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Abstract: The confluence of major theoretical, experimental, and observational advances are pro-
viding a unique perspective on the equation of state of dense neutron-rich matter—particularly its
symmetry energy—and its imprint on the mass-radius relation for neutron stars. In this contribution,
we organize these developments in an equation of the state density ladder. Of particular relevance
to this discussion are the impact of the various rungs on the equation of state and the identification
of possible discrepancies among the various methods. A preliminary analysis identifies possible
tension between laboratory measurements and gravitational-wave detections that could indicate the
emergence of a phase transition in the stellar core.
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1. Introduction

What are the new states of matter that emerge at exceedingly high density and temperature?
was featured among one of the “Eleven Science Questions for the New Century” posed by
the Committee on the Physics of the Universe at the turn of the past century [1]. Closely
related to this question and one at the center of nuclear science today is, How does subatomic
matter organize itself and what phenomena emerge? [2]. Isolated neutron stars are ideal cosmic
laboratories to study the emergence of new states of matter over an enormous range of
densities spanning more than 10 orders of magnitude.

Neutron stars are cold, fully catalyzed astronomical objects that settle into the absolute
ground state at the appropriate baryon density. In this manner, neutron stars provide a
unique laboratory where a density can be dialed and the ground state of the system at such
density explored. Moreover, being bound by gravity and not by the strong force conditions
found in the neutron-star interior are impossible to reproduce in terrestrial laboratories.

Powerful insights into the structure, dynamics, and composition of neutron stars
have emerged during the last few years from discoveries that probe different regions of
the stellar interior. Given the confluence of such discoveries, it is fitting to introduce an
“equation of state density ladder” [3], akin to the cosmic distance ladder used in cosmology,
to illustrate the different techniques that are being used to probe the various regions of the
neutron star. In this manner, each rung in the ladder represents a theoretical, experimental,
or observational technique that determines the equation of state (EOS) in a suitable density
regime. Paraphrasing from the cosmic distance ladder, no one method can determine
the EOS over the entire density domain existent in a neutron star. Rather, each rung on
the ladder informs the EOS of a density regime that can be connected to its neighboring
rungs. Such a density ladder has been constructed in Figure 1 using a variety of theoretical,
experimental, and observational methods that have propelled the field to a golden era
of neutron stars [4,5]. In the next few sections, we will describe the remarkable progress
made in these various arenas and examine their profound implication in constraining the
equation of the state of dense matter.
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Figure 1. The equation of state density ladder. Each rung in the ladder represents a technique that in-
forms the equation of the state of neutron-rich matter in a suitable density regime. With the exception
of the isovector giant dipole resonance (IVGDR), Heavy Ion Collisions (HIC), and perturbative QCD
(pQCD), the impact of all other methods on the EOS have been addressed in this contribution. Here
GW stands for Gravitational Waves, and PVES for Parity-Violating Electron Scattering.

2. Chiral Effective Field Theory

The lowest rung in the density ladder displayed in Figure 1 is a purely theoretical
approach developed by Steven Weinberg in the early 1990s. In a paper titled “Nuclear forces
from chiral lagrangians” [6], Weinberg incorporated the approximate chiral symmetry
of Quantum Chromodynamics into the construction of a nuclear Hamiltonian, where
the long-range part of the interaction is mediated by the pion and the (unknown) short-
range structure is encoded in contact interactions with empirical coefficients fitted to
the data. Such a seminal paper has triggered a paradigm shift in theoretical nuclear
physics. In essence, chiral effective field theory (χEFT) is a systematic, improvable, and
quantifiable theoretical framework of nucleons interacting via the exchange of pions and
unresolved short-range structure encoded in a few contact terms. Whereas χEFT combined
with a variety of many-body methods have significantly advanced our understanding
of the atomic nucleus—see, for example, Refs. [7–10] and references contained therein—
in the present contribution, we focus on the impact χEFT has on our understanding of
dense matter.

Given that nuclear matter saturates, namely, there is an equilibrium density of about
ρ0≈0.15 fm−3 that characterizes the interior density of medium to heavy nuclei, probing
the nuclear dynamics below this density is particularly challenging. Chiral effective field
theory offers the only realistic method to constrain the EOS below saturation density.
Indeed, χEFT predictions of increasing quality and sophistication provide valuable insights
into the EOS of pure neutron matter for densities below 1.5ρ0 [11–18]. We note that, as in
the case of all effective field theories, χEFT includes a breakdown scale that defines the
range of applicability of the theory. In the case of infinite nuclear matter, the approach is
valid, provided the Fermi momentum is below the breakdown scale. It is precisely in this
sense that no one method depicted in the density ladder can determine the EOS over the
entire density domain.

Two quantities that will be used throughout this paper to compare the various ap-
proaches are the slope of the symmetry energy at saturation density (L) and the radius of a
1.4 M� neutron star. The symmetry energy quantifies the energy cost in turning symmetric
nuclear matter into pure neutron matter and is defined as follows [19]:

S(ρ) =
1
2

(
∂2ε(ρ, α)

∂α2

)
α=0

, (1)

where ε(ρ, α) is the energy per nucleon of infinite nuclear matter that depends on the sum
and difference of proton and neutron densities; that is, ρ ≡ ρp+ρn and α ≡ (ρp−ρn)/ρ,
respectively. Note that infinite nuclear matter is an idealized system of neutrons and protons
interacting exclusively via the strong force, without contribution from the electromagnetic
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or weak interactions. Moreover, it is often convenient to characterize the behavior of the
symmetry energy around saturation density in terms of a few bulk parameters, namely [19],

S(ρ) = J + L x +
1
2

Ksym x2 + . . . x≡ (ρ− ρ0)

3ρ0
, (2)

where J, L, and Ksym are the values of the symmetry energy, its slope, and curvature at
saturation density. Given that the slope of the symmetry energy is closely related to the
pressure of pure neutron matter at saturation density, namely,

P0 =
1
3

ρ0L, (3)

this quantity is of critical importance as it determines both the neutron skin of heavy
nuclei [20–23] as well as the radius of low-mass neutron stars [24–26]. In particular, χEFT
predicts a value for the slope of the symmetry energy of L=(59.8 ± 4.1)MeV at the 1σ
level [15].

3. Parity-Violating Electron Scattering: The Neutron Skin Thickness of 208Pb

More than three decades ago, Donnelly, Dubach, and Sick proposed the use of Parity-
Violating Electron Scattering (PVES) as a clean and model-independent probe of neutron
densities [27]. The interest in measuring the neutron distribution of heavy nuclei (specifi-
cally of 208Pb) was rekindled because of the enormously successful experimental program
developed at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) and by the
impact that such a measurement could have in constraining the equation of the state of
neutron-rich matter and ultimately the structure of neutron stars [24,25].

The parity-violating asymmetry is defined as the difference relative to the sum of the
differential cross section for the elastic scattering of right-/left-handed longitudinally po-
larized electrons. In a simple plane-wave impulse approximation, the asymmetry emerges
from the interference between two Feynman diagrams, a large one involving the exchange
of a photon and a much smaller one involving the exchange of a Z0 boson. As such, the
parity-violating asymmetry becomes

APV(Q2) =

(
dσ

dΩ

)
R
−
(

dσ

dΩ

)
L(

dσ

dΩ

)
R
+

(
dσ

dΩ

)
L

,

=
GFQ2

4πα
√

2
QwkFwk(Q2)

ZFch(Q2)
. (4)

where Q2 is the square of four momentum transfer to the nucleus, α is the fine-structure
constant, and GF is the Fermi constant. In turn, the nuclear information is contained in
the electric charge of the nucleus Z, its weak-vector charge Qwk =−N+(1− 4 sin2θW)Z,
and two form factors Fwk and Fch, both normalized to one at Q2 = 0. First, we note that
because the weak charge of the proton is small, most of the weak charges of the nucleus
is carried by the neutrons. Second, the two nuclear form factors are proportional to the
Fourier transform of their respective densities. Finally, given that the charge form factor
for a great number of nuclei is known with enormous precision [28], the one remaining
unknown in the problem is Fwk. Because the weak charge of the nucleus resides largely on
the neutrons, the parity- violating asymmetry—as first suggested in Ref. [27]—provides an
ideal, model-independent experimental tool to determine neutron densities.

Although it took decades since first suggested by Donnelly, Dubach, and Sick, the
Lead Radius EXperiment (PREX) at Jefferson Lab fulfilled its promise to determine the
neutron radius of 208Pb with a precision of nearly 1% [29–31]. In particular, the neutron
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skin thickness of 208Pb—defined as the difference between the neutron and proton root-
mean-square radii—was reported at the 1σ level to be [31]:

Rskin = Rn − Rp = (0.283± 0.071) fm. (5)

Although the error is large, the central value is much larger than previously anticipated,
both by previous experimental and theoretical estimates [32,33]. Indeed, by relying on
the strong correlation between the neutron skin thickness of 208Pb and the slope of the
symmetry energy, a value of L=(106± 37)MeV was obtained [32,33]. In turn, the large
value of L implies a correspondingly large value for the radius of a 1.4 M� neutron star of
13.25.R1.4(km).14.26, suggesting that the symmetry energy is fairly stiff [33]. It is worth
noting that the extraction of L from the PREX experiment is significantly larger than the
χEFT prediction of L=(59.8 ± 4.1)MeV.

It has been argued that such a discrepancy may just be a statistical fluctuation, given
that the two values agree at the 2σ level. At present, the only possibility of resolving
whether the tension is real is at the future Mainz Energy-recovery Superconducting Accel-
erator (MESA) that is under construction at the Johannes Gutenberg University in Mainz,
Germany [34]. If the Mainz Radius EXperiment (MREX) becomes feasible, one can antic-
ipate a factor-of-two improvement in the determination of the neutron radius of 208Pb
relative to PREX.

4. LIGO-Virgo: Neutron Star Mergers

The historic detection of gravitational waves emitted from the binary neutron star
merger GW170817 is providing fundamental new insights into the nature of dense mat-
ter [35]. Of great relevance to the equation of state are the so-called “chirp mass” and “chirp
tidal deformability” (or simply Λ̃) given, respectively, by

M =
(M1M2)

3/5

(M1 + M2)1/5 , (6a)

Λ̃ =
16
13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M2)M4

2Λ2

(M1 + M2)5 , (6b)

where the dimensionless tidal deformability of an individual neutron star of mass M and
radius R is defined as [36–42].

Λ =
2
3

k2

(
c2R
GM

)5

=
64
3

k2

(
R
Rs

)5
. (7)

Here k2 is the second Love number that is mildly sensitive to the equation of state, and Rs is
the Schwarzschild radius of the neutron star. Note that for the equal mass case, Λ̃=Λ1=Λ2.
The tidal deformability is extremely sensitive to the equation of state as it scales as the fifth
power of the compactness parameter M/R. The tidal field of the companion star induces a
mass quadrupole moment in the neutron star that—in the linear regime—is proportional to
the tidal field; the constant of proportionality is the tidal deformability. Thus, for a given
mass, a larger (more “fluffy”) neutron star is easier to tidally deform than a corresponding
smaller star.

Whereas the chirp mass of GW170817 was determined with enormous precision (about
a few parts in a thousand), the tidal deformability hides behind the fifth post-Newtonian
coefficient in the waveform. Therefore, at the time of the discovery paper, only an upper
bound on Λ̃ was reported [35]. Yet in a follow-up paper [43], the LIGO-Virgo collaboration
was able to quote a value for the dimensionless tidal deformability of a 1.4 M� neutron
star of Λ1.4 =190+390

−120, favoring soft EOSs, namely, those equations of state for which the
pressure increases slowly with increasing density. In turn, soft equations of state predict
compact stars with relatively small stellar radii.
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5. NICER: Simultaneous Determination of Masses and Radii of Neutron Stars

Besides the tidal deformability, electromagnetic emissions from stellar hot spots are
also highly sensitive to the compactness parameter. The Neutron Star Interior Composition
Explorer (NICER) monitors soft X-rays emitted from stellar hot spots by relying on the
powerful technique of Pulse Profile Modeling [44,45]. As the neutron star spins, traditional
Newtonian gravity predicts an oscillating profile with no electromagnetic detection once the
hot spots move away from the line of sight. However, one of the hallmarks of general rela-
tivity is gravitational light bending. This implies that the X-ray emissions, while modulated,
may never completely disappear; NICER can “see” the back of the star. As gravitational
light bending increases with increasing compactness M/R, a precise determination of the
X-ray profile provides critical information on the EOS.

Remarkably, prior to the deployment of NICER in 2017, no systematic approach
existed for the simultaneous determination of the mass and radius of a neutron star, even
though the first pulsar was detected by Jocelyn Bell back in 1967 [46]. An early attempt
at determining both the mass and radius of Hercules X-1 (Her X-1) was made by Leahy
in 2004 [47]. By modeling the observed pulse shape of Her X-1, a constraint on the mass-
radius ratio was obtained. That, in combination with a mass determination from the
orbit, constrains a narrow region in the M-R plane, which excludes stiff equations of state.
In the case of NICER, the first mass-radius determination focused on the millisecond
pulsar PSR J0030+0451, with a mass in the neighborhood of the “canonical” mass of about
1.4 M� [48,49]. The second target of the NICER mission was the millisecond pulsar PSR
J0740+6620 [50,51]. Although fainter than PSR J0030+0451, the great advantage of PSR
J0740+6620 was that its mass was already known. Indeed, as discussed in Section 6, with a
mass in excess of two solar masses, PSR J0740+6620 is currently the heaviest well-measured
neutron star [52,53]. It is interesting to note that the stellar radii of both PSR J0030+0451 and
PSR J0740+6620 are very close to each other; about 12.4 km. This result seems to validate
a conjecture that suggests that neutron stars have approximately the same radius over a
wide range of masses [54]. Moreover, that the radius is relatively large implies—unlike
GW170817—that the equation of state is relatively stiff. Whereas this may indicate a mild
tension, the error bars are currently too large to make a definite statement.

6. Pulsar Timing: Determination of the Most Massive Neutron Stars

The most stringent constraints on the high-density component of the EOS are placed
by the most massive neutron stars. Unlike stellar radii that are sensitive to the EOS
in the vicinity of twice saturation density, massive neutron stars inform the EOS at the
highest densities achieved in the core. In particular, PSR J0740+6620 with a mass of
M=2.08± 0.07 M� has, until recently, been identified as the most massive neutron star to
date [52,53]. The massive pulsar was detected by the Green Bank Telescope using Shapiro
delay [55], often regarded as the fourth test of general relativity. The main concept behind
Shapiro delay is that the electromagnetic radiation emitted by the neutron star experiences
a time delay as it “dips” into the gravitational well induced by its white-dwarf companion
on its way to the detector; no such delay exists when the neutron star is between the white
dwarf and the observer. By accounting for every orbital period over long periods of time,
pulsar timing provides a highly precise value for the mass of the white-dwarf star. Now
using Kepler’s third law of planetary motion, which is only sensitive to the sum of the
individual masses, one can then extract the mass of PSR J0740+6620.

The record for the most massive neutron star was broken last year with the measure-
ment of the mass of the black widow pulsar PSR J0952-0607. As part of a binary system
with a faint sub-solar mass companion, the mass of PSR J0952-0607 was determined to be
M=2.35± 0.17 M� [56], a value that is likely to be near the upper limit for non-rotating
neutron stars. Indeed, an analysis of GW190814—a gravitational wave detection from the
coalescence of a 23 M� black hole with a 2.6 M� compact object, seems to suggest that
GW190814 is unlikely to originate in a neutron star-black hole coalescence [57]. Such a
claim is validated by an analysis of the ejecta during the spin-down phase of GW170817,
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which places an upper limit on the maximum neutron star mass at Mmax . 2.17 M� [58].
Regardless of the precise value of the maximum neutron star mass, it is clear that the EOS
at the highest densities found in the stellar core must be stiff.

7. Results

In this section, we collect the theoretical, experimental, and observational information
presented in the previous sections, and depicted on the EOS density ladder of Figure 1, to
discuss the new set of energy density functionals introduced in Ref. [59] and its impact on
the mass-radius relation.

To describe the nuclear dynamics and calculate ground states properties of finite
nuclei, we employ the following effective interacting Lagrangian [24,60–64]:

Lint = ψ̄
[

gsφ−
(

gvVµ +
gρ

2
τ · bµ +

e
2
(1 + τ3)Aµ

)
γµ
]
ψ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4 +

ζ

4!
g4

v(VµVµ)2

+ Λv

(
g2

ρ bµ · bµ
)(

g2
vVνVν

)
,

(8)

where ψ is the isodoublet nucleon field, Aµ is the photon field, and φ, Vµ, and bµ represent
the isoscalar-scalar σ-meson, the isoscalar-vector ω-meson, and the isovector-vector ρ-
meson fields, respectively. The σ-meson is responsible for the intermediate range attraction
of the nuclear force, the ω-meson mediates the repulsion at short distances, while the
ρ-meson induces an isospin dependence that significantly impacts the nuclear symme-
try energy.

For spatially non-uniform systems, we use the Kohn–Sham equations developed in the
framework of density functional theory [65,66], which closely resemble a mean-field-like
approach. For spherically symmetric nuclei, we solve the resulting sets of meson and
nucleon field equations self consistently; see [67] and references contained therein. For
a given nucleus, the observables obtained from such a self-consistent procedure are the
binding energy per nucleon, the single-particle energies and associated Dirac orbitals,
the resulting meson fields, and proton and neutron densities. In turn, by appropriately
folding the proton and neutron densities with single-nucleon form factors determined
experimentally, one can predict charge and weak-charge densities [68]. Particularly relevant
to this work are proton, neutron, charge, and weak charge radii. In the particular case of
the charge radius, this is obtained as follows:

R2
ch =

1
Z

∫
r2ρch(r)d3r =

4π

Z

∫ ∞

0
r4ρch(r)dr, (9)

where we have used the spherical symmetry of the ground-state densities. Similar expres-
sions may be written for the proton, neutron, and weak charge radii. Finally, given their
importance in constraining the slope of the symmetry energy L, we define neutron skins
and weak skins [68] by

Rnskin = Rn − Rp, (10a)

Rwskin = Rwk − Rch. (10b)

For a given set of coupling constants and meson masses, C = {ms, mv, mρ, gs, gv,
gρ, κ, λ, ζ, Λv}, which we treat as the parameters of the model, we can obtain both properties
of finite nuclei and the EOS for neutron star matter (NSM). Table 1 contains the four different
sets of parameters that are used in this paper. The first two sets, FSUGold2 and FSUGarnet,
were calibrated to properties of finite nuclei, such as binding energies, charge radii, and
giant monopole resonances (GMR) [69,70]. The last two sets of parameters denote a recently
refined version of the two models mentioned above. In this “re-calibration” of the models,
input from χEFT, mass-radius measurements from NICER, and tidal deformability from
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LIGO-Virgo, were used in a Bayesian framework to provide updated sets of coupling
constants. More information on this method can be found in [59].

Table 1. Central values for the model parameters FSUGold2 and FSUGarnet before and after Bayesian
refinement. The parameter κ and the meson masses ms, mv, and mρ are all given in MeV, and the
nucleon mass has been fixed at M=939 MeV.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ Λv

FSUGold2 497.479 782.500 763.000 108.094 183.789 80.466 3.0029 −0.000533 0.025600 0.000823
FSUGarnet 496.939 782.500 763.000 110.349 187.695 192.927 3.2600 −0.003551 0.023500 0.043377
FSUGold2+R 501.611 782.500 763.000 103.760 169.410 128.301 3.7924 −0.010635 0.011660 0.031621
FSUGarnet+R 495.633 782.500 763.000 109.130 186.481 142.966 3.2593 −0.003285 0.023812 0.038274

Starting at the lowest rung of the density ladder, we indicated earlier that χEFT favors
a fairly soft EOS for pure neutron matter, which according to Equation (3) suggests that
the symmetry energy in the vicinity of saturation density is also soft. As we now show,
such a softening creates a mild tension when confronted against the second rung in the
density ladder, namely, the Parity-Violating Electron Scattering experiment on 208Pb carried
out at Jefferson Lab [31]. As already alluded to, the slope of the symmetry energy L is
highly correlated to the neutron skin thickness of 208 Pb [20–23]. The experimental value
extracted from PREX and listed in Table 2 suggests an estimate for the slope of the symmetry
energy L = (106± 37)MeV [33] that is significantly larger than the L = (59.8± 4.1)MeV
prediction from χEFT [15]. Yet, as indicated in Table 2 and Figure 2, the large value of the
neutron skin thickness extracted from PREX is in excellent agreement with the predictions
from FSUGold2 prior to the refinement. Yet the impact of χEFT on the refinement of the
functional is dramatic; the neutron skin thickness of 208Pb goes down from the experimental
value of R208

nskin = 0.285 fm to R208
nskin = 0.203 fm. Note, however, that due to the large

experimental uncertainty, such a small value is not yet ruled out. Hence the need for a
more precise determination of R208

nskin at the future Mainz facility is well motivated.

Figure 2. Posterior probability distribution functions (un-normalized) for the neutron skin thickness
of (a) 208Pb and (b) 48Ca predicted by three of the models listed in Table 1 are compared with the
corresponding experimental result from PREX [31] and CREX [71], respectively.

In Table 2 and Figure 2, we also compare our predictions for the neutron skin thickness
of 48Ca against the recently completed Calcium Radius EXperiment (CREX) [71]. Although
as a medium mass nuclei, the correlation between L and R48

nskin is, in general, not as strong as
for 208Pb [72], the class of covariant density functionals used in this work—and indeed most
theoretical frameworks—suggest a fairly strong correlation between R48

nskin and R208
nskin [73].

Hence, it came as a surprise that R48
nskin is significantly smaller than R208

nskin. For this case, the
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impact of χEFT moves the FSUGold2 predictions in the right direction, but not nearly as
much as required by CREX. At present, we are not aware of any theoretical approach that
can simultaneously reproduce both the thick neutron skin in 208Pb and the thin neutron
skin in 48Ca.

Table 2. Predictions from FSUGold2 before and after refinement (+R) for the charge radius, weak
radius, weak skin, and neutron skin (all in fm) of 208Pb and 48Ca, as compared with the experimental
values extracted from PREX [31] and CREX [71].

Model
(208Pb

)
Rch Rwk Rwskin Rnskin

FSUGold2 5.491(6) 5.801(19) 0.310(16) 0.285(15)
FSUGold2+R 5.517(4) 5.743(05) 0.226(03) 0.203(03)

Experiment 5.501(1) 5.800(75) 0.299(75) 0.283(71)

Model
(48Ca

)
Rch Rwk Rwskin Rnskin

FSUGold2 3.426(3) 3.707(07) 0.281(08) 0.231(08)
FSUGold2+R 3.477(8) 3.722(09) 0.245(02) 0.197(02)

Experiment 3.477(2) 3.636(35) 0.159(35) 0.121(35)

Besides constraints from χEFT that, as we just saw, have a strong impact on the re-
finement of the functionals, especially in the case of FSUGold2, our previous work also
incorporated astrophysical constraints on the EOS of neutron star matter from the tidal de-
formability of GW170817 extracted by the LIGO-Virgo collaboration [35], stellar masses and
radii of two sources obtained by the NICER mission [48–51], and lower limits on the maxi-
mum mass of a neutron star obtained from long-time pulsar timing observations [52,53].
Indeed, all this information—together with constraints on the EOS of pure neutron mat-
ter predicted by χEFT—was included in the model refinement [59]. By including all this
new information in a Bayesian inference approach, posterior distribution functions were
obtained for the neutron star matter EOS, the resulting mass-radius relation, and the tidal
deformability of a 1.4 M� neutron star.

Ascending to the fourth rung in the density ladder, we now focus on the gravitational
wave profile of GW170817 that, as we mentioned earlier, allows for the extraction of impor-
tant structural observables, such as the chirp mass and tidal deformability. In Figure 3 we
examine the model predictions for the tidal deformability of a 1.4 M� neutron star against
the recommended value extracted by the LIGO-Virgo collaboration of Λ1.4 = 190+390

−120, with
both the upper and lower limits indicating 90% confidence levels [43]. This comparison is
quite striking as it indicates a significant softening of the EOS at intermediate densities that
is not reflected in any of the models—even after refinement. If such a discrepancy persists
after further scrutiny, see, for example, Ref. [74], this could indicate that the softening may
be a reflection of a phase transition in the stellar interior.

We conclude this section by displaying the holy grail of neutron star structure—the
mass-radius relationship—alongside the neutron star matter equation of state. Recall that
there is a one-to-one correspondence between the EOS and the mass-radius relation [75],
with the EOS providing the microscopic underpinning of the macroscopic manifestation.
The left-hand panel in Figure 4 depicts the EOS of neutron star matter, namely, the EOS of
charge-neutral, neutron-rich matter in beta equilibrium. Such a relation between the pres-
sure and energy density is the sole ingredient required to solve the Tolman–Oppenheimer–
Volkoff equations to generate the mass-radius relation. For reference, we note that a value
for the energy density of about ε∼500 MeV/fm3 corresponds to a baryon density of about
three times nuclear matter saturation density. We also note that the refined models are
consistent with the limits on stellar radii recommended by the NICER mission, depicted in
the figure by the 68% and 95% confidence ellipses. Regardless of whether the softening
suggested by the tidal deformability is confirmed, the EOS at the highest densities found in
the core must be stiff enough to support neutron stars with a mass in excess of two solar
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masses. Our results indicate that within a 2σ error, all of our models are consistent with the
very large mass of PSR J0952-0607 [56].

Figure 3. Tidal deformability measurement of a 1.4 M� neutron star [43] (black line) along with the
predictions from FSUGold2 and FSUGarnet using their respective colors before and after refinement;
the dashed curves indicate predictions post-refinement.

Figure 4. (a) Equation of state of neutron star matter as predicted by FSUGold2 [69], FSUGarnet [70],
along with the results post-refinement [59]. (b) Mass-radius relationship predictions from FSUGold2
and FSUGarnet are displayed with their respective colors, with the solid and dashed lines representing
results before and after Bayesian refinement, respectively. Theoretical error bands for FSUGold2
and FSUGarnet were computed at the 95% level, and the observational covariance ellipses (black)
represent the 68% and 95% confidence intervals.

8. Conclusions

The confluence of major theoretical, experimental, and observational advances in
our understanding of dense matter have motivated the creation of an equation of the
state density ladder, where the various rungs in the ladder provide information at specific
densities; no single rung can determine the EOS over the enormous density range spanned
in a neutron star. Moreover, the range of densities probed by each rung in the ladder
overlaps with neighboring rungs, thereby providing consistency checks among the various
methods. Following our recent work [59], in which previously calibrated covariant energy
density functionals were refined by the plethora of new information, we have examined
the predictions of the new models.

First, we concluded that incorporating χEFT information significantly softens the
previously stiff FSUGold2 energy density functional. Whereas such a softening shifts the
FSUGold2+R predictions closer to CREX and LIGO-Virgo, the shift is not nearly as dramatic
as the experiment and observation demand. Moreover, the previous excellent agreement
with PREX is now lost. Both PREX and CREX will greatly benefit from more precise
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measurements—which hopefully may be realized at the future Mainz Energy-recovery
Superconducting Accelerator (MESA) [34]. In short, the original FSUGold2 prediction repro-
duces the PREX result but grossly overestimates the CREX value. As for the FSUGold2+R
model, the softening of the EOS slightly shifts the result closer to the CREX extraction, but
at the cost of losing agreement with PREX. This is the best compromise that can be achieved
with the present set of covariant energy density functionals, suggesting that improvements
to the isovector sector of the density functions are required. Regardless of the limiting set
of models used in this contribution, we underscore that we are not aware of any theoretical
approach that can simultaneously reproduce both CREX and PREX.

Besides χEFT, the extraction of the tidal deformability of a 1.4 M� [43] also disfavors
a stiff EOS. As shown in this work, all model predictions fall on the high-end tail of the
observational value. Given that both NICER and current values for the maximum mass
neutron star require a fairly stiff EOS if confirmed, the softening suggested by LIGO-Virgo
at intermediate densities may be an indication of a phase transition. At present, such a
conclusion is premature, given that most of the observations have large statistical errors.
However, given that we have just entered the golden era of neutron stars, the promise of
significant advances in all areas of relevance to the EOS of dense matter is likely to bring
unprecedented precision into the study of neutron stars.
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