.6308 0.9277
6 0.6587 0.2059 0.1535 0.1232 0.6033 0.1275 0.4888
7 0.8245 0.8687 0.7659 0.7281 0.8007 1.0000 0.9045
8 0.9054 0.7672 0.7155 0.5962 0.7502 0.3000 1.0000
9 0.9154 0.8968 0.8698 0.6712 0.7945 0.3000 1.0000

10 0.8609 0.7723 0.7883 0.6549 0.7442 0.6000 0.4000
11 0.8246 0.8280 0.8033 0.7261 0.8150 0.4000 0.8588
12 0.9006 0.7154 0.5958 0.5818 0.6374 0.1498 0.6000
13 0.8505 0.6466 0.6212 0.4254 0.9210 0.2051 0.9506
14 0.5577 0.3813 0.2996 0.1764 0.5346 0.4933 0.7277
15 0.8960 0.8788 0.7955 0.7183 0.8257 1.0000 1.0000
16 0.7588 0.6716 0.5824 0.4675 0.5506 0.0454 0.9157

Average 0.8008 0.6832 0.6269 0.5465 0.7215 0.3792 0.8083
↑17.21% ↑27.74% ↑46.53% ↑10.99% ↑111.21% ↓0.93%

Table 5. The elapsed time of deriving reducts.

ID GBSAR-κ DBSAR BCKCR AG ESAR MNAR RARR

1 19.5266 5.5508 41.9445 8.2692 10.5207 0.5752 6.3996
2 2.4537 0.2264 1.0938 0.2422 0.3454 0.5560 0.6227
3 7.0172 1.2153 7.0078 1.3858 2.0873 1.2795 4.0856
4 8.7128 0.5402 3.7415 0.6098 1.0057 0.6210 0.8102
5 2.5395 0.1988 1.0046 0.2022 0.3827 0.6178 0.9812
6 420.3743 6.1500 52.1521 7.2298 24.5777 0.8818 6.9134
7 15.1636 1.9076 11.1212 2.1158 3.4122 0.2157 5.7393
8 175.1957 171.2967 1348.3062 240.2581 339.0988 15.6138 1478.0267
9 37.3307 8.8465 61.9768 12.0828 16.6250 0.6550 26.8630

10 349.0610 169.8787 1376.8752 189.1153 322.3408 11.2199 1895.9858
11 7.5416 1.2087 8.4609 1.4569 2.1752 0.7156 1.7449
12 129.9252 33.3983 168.7067 33.4771 51.6800 6.7983 396.9944
13 21.0204 0.2190 2.1228 0.2460 0.6279 0.3357 0.8065
14 229.3661 16.9975 88.5328 19.0665 33.1863 81.6564 19.6492
15 77.3242 39.9955 296.8453 47.7270 74.3894 5.3366 528.5469
16 10.8522 0.6336 3.1715 0.6430 1.0178 2.0033 2.4340

Average 94.5878 28.6415 217.0665 35.2580 55.2170 8.0676 273.5377
↑230.25% ↓56.42% ↑168.27% ↑71.30% ↑1072.44% ↓65.42%

5. Conclusions and Future Perspectives

In this paper, we propose a new searching strategy that differs from conventional
algorithms in the following aspects. On the one hand, by automatically generating granular
balls, there is no time consumption for radius optimization. On the other hand, guidance-
based searching is designed to compress the attribute searching space. In addition, the
quality-to-entropy ratio can overcome the limitations and predictability of the single-
attribute measure method.

Through experiments on 16 UCI datasets, it is not formidable to reveal that our
proposed strategy has quite a positive classification performance and strong stability in the
process of exporting reduction.

Further research can be conducted for the two following aspects:
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(1) Using the fused measure may increase the time of selecting the best attribute. There-
fore, more accelerators [11] can be added to further improve the efficiency and reduce
the time consumption.

(2) The searching strategy proposed in this paper is a general module. Therefore, other
measures based on the rough set can be substituted for the quality-to-entropy ratio,
so as to compare the classification performance under various measures.
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