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Abstract: Traffic flow forecasting is a basic function of intelligent transportation systems, and the
accuracy of prediction is of great significance for traffic management and urban planning. The main
difficulty of traffic flow predictions is that there is complex underlying spatiotemporal dependence in
traffic flow; thus, the existing spatiotemporal graph neural network (STGNN) models need to model
both temporal dependence and spatial dependence. Graph neural networks (GNNs) are adopted
to capture the spatial dependence in traffic flow, which can model the symmetric or asymmetric
spatial relations between nodes in the traffic network. The transmission process of traffic features
in GNNs is guided by the node-to-node relationship (e.g., adjacency or spatial distance) between
nodes, ignoring the spatial dependence caused by local topological constraints in the road network.
To further consider the influence of local topology on the spatial dependence of road networks,
in this paper, we introduce Ollivier–Ricci curvature information between connected edges in the
road network, which is based on optimal transport theory and makes comprehensive use of the
neighborhood-to-neighborhood relationship to guide the transmission process of traffic features
between nodes in STGNNs. Experiments on real-world traffic datasets show that the models with
Ollivier–Ricci curvature information outperforms those based on only node-to-node relationships
between nodes by ten percent on average in the RMSE metric. This study indicates that by utilizing
complex topological features in road networks, spatial dependence can be captured more sufficiently,
further improving the predictive ability of traffic forecasting models.

Keywords: traffic forecasting; spatiotemporal graph convolutional networks; Ollivier–Ricci curvature

1. Introduction

Intelligent transportation system (ITS) is an important component of smart cities,
and they have the potential to contribute to the operational efficiency of urban systems
and rationalization of decision-making. Traffic flow forecasting is one of the fundamental
functions required for ITS, which aims to predict the future traffic flow features of urban
transportation systems (e.g., traffic flow, vehicle density, speed, and passenger demand) us-
ing historical traffic observation data. Accurate traffic prediction results can help optimize
urban traffic scheduling and management and provide convenience to citizens. However,
traffic flow forecasting has long been considered challenging because of the complex spa-
tiotemporal dependence on traffic flows. The complex spatiotemporal dependence in traffic
flow is reflected in two aspects: on the one hand, different nodes on the road network are
intricately spatial dependent, and both neighboring nodes and the geographically distant
but close interacting nodes can influence the traffic flow of the target node; on the other
hand, there is a complex nonlinear correlation among historical traffic observation data.

With the development of deep learning, researchers have conducted extensive studies
on deep learning models for traffic flow forecasting tasks in recent years, such as modeling
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the spatial dependence among traffic nodes by convolutional neural networks (CNNs) [1]
or graph neural networks (GNNs) [2]; capturing the temporal dependence between the
traffic flow of nodes at future moments and historical observations by CNN or recurrent
neural networks (RNNs); and obtaining spatiotemporal features that can be used to predict
the future traffic conditions by combining temporal and spatial features learned from
historical data. Regarding spatial dependence modeling, current mainstream traffic flow
forecasting models use graph neural networks to model spatial dependence because CNN
architecture does not match traffic network data with complex topologies, while GNNs can
model graph data more naturally. Most graph neural networks are effective in modeling
graph data because their message passing mechanism [3] enables graph neural networks to
predict the traffic feature of a single node using traffic information of local or global nodes,
so these graph neural networks are also called message passing neural networks (MPNNs).

For traffic flow forecasting, the message-passing mechanism of graph neural networks
is the key to modeling the spatial dependence of road network nodes. The graph structure
which guides the message-passing process can represent the spatial dependence in the
road network, and how to model the spatial dependence and construct the graph structure
has long been a research topic. The existing traffic forecasting methods based on the
road network graph structure for message passing are mainly based on the node-to-node
relations between nodes (e.g., node adjacency on the road network, the spatial distance
between nodes) to guide the message passing process of GNNs, and the underlying
assumption is that the neighboring nodes on the road network share the similar traffic
pattern or the closer nodes have stronger traffic connections. The mechanism of adjacency
graph-based message passing is shown in Figure 1a, where features of neighboring nodes
are assigned equal weights in the process of feature aggregating [4–6]; the mechanism of
spatial distance graph-based message passing is shown in Figure 1b, where the relationship
between weight and distance is usually determined by a Gaussian kernel function (i.e., the
aggregation weight to neighboring nodes is inversely proportional to the square of spatial
distance) [7–9].

Most existing methods that consider the topology of the road network are only con-
cerned with adjacency relations, which only consider simple node-to-node relations and
neglect the interactions between communities in the road network. However, we argue that
the Ollivier–Ricci curvature [10], as an intrinsic topological property of the road network,
has a large impact on the traffic flow and can be used to measure the influence of the
neighborhood-to-neighborhood relationships between nodes on the spatial dependence.
Bottleneck edges are of great importance for the interactions between communities, and
Ollivier–Ricci curvature can be used to measure the bottleneck degree of edges in a road
network. As shown in Figure 2, traffic transmission between nodes in different regions is
often carried by a few bottleneck edges with high negative curvature in the local network
(e.g., the bridge in Figure 2), and “bottleneck” means the neighborhoods of the nodes at
both ends of the edge tend to pass through this edge to interact with each other. The more
bottleneck, the greater impact on the traffic flow of each other for two nodes connected by
this bottleneck edge. The edges with positive curvatures, on the other hand, connect the
nodes within the same community and are not likely to be bottlenecks in the road network.
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(a)

(b)

Figure 1. Road network graph structure of existing traffic forecasting STGNNs for message passing.
(a) Adjacency graph: node x1, x2, and x3 have the same impact on the traffic flow of x. (b) Spatial
distance graph: closer nodes have a stronger impact on the traffic state of the target node.

Figure 2. The bottleneck edge in road network.

In this paper, we conduct experiments on several real-world traffic datasets to verify
whether applying Ollivier–Ricci curvature information to guide the message passing
process of the STGNNs model can improve traffic forecasting performance, and the results
show that Ollivier–Ricci curvature information is fertile for the traffic flow forecasting
ability of STGNNs. The main contributions of this paper are as follows:

1. We introduce an edge bottleneck coefficient based on the Ollivier–Ricci curvature
to measure the bottleneck coefficient of edges in the road network and take the
neighborhood-to-neighborhood connectivity into consideration.
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2. We design a curvature graph convolution module to utilize this coefficient to guide
the message-passing process of STGNNs and enhance their ability to capture the
spatial dependence of road network nodes.

3. Experiments conducted on two real-world traffic prediction benchmark datasets
show that the proposed enhancement strategy for STGNNs based on Ollivier–Ricci
curvature is effective.

The rest of the paper is organized as follows: Section 2 summarizes the work related
to the traffic flow forecasting model and the design of the road network graph structure;
Section 3 depicts the details of the method proposed in this paper; Section 4 presents the
experiments conducted in this paper, including the validation of the proposed method on a
real-world road network traffic datasets; and Section 5 concludes the whole paper.

2. Related Work
2.1. Deep Learning-Based Traffic Forecasting Methods

In recent years, due to the achievements of deep learning in many challenging and
complex learning tasks [11], much attention has been paid to deep learning, and numerous
deep learning-based traffic prediction methods have been proposed since. Novel deep
neural network architectures are designed to capture complex patterns in historical traf-
fic flow sequences, including spatiotemporal dependence and the influence of external
environmental factors on traffic flow.

To model temporal dependence, early approaches mainly adopt recurrent neural
network-based methods, including long short-term memory (LSTM) networks and gated
recurrent units (GRU). However, RNN-based models are greatly constrained by the problem
of gradient vanishing, making them less friendly to learn from longer sequences. In
response to the shortcomings of RNN-based models, researchers utilize convolutional
neural networks (CNNs) to model traffic flow. For example, dilated convolution [12] is
used to model long-range temporal characteristics.

To model spatial dependence, many researchers initially employ CNNs to model
the correlations between geographic units. Traffic flow prediction models capable of
capturing complex spatiotemporal patterns are formed through the fusion of multiple
network architectures. For example, Zhang et al. propose an ST-ResNet [13], which designs
a residual convolutional network for each attribute of temporal closeness, periodicity, and
trend of crowd flow. Then the outputs of the three networks are aggregated with external
factors to predict the inflow and outflow of crowds in each region of the city. The main
problem with ST-ResNet is that it simply combines spatial dependence with three different
time periods. Ali et al. further propose an AAtt-DHSTNet [14], which can simultaneously
capture the spatiotemporal correlation in crowd flow data. Although the introduction of
CNNs to model spatial dependence among urban units has substantially advanced the
progress of traffic forecasting research, CNNs themselves are not well suited to traffic
networks with complex topologies. In other words, adopting CNNs to model spatial
dependence of road networks is not natural.

In recent years, with the proposal of graph neural networks (GNNs), many methods
for graph-related tasks have emerged [15–17]. For traffic forecasting tasks, GNNs allow
us to model the spatial dependence of road networks more naturally, and methods based
on GNNs to model the spatial dependence of traffic flow have achieved great success in
recent years. Such methods are collectively referred to as spatiotemporal graph neural
networks (STGNNs) in this paper. T-GCN [18] models the spatiotemporal dependence of
traffic flow by fusing GRU and GCN but fails to consider the influence of external factors
on the traffic system. Based on T-GCN, KST-GCN [19] is further proposed, which adopts
knowledge graphs to take the effect of external factors on traffic systems into consideration.
Similarly, GCN-DHSTNet [20] incorporates external factors with the GCN-LSTM network.
However, as RNN-based models, both KST-GCN and GCN-DHSTNet face the problems of
long training time and difficulty in capturing long-range temporal dependence. Yu et al.
propose an STGCN [21] that adopts GCN to capture the spatial dependence in traffic flow



Symmetry 2023, 15, 995 5 of 18

and combines with one-dimensional convolution to capture the temporal dependence, but
the ordinary one-dimensional convolution in STGCN needs to be stacked in multiple layers
to capture the long-range dependence effectively. Therefore, Graph WaveNet [22] applies a
dilated one-dimensional convolution to overcome this issue.

2.2. Spatial Dependence Graph Construction

The key to capturing the spatial dependence of the traffic flow of GNNs lies in their
message-passing mechanism. As shown in Figure 3, features between nodes in the road
networks are passed to neighboring nodes, and traffic features from neighboring nodes
are aggregated, thus, enabling the model to utilize the historical features from both the
neighbors and the node itself to predict the future traffic conditions of a node. As a way
to model spatial dependence, how to construct the graph structures that message passing
in STGNNs rely on has long been a research topic in the field of traffic flow forecasting.
Some research measures the spatial dependence between nodes by their temporal similarity
or functional similarity [23–25]. For example, T-MGCN [23] uses the DTW algorithm to
calculate the similarity of temporal patterns and utilizes POI information to measure the
functional similarity between nodes but ignores the impact of road network structure
on the spatial dependence between nodes. Other work constructs spatial dependence
graphs based on the topological structure of the road network or the spatial relations in
the road network [4,5,7,8]. Most STGNNs utilize the distance-based spatial dependence
graph [7,18,21], in which distant nodes are less related to each other, while some other
work considers intersecting roads to be associated [4,5]. However, these methods only
consider simple adjacency relations or distance information without digging deeper into the
essential topological characteristics, while topological characteristics of the road network,
such as curvature, can have a certain impact on traffic flow.

Figure 3. An illustration of message passing in graph neural networks.

2.3. Connection between Discrete Ricci Curvature and Network Properties

Ricci curvature is a measure of the degree to which a manifold deviates locally from
Euclidean space in Riemannian geometry, and it is closely related to the properties of
manifolds and can be used as a powerful tool to solve many problems in differential geom-
etry [26]. Many researchers have explored how to migrate Ricci curvature in continuous
spaces to discrete spaces (e.g., networks) and have conducted studies on the relation be-
tween the average transport distance and discrete Ricci curvature. Ollivier considers the
relation between the transport distance between nodes and the average transport distance
between neighbors of nodes and defines the Ollivier–Ricci curvature [10] based on the
optimal transport theory. Numerous works show that Ollivier–Ricci curvature can be used
to reveal the community structures in complex networks [27], the fragility of road network
topology [28], the supply-demand mismatch in transportation networks [29], and the net-
work congestion phenomenon [30], etc. Forman defines the Forman–Ricci curvature [31]
based on the theoretical framework of CW complex, which can be applied to such fields as
network clustering, network extrapolation [32], and image processing [33].
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3. Methodology
3.1. Problem Definition

The goal of traffic flow forecasting is to predict the future traffic flow of the road
network, given the historical traffic flow. The task can be formalized as a multivariate time
series forecasting problem with additional prior knowledge. For an STGNN, the graph
structure G for subsequent message passing is the a priori knowledge about the spatial
dependence of nodes in the network.

Definition 1 (Graph structure of traffic network G). In this paper, we use G(V, E, A) to
represent the road network structure, where V denotes the set of nodes representing different
locations (e.g., road sections, sensors) in the road network, E denotes the set of connected edges
between nodes, and A is the adjacency matrix indicating the node-to-node relations (e.g., adjacency,
geographic distance, similarity, etc.) between nodes. N (i) denotes the set of neighbors of node i.

Definition 2 (Traffic flow features tensor XN×F×T). The traffic flow of nodes in the road network
at each sample time is the feature of nodes. N represents the size of the node set |V|, F denotes the
number of traffic features such as speed and flow. F is 1 if the prediction is based on the speed of
traffic flow only. T is the number of sample times.

Definition 3 (Traffic forecasting task). As shown in Equation (1), the traffic forecasting task can
be formalized as predicting the traffic flow features tensor in Q future time steps given the graph
structure G and the historical traffic flow features of P time steps.

[
Xt+1, Xt+2, . . . , Xt+Q

]
= f (G; [Xt−P, . . . , Xt−1, Xt]) (1)

3.2. Ollivier–Ricci Curvature of Graphs

The Ollivier–Ricci curvature is defined based on the optimal transport theory. The
problem of optimal transport was first proposed by G. Monge, and it can be formulated
figuratively as finding the transport solution corresponding to the minimum amount of
work required to move a pile of sand from one location to another and to give the pile a
specific shape. If the sand pile in the above example is considered a probability distribution,
and the process of moving the sand pile is considered a transformation between probability
distributions, the “minimum work” corresponding to the optimal transport solution is
equivalent to the distance between probability distributions. Then the problem of optimal
transport can be expressed formally as follows: given a source distribution space X and a
target distribution Y, the cost of transmitting a unit mass from position x in X to position
y in Y is c(x, y), and the problem is to solve a probability distribution transformation
scheme T : X → Y such that the cost of transforming X to Y is minimized. The minimum
transport cost has different representations in different application scenarios. For example,
Kantorovich relaxes the optimal transport problem and proposes that the transport process
is not necessarily deterministic (the mass in a source can only be transported to a target)
but can be probabilistic (the mass in one location can be distributed to multiple other
locations) [34]. Given the probability distributions mi and mj at given points i and j, the
distance between mi and mj can be expressed as Equation (2):

W1
(
mi, mj

)
= inf µi,j∈∏

(
mi, mj

)
∑

(i′ ,j′)∈V×V
d
(
i′, j′

)
µi,j
(
i′, j′

)
(2)

The distance W1
(
mi, mj

)
is called Wasserstein-1 distance, where µi,j is the mass that

needs to be transmitted from point to point when transforming mi to mj; d(i′, j′) denotes
the metric, for example, the distance between two nodes; ∏ (mi, mj) represents the set of
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all joint distributions with mi and mj as marginal distributions, and satisfies the following
relations in Equation (3):

∑
j′∈V

µi,j
(
i′, j′

)
= mi

(
i′
)

, ∑
i′∈V

µi,j
(
i′, j′

)
= mj

(
j′
)

(3)

Equation (3) represents the probability of all possible mass transport processes that
start with mi and end with mj. As a measure between probability distribution, Wasserstein-
1 distance has been successfully applied in computer vision [35], natural language pro-
cessing [36], and other fields. It can also be used as a distance measure between node
neighborhoods in graphs to help recognize patterns in complex networks. For example,
for unweighted graphs, a smaller Wasserstein-1 distance between two nodes indicates that
there are more overlapping nodes between the neighborhoods of these two nodes.

The Ollivier–Ricci curvature of edge ij ∈ E between node i and node j considers the
node-to-node distance between i and j and the neighborhood-to-neighborhood distance,
i.e., Wasserstein-1 distance, and its definition is shown in Equation (4):

κij = 1−
W1
(
mi, mj

)
d(i, j)

(4)

With this definition, now we consider the connection between Ollivier–Ricci curvature
and the local topological characteristics of road networks. Suppose node i and node
j are two nodes in a road network; if node i and node j are in different communities,
then their neighborhoods have few overlapping nodes, and the transport from mi, the
neighborhood of node i, to mj, the neighborhood of node j, is more dependent on the
path ij. As W1

(
mi, mj

)
> d(i, j), the curvature of ij is negative. If node i and node j are

in the same community, then their neighborhoods have many overlapping nodes, and
then the transport from mi to mj is less dependent on the path ij and can be finished via
multiple paths between neighbor nodes. As W1

(
mi, mj

)
< d(i, j), the curvature of edge ij

is now positive.
In the formula of Ollivier–Ricci curvature, the probability distribution function of the

neighborhood of node i ∈ V needs to be defined explicitly. In this paper, we choose a
commonly adopted empirical family of probability distribution [27]:

mα,p
i (x) =


α if x = α
1−α

C · exp(−d(i, x)p) if x ∈ N (i)
0 otherwise

(5)

where hyperparameter α ∈ [0, 1] is used to control the weight of information between the
node itself and its neighboring nodes; the hyperparameter p is used to control the distance
effect between nodes. In particular, when p = 0, mα,0

i (x) = 1−α
|N (i)| , x ∈ N (i) is a uniform

distribution, and the distances between nodes do not affect the probability distribution of
neighborhood. C = ∑x∼i exp(−(d(i, x))p) denotes the normalization factor.

3.3. Curvature Enhanced Graph Neural Networks
3.3.1. Edge Bottleneck Coefficients

As shown in Figure 4, the edges with negative curvature in the network tend to connect
different locally connected communities; and the edges with positive curvature tend to
connect nodes in the same community. Since the interaction between nodes in different
communities is more dependent on the edges with negative curvature in the local topology
of the road network, and the interaction between nodes in the same community relies on
the edges with positive curvature, the value of Ollivier–Ricci curvature can be used to
represent the level of bottleneck for edges in the local network to guide the message passing
between nodes in STGNNs and enhance the ability to capture the spatial dependence of
road network.
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(a) (b) (c)

Figure 4. Illustration of the Ollivier–Ricci curvature of edges on a graph. The weights of edges in (a–c)
are 1. (a) Graph with tree structure, edges connecting each subtree (marked in red) have negative
curvature; (b) infinite uniform grid graph, all edges have zero curvature; (c) complete graph, all
edges have positive curvature.

Although the positive and the negative signs of Ollivier–Ricci curvature are indicative
of the local topological structure of the network, the direct application of the raw curvature
values as weights for message aggregation is not conducive to model training [37]. In this
paper, the edge curvature is normalized so that the obtained edge bottleneck coefficients
rij ∈ [0, 1] are interpretable without having a significant impact on the convergence of the
models. As shown in Equation (6), an edge with negative curvature corresponds to a larger
rij, indicating that the edge connects two communities in the local topological structure of
the road network; an edge with positive curvature corresponds to a smaller rij, indicating
that the two nodes connected by the edge tend to be located in the same community.

rij = 1− 1
1 + e−κij

(6)

3.3.2. Curvature Graph Convolution Module

Most graph neural networks can be classified as message-passing neural networks [38],
which enable nodes to aggregate information from neighboring nodes and update their
own features. Therefore, the node attributes can be predicted based on the features of the
current node and its neighboring nodes, which is the reason why traffic forecasting models
based on STGNNs can exploit the spatial dependence between nodes. The feature update
process in the message passing mechanism can be expressed as Equation (7):

hl+1
i = σ

(
Φj∈N̄ (i)(τijaijW l+1hl

i)
)

(7)

where hl
i denotes the hidden features of node i in the l-th layer; N̄ (i) = N (i) ∪ i is the

union of the neighbors of node i and the node itself; Φj∈N̄ (i)(•) denotes the aggregate
function for aggregating the features from neighboring nodes, some examples are sum(•),
max(•) and avg(•); aij represents the strength of the connection between node i and node
j; τij denotes the normalization coefficient, which considers the effect of the number of
neighboring nodes on feature aggregation and ensures the numerical stability of the model
during training. Generally, τij =

1√
di•
√

dj
, where di = ∑j∈N̄ (i) aij is the degree of node

i when considering self-loop. σ(•) denotes the non-linear activation function, such as
sigmoid(•), relu(•) and tanh(•).

We select the widely used sum(•) function as the aggregation function, relu(•) as
the nonlinear activation function, and introduce the edge bottleneck coefficient rij to
the message passing process, which can measure the influence of the neighborhood-to-
neighborhood structure on the spatial dependence between nodes. In this way, the model
can utilize the local topological information of the road network to guide the message-
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passing process. The message passing process of the curvature graph convolution module
is shown in Equation (8):

hl+1
i = σ

 ∑
j∈N̄ (i)

τijrijaijW l+1hl
i)

 (8)

3.3.3. Loss Function

In this paper, we adopt mean squared error (MSE) as the training objective of traffic
prediction models. To predict the traffic flow of each node in Q future time steps given
historical data of P time steps, the loss function can be defined as Equation (9).

Loss(Wθ) =
i=t+Q

∑
i=t+1

(
X:,i − X′:,i

)2 (9)

where Wθ represents learnable parameters in the model, X:,i denotes the ground truth of
the traffic flow at time step i, and X′:,i denotes the prediction of the traffic flow at time step i.

4. Experiments
4.1. Data Description

To verify the effectiveness of the Ollivier–Ricci curvature-based message aggregation
strategy, experiments are conducted on two real-world traffic datasets, covering traffic
speed prediction and traffic flow prediction tasks. The basic information of the datasets is
shown in Table 1.

Table 1. Basic information of two real-world traffic speed and flow datasets.

Dataset Number
of Nodes

Sampling
Interval

Time Span Feature to be
Predicted

PEMS-BAY 325 5 min 1 January 2017–30 June 2017 Speed
PEMSD7 883 5 min 1 July 2016–31 August 2016 Flow

• PEMS–BAY. PEMS–BAY dataset is a traffic speed dataset collected by California
Transportation Agencies (CalTrans), containing the traffic speed data from 1 January
2017 to 30 June 2017, collected from 325 sensors. The data distribution is shown in
Figure 5.

• PEMSD7. PEMSD7 dataset contains traffic flow data collected by 883 sensors in
District 7 of California from 1 July 2016 to 31 August 2016. The data distribution is
shown in Figure 6.

Figure 5. The distribution of traffic speed in the PEMS-BAY dataset.
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Figure 6. The distribution of traffic speed in the PEMSD7 dataset.

4.2. Backbone Models and Evaluation Metrics
4.2.1. Backbone Models

We select STGNNs that only consider using road network structures such as distance
graphs or adjacency graphs as baselines to fairly and intuitively evaluate the improvement
brought by introducing curvature graphs. Backbone models that meet the above criteria
are listed as follows:

1. STGCN [21]
In STGCN, the spatial dependence of traffic data is modeled by GCN, where the graph
for message propagation is constructed based on the spatial distance between nodes.
The temporal dependence is modeled by a 1D convolutional neural network.

2. T-GCN [18]
T-GCN adopts GCN and GRU to model spatial dependence and temporal dependence,
respectively. The graph for message propagation is constructed based on spatial
distances.

4.2.2. Comparison Setup

To evaluate the effectiveness of incorporating local topology for capturing the spatial
dependence of road networks, we obtain the model to be validated (labeled as Backbone+)
by replacing the graph convolution module with the curvature graph convolution module
proposed in this paper. Meanwhile, to further investigate the influence of spatial distance
on traffic prediction, we replace the graph convolution module with the adjacency graph
convolution module, which retains only adjacency relations, i.e., the adjacency matrix
contains only ones and zeros. The models with adjacency graphs are labeled as Backbone–.
The three kinds of graphs are illustrated in Figure 7, and the specific comparison setup is
shown in Table 2.

Table 2. Comparison setup.

Model Guidelines for
Message Propagation

Spatial Dependence Perspective on Measuring
Relations

Backbone Spatial distance graph Spatial distance node-to-node
Backbone+ Edge bottleneck factor rij Local topological structure Neighborhood-to-neighborhood
Backbone- Adjacency graph Adjacency node-to-node
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(a) (b) (c)

Figure 7. Different graph structures of the traffic network. (a) Spatial distance graph. (b) Adjacency
graph. (c) Local topological structure enhanced graph.

4.2.3. Evaluation Metrics

To quantitatively evaluate the performance of STGNNs with curvature-based graph
convolution module and the original backbones, we select three common evaluation metrics
to measure the difference between the prediction given by the model and the ground truth:

1. Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣Y′i −Yi
∣∣ (10)

2. Mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
i=1

∣∣∣∣Y′i −Yi

Yi

∣∣∣∣× 100% (11)

3. Root mean squared error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(
Y′i −Yi

)2 (12)

4.3. Experimental Setup

We conduct the following experiments based on the open source deep learning frame-
work PyTorch [39], the traffic prediction framework LibCity [40], and the discrete Ricci
curvature open source library GraphRicciCurvature [27], using an NVIDIA GeForce RTX
3060 GPU to train the models. Details of the experimental setup for the model training,
input data preprocessing, and data splitting are described below.

4.3.1. Data Splitting

We split the original traffic dataset into the training set, validation set, and test set
according to the time period, and the split ratio is 0.7/0.1/0.2. The traffic data in the first
70% time period of the dataset is used as the training set, the data in the 70% to 80% time
period is used as the validation set, and the data in the last 20% is used as the test set.

4.3.2. Data Preprocessing

• Distance-based message passing (node-to-node graph structure)
For models using spatial distance information to guide message passing, to ensure the
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numerical stability of the training process, the distances between nodes are mapped
to distance correlation indices by a Gaussian kernel as shown in Equation (13).

aij =


exp

(
−

d2
ij

σ2

)
, i 6= j and exp

(
−

d2
ij

σ2

)
≥ ε

1, i = j
0, otherwise.

(13)

• Curvature-based message passing (neighborhood-to-neighborhood graph structure)
To ensure the computational efficiency of message passing and lower the sparsity
of the edge curvature matrix R, we mask R according to the sparse distance-based
graph, i.e., only the curvature information of the connected edges of the closer nodes
is considered. The mask matrix M is defined as Equation (14).

Mij =

{
1, aij > 0
0, aij ≤ 0

(14)

The mask operation to the edge curvature matrix R is shown as Equation (16).

R = R
⊙

Mask (15)

where R = rij, and
⊙

denotes Hadamard product.

4.3.3. Hyperparameter Settings

The hyperparameters of models include dropout rate, initial learning rate, batch size,
and so on. We perform automatic hyperparameter tuning by grid search method for two
hyperparameters, i.e., dropout rate and initial learning rate, where the hyperparameter
search space of dropout rate is a uniform distribution of [0,0.6], and the hyperparameter
search space of initial learning rate is 0.001, 0.001, 0.005, and 0.01. The learning rate decays
at a rate of 0.7 every 5 steps during the training process. We set the batch size of the data
to 64 in the following experiments. For STGCN and its variant models, the optimal initial
learning rate is 0.001, and the optimal dropout rate is 0.3, according to the result of the
automatic hyperparameter search. For T-GCN and its variant models, the initial learning
rate is set to 0.001, and the number of hidden units is set to 100.

4.4. Experimental Results
4.4.1. Quantitative Comparison Analysis

Tables 3 and 4 show the performance of STGNNs based on different message-passing
strategies on the PEMS-BAY dataset and PEMSD7 dataset. For PEMS-D7, STGCN+ and
TGCN+ achieve better results than both STGCN/TGCN and STGCN-/TGCN- at all pre-
diction horizons. The improvement of STGCN+ reached 3.51%/3.38%/2.94%/2.95% at
15/30/45/60 min compared to STGCN. Compared to TGCN, the improvement of TGCN+
reached 30.87%/25.64%/22.23%/20.98% at 15/30/45/60 min, respectively. The results
indicate that the spatial adjacency of the road network can be more adequately captured
by considering the Ollivier–Ricci curvature metric for neighborhood-to-neighborhood
connectivity between nodes on this dataset.

For PEMS-BAY, STGCN+ can achieve better predictions than STGCN and STGCN- at
15/30/45 min horizons but fails to compete with them when the horizon is 60 min. TGCN+
can only achieve the best results at the 15 min and the 30 min horizons. It is worth noting
that TGCN- tends to achieve better results when the performance of TGCN+ decreases,
suggesting that indiscriminately passing messages between nodes with adjacency relations
can instead better reflect spatial dependence. This phenomenon is interesting because
it contradicts the assumptions of models that adopt spatial attention mechanisms for
message passing.
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Table 3. Performance of STGNNs based on different message passing strategies on PEMS-BAY.

Model PEMS_BAY(15/30/45/60 min)
MAE MAPE(%) RMSE

STGCN- 1.426/ 1.904/ 2.233/ 2.491 3.15/ 4.63/ 5.58/ 6.24 3.002/ 4.325/ 5.122/ 5.669
STGCN 1.423/ 1.908/ 2.241/ 2.501 3.13/ 4.49/ 5.37/ 6.00 2.991/ 4.284/ 5.051/ 5.607

STGCN+ 1.400/ 1.878/ 2.223/ 2.516 2.98/ 4.34/ 5.275.275.27/ 6.01 2.907/ 4.176/ 4.983/ 5.608

TGCN- 1.714/ 2.112/ 2.381/ 2.616 3.62/ 4.71/ 5.41/ 6.00 3.228/ 4.110/4.596/ 4.990
TGCN 2.302/ 2.659/ 2.953/ 3.206 4.99/ 6.03/ 6.85/ 7.58 4.222/ 5.048/ 5.614/ 6.083

TGCN+ 1.613/ 2.109/ 2.464/ 2.774 3.37/ 4.69/ 5.68/ 6.54 3.147/ 4.254/ 4.955/ 5.494

Table 4. Performance of STGNNs based on different message passing strategies on PEMSD7.

Model PEMSD7(15/30/45/60 min)
MAE MAPE(%) RMSE

STGCN- 21.782/ 26.689/ 30.704/ 36.661 9.59/ 11.96/ 14.61/ 17.10 33.474/ 39.730/ 46.166/ 52.936
STGCN 21.409/ 25.053/ 28.437/ 31.608 9.28/ 10.87/ 12.41/ 13.80 33.423/ 38.328/ 42.671/ 46.803

STGCN+ 20.657/ 24.205/ 27.600/ 30.676 8.91/ 10.58/ 12.32/ 13.83 32.354/ 37.052/ 41.413/ 45.529

TGCN- 43.877/ 46.337/ 50.332/ 55.393 25.54/ 26.52/ 28.67/ 32.07 60.802/ 64.241/ 69.519/ 76.424
TGCN 37.439/ 40.000/ 43.732/ 49.147 22.89/ 24,45/ 27.02/ 31.26 52.751/ 56.269/ 61.202/ 68.157

TGCN+ 25.883/ 29.743/ 34.012/ 38.838 13.01/ 14.79/17.10/ 19.86 38.186/43.477/ 48.979/ 55.259

4.4.2. Relations between Ollivier–Ricci Curvature and Performance Improvement

To measure the relationship between the Ollivier–Ricci curvature and the prediction
performance improvement of the model, we first define the average curvature of the
connected edges of a node:

κi =
1

|N (i)| ∑
j∈N (i)

κij (16)

Taking STGCN+ as an example, the relationship between the average curvature of
the connected edges of a node κ and the MAE improvement of the model with curvature
information is shown in Figure 8. From the figure, it can be found that the κ values in the
upper left part of the figure are all negative and have large absolute values, indicating that
the corresponding connected edges of these nodes are most likely to be the bottlenecks in
the road network. Figure 9 shows two nodes that lie in this category. The pair of nodes
are located at intersections, which play an important role in the connectivity of the road
network system, and removing the negative curvature edges connected to them is likely
to disconnect the road network [27,41]. The addition of the curvature information that
represents the bottleneck degree can improve the accuracy of the prediction results of
this part of the nodes, and in this part, the larger the absolute value of κ, the more the
improvement of MAE. Overall, the curvature graph convolution module can improve the
prediction performance of the spatiotemporal graph neural network when evaluated at the
scale of the whole road network, and the improvement is especially significant for nodes
connected with more bottleneck edges.
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Figure 8. MAE improvement of prediction results for each node of STGCN+ compared to STGCN on
the PEMS-BAY dataset.

Figure 9. Examples of nodes connected to edges with high negative curvature.

4.4.3. Qualitative Visualization Analysis

To intuitively compare the prediction performance of each model, the prediction
results of STGCN-, STGCN, and STGCN+ with different prediction horizons on the PEMS-
BAY dataset are visualized in this paper, as shown in Figures 10–13. It can be observed
that all three models obtain prediction results that align with the actual trends because the
models themselves have a strong ability to learn the temporal dependence. In addition,
the prediction performance of the three models gradually deteriorates as the prediction
horizon increases, which is limited by the structure of the models themselves.

However, the forecasting results of the three models still show some differences. For
example, on the morning of June 12th, the prediction results of STGCN+ fit the ground truth
value better, while the prediction results of STGCN gradually deviate with the increase in
the prediction horizon. For the more volatile temporal features such as spikes and troughs,
such as the trough of the evening peak on the 15th day, the prediction results of STGCN+
are also closer to the ground truth, while the predictions given by STGCN are higher than
actual values. Overall, the predictions of STGCN+ are more accurate, which indicates that
taking local topological information of the road network into account helps the model to
capture spatial dependence better and improve prediction performance.
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Figure 10. Visualization of 15 min-ahead predictions of different models.

Figure 11. Visualization of 30 min-ahead predictions of different models.

Figure 12. Visualization of 45 min-ahead predictions of different models.
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Figure 13. Visualization of 60 min-ahead prediction of different models.

5. Conclusions and Future Work

Existing methods ignore the effect of the local complex topology of traffic networks
on the spatial dependence between nodes. To address the issue, in this paper, we propose
a message-passing strategy that comprehensively considers the direct relations between
nodes and the relations between neighbors of nodes. For example, nodes in a network
form communities, and traffic connections between communities are more dependent on
certain paths called bottleneck paths. Specifically, in this paper, we propose a curvature
graph convolution module, which is based on the Ollivier–Ricci curvature, to measure the
bottleneck degree of road connectivity and apply this information to guide the message-
passing process of STGNNs to capture spatial dependence. We compare the performance
of STGNNs based on three different graph structures for message passing. Experiments
on two real-world traffic speed and flow datasets show that the models based on the
curvature graph convolution module perform consistently better than the models based
on distance or adjacency graph structures for message passing at 15/30/45 min horizons.
As it is possible that the node-to-node and neighborhood-to-neighborhood relationships
behind traffic flow data can contribute to the spatial dependence modeling from different
perspectives, which can handle complex traffic scenarios potentially, in the future, we will
make attempts to incorporate multiple topology properties to exploit further the impact of
topological structures of the road network on traffic flow.
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Abbreviations
The following abbreviations are used in this manuscript:

STGNN Spatio-temporal Graph Neural Network
GNN Graph Neural Networks
MPNN Message Passing Neural Networks
CNN Convolutional Neural Networks
RNN Recurrent Neural Networks
GRU Gated Recurrent Unit
ARIMA Autoregressive Integrated Moving Average
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