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Abstract: We consider the theory of quantum gravity in which gravity emerges as a result of the
symmetry-breaking transition in the quantum vacuum. The gravitational tetrads, which play the
role of the order parameter in this transition, are represented by the bilinear combinations of the
fermionic fields. In this quantum gravity scenario the interval ds in the emergent general relativity is
dimensionless. Several other approaches to quantum gravity, including the model of superplastic
vacuum and BF theories of gravity support this suggestion. The important consequence of such metric
dimension is that all the diffeomorphism invariant quantities are dimensionless for any dimension
of spacetime. These include the action S, cosmological constant Λ, scalar curvature R, scalar field
Φ, wave function ψ, etc. The composite fermion approach to quantum gravity suggests that the
Planck constant h̄ can be the parameter of the Minkowski metric. Here, we extend this suggestion by
introducing two Planck constants, bar h̄ and slash /h, which are the parameters of the correspondingly
time component and space component of the Minkowski metric, gµν

Mink = diag(−h̄2, /h2, /h2, /h2). The
parameters bar h̄ and slash /h are invariant only under SO(3) transformations, and, thus, they are
not diffeomorphism invariant. As a result they have non-zero dimensions—the dimension of time
for h̄ and dimension of length for /h. Then, according to the Weinberg criterion, these parameters
are not fundamental and may vary. In particular, they may depend on the Hubble parameter in
the expanding Universe. They also change sign at the topological domain walls resulting from the
symmetry breaking.

Keywords: Planck constant; quantum gravity; emergent tetrads; dimensionless interval

1. Introduction

It is becoming clear that quantum gravity cannot be obtained by quantization of
the classical gravity. Gravity can arise as an emergent low-energy phenomenon, which
comes from underlying quantum fields of the quantum vacuum. The typical example
is provided by condensed matter, where the effective gravity emerges in the topological
Weyl and Dirac materials, semimetals, superfluids, and superconductors. Gravitational
tetrads emerge there in the vicinity of the conical points in the spectrum of fermionic
quasiparticles [1], see also recent papers [2,3]. Another condensed matter example of
effective gravity is provided by the B-phase of superfluid 3He, where vielbein emerge
as bilinear combinations of the fermionic fields [4]. Similar mechanism of the formation
of the composite tetrads in the low-energy physics has been suggested in the relativistic
quantum field theories [5–9]. The emergent tetrads give rise to the effective metric (the four
fermions object), to the interval, and finally to the effective action for the gravitational field.
The important consequence of this mechanism is that all the diffeomorphism invariant
physical quantities are dimensionless. Here, we discuss one more consequence of such
dimensionless physics, which is related to the Planck constant [10]. Actually there are two
Planck constants, bar h̄, and slash /h. Both are the elements of the metric and tetrads in
Minkowski vacuum. The bar h̄ is the time component of the tetrad and has dimension of
time, while the slash /h enters the space components of tetrads and has dimension of length.
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2. Composite Tetrads from Relative Symmetry Breaking

The gravitational tetrads may appear as composite objects made of the more funda-
mental fields, the quantum fermionic fields [5–9,11]:

Êa
µ =

1
2

(
Ψ†γa∂µΨ−Ψ†←−∂µ γaΨ

)
. (1)

The original action does not depend on tetrads and metric and is described solely in
terms of differential forms:

S =
1

24
eαβµνeabcd

∫
d4x Êa

αÊb
βÊc

µÊd
ν . (2)

This action, which is the operator analog of the cosmological term, has high sym-
metry. It is symmetric under coordinate transformations xµ → x̃µ(x), and, thus, is also
scale invariant. In addition, the action is symmetric under spin rotations, or under the
corresponding gauge transformations when the spin connection is added to the gradients.
The action may also contain the operator analog of the Einstein–Hilbert–Cartan term [6],
eαβµνeabcd

∫
d4x Êa

αÊb
βFcd

µν, where Fcd
µν is the Cartan curvature two-form. Additionally, the

four-form field can be included, eαβµνeabcd
∫

d4x Fabcd
αβµν, which is also related to the problem

of the vacuum energy and cosmological constant [12–18].
The tetrads ea

µ appear as the vacuum expectation values of the bilinear fermionic
1-form Êa

µ as a result of the spontaneous symmetry breaking:

ea
µ =< Êa

µ > . (3)

This order parameter breaks the separate symmetries under orbital and spin transfor-
mations, but remains invariant under the combined rotations. On the level of the Lorentz
symmetries the symmetry breaking scheme is LL × LS → LJ . Here, LL is the group of
Lorentz transformations in the coordinates space, LS is the group of Lorentz transforma-
tions in the spin space, and LJ is the symmetry group of the order parameter, which is
invariant under the combined Lorentz transformations LJ .

Similar symmetry breaking mechanism of emergent gravity is known in condensed
matter physics, where the effective gravitational vielbein also emerges as the bilinear
fermionic 1-form [4]. This scenario takes place in the p-wave spin-triplet superfluid 3He-B,
where the corresponding relative symmetry breaking [19] occurs between the spin and
orbital rotations, SO(3)L × SO(3)S → SO(3)J . This means that the symmetry under the
relative rotations in spin and orbital spaces is broken, while the properties of 3He-B are
isotropic.

3. Dimensionful Metric and Dimensionless Interval

The metric field is the bilinear combination of the tetrad fields

gµν = ηabea
µeb

ν , (4)

and, thus, in this quantum gravity the metric is the fermionic quartet (in principle the
signature can be the dynamical variable Oab, [20,21] and ηab may also emerge as the vacuum
expectation value of the corresponding symmetry breaking phase transition, ηab =< Oab >.

It is important that in this quantum gravity, the fermionic fields Ψ are dimensionless,
since they are normalized by the Berezin integral [8]. Thus, the tetrads in Equation (3) have
the dimensions of the inverse time and inverse length, [ea

0] = 1/[t] and [ea
i ] = 1/[L], while

the metric elements in Equation (4) have dimensions 1/[t]2, 1/[L]2 and 1/[t][L]. Due to
these dimensions of tetrads and metric, the interval is dimensionless:

ds2 = gµνdxµdxν , [s2] = [1] . (5)
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The reason for that is that the interval is the diffeomorphism invariant, while in this
approach to quantum gravity all the diffeomorphism-invariant quantities are dimension-
less [8].

The same takes place for the other diffeomorphism invariant quantities: the action
S (an example is in Equation (2)); scalar curvature R; scalar field Φ; the wave function ψ;
masses M; cosmological constant Λ; etc. [22,23]. This is valid for the arbitrary dimension
of spacetime, and, thus, is universal, which is one of the most important consequences of
the composite tetrads.

Note that the original action (2) does not contain the Planck constant h̄. One can show
that this is the property of any action, if it is written in the diffeomorphism invariant form,
see Section 12.

4. Action, Mass and Scalar Field Are Dimensionless

Let us consider the simplest example of the dimensionless action—the action describ-
ing interaction of a charged point particle with the U(1) gauge field.

S = q
∫

dxµ Aµ . (6)

As the original action (2), this action does not depend on the metric field and is
described solely in terms of differential forms, now in terms of the one-form U(1) gauge
field Aµ. The U(1) field is the geometric quantity, which comes from the gauging of the
global U(1) field. The field Aµ comes from the gauging of gradient of the phase field, and,
thus, has dimension of the gradient of phase, with [A0] = 1/[t] and [Ai] = 1/[L]. The
charge q here is dimensionless—it is the integer (or fractional) geometric charge of the
fermionic or bosonic field. As a result the action (6) is naturally dimensionless, [S] = 1.

Such an action can be extended to the objects of higher dimensions, which interact
with the corresponding gauge fields: 1 + 1 strings interacting with a two-form gauge field,
2 + 1 branes interacting with the three-form field, and also 3 + 1 medium interacting with
the four-form field.

Now, let us consider the action describing the classical dynamics of a point particle.
This action requires the metric field, since it is expressed in terms of the interval:

S = M
∫

ds , ds2 = −gµνdxµdxν . (7)

Since both the interval ds and the action S are dimensionless, from Equation (7) it
follows that the particle mass M is also dimensionless, [M] = [S] = [s] = [1].

Let us consider the quadratic terms in the action for the classical scalar field Φ:

S =
∫

d4x
√
−g
(

gµν∇µΦ∗∇νΦ + M2|Φ|2
)

. (8)

Comparing the gradient and the mass terms, and using the dimension of the metric,
one again obtains that the mass M is dimensionless, [M] = [1]. Then, since the action
S and volume element d4x

√−g are dimensionless, it follows that the scalar field is also
dimensionless, [Φ]2 = [M] = [S] = [1].

5. Schrödinger Equation in Minkowski Spacetime and Two Planck Constants

Expanding the Klein–Gordon equation for scalar Φ in Equation (8) over 1/M one
obtains the non-relativistic Schrödinger action. In Minkowski spacetime, introducing the
Schrödinger wave function ψ

Φ(r, t) =
1√
M

exp
(

iMt/
√
−g00

)
ψ(r, t) , (9)

one obtains the Schrödinger-type action in the form
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SSchr =
∫

d3xdt
√
−gLq , (10)

2Lq = i
√
−g00(ψ∂tψ

∗ − ψ∗∂tψ) +
gik

M
∇iψ

∗∇kψ + 2U|ψ|2 . (11)

Here, we added the potential term with U =
√
−g00qA0, where A0 of the electromag-

netic gauge field and q is the geometric charge of the scalar field.
Equation (11) suggests that the metric element

√
−g00 of the Minkowski vacuum plays

the role of the Planck constant h̄. This connection between g00 and h̄ was also suggested in
Ref. [24], where it was noticed that if h̄ is absorbed into Minkowski metric it does not enter
equations written in the covariant form. Since in the Akama-Diakonov (AD) approach to
quantum gravity the interval is dimensionless, the Planck constant has dimension of time,
[h̄] = [t]. However, the term with the space gradients suggests that spatial elements of the
Minkowski metric play the roles of another Planck constant, which we denote as slash /h:

− g00
Mink ≡ h̄2 , gik

Mink ≡ /h2δik . (12)

These Planck constants, h̄ and /h, enter correspondingly the time derivative and space
derivative terms in the Schrödinger equation:

ih̄∂tψ = − /h2

2M
∇2ψ + Uψ . (13)

h̄ and /h have different dimensions

[h̄] = [t] , [/h] = [L] , (14)

and their ratio /h/h̄ determines the speed of light c in Minkowski vacuum. Equation (14)
suggests that the Planck constants represent the units of space and time, rather than the
units of the phase space.

All the terms in the Schrödinger Equation (13) are dimensionless, including the po-
tential energy U. This can be checked for the Coulomb potential for electron with the
geometric charge q = −1 in the field of nucleus with the geometric charge q = Z > 0.
This potential has the conventional form U(r) = −Ze2/r, where e is the “physical charge”,
which can be expressed in terms of the fine structure constant. The fine structure constant
is diffeomorphism invariant and thus is dimensionless. That is why, from

α =
e2

/h
, (15)

it follows that e2 = /hα has dimension of length,

[e2] = [/h] = [L] , (16)

and, thus, the potential U(r) = −Ze2/r is dimensionless, [U] = [1]. Then one has

ih̄∂tψ = Hψ , H = − /h2

2M
∇2 − αZ

/h
r

. (17)

The other possible potential terms are also dimensionless. For example, the dipole
term Udip ∼ d2/r3 is dimensionless, since [d2] = [e2][L2] = [L]3. The Pauli term for electron

UP = − /h2

Me
B · σ is dimensionless, since [/h] = [L], the dimension of geometric magnetic

field [B] = 1/[L]2, and the dimension of electron mass [Me] = 1.
Note that the HamiltonianH, which enters the Schrödinger equation, comes from the

variation of the dimensionless action over the dimensionless ψ∗ and, thus, is dimensionless,
[H] = [1]. On the other hand, the Hamiltonian, which comes from the action as H = dS/dt,
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has dimension of frequency, [H] = 1/[t]. The relation between the energy and frequency
will be discussed in Section 7.

Schrödinger equation contains two Planck constants with different dimensions, while
the other parameters, such as M and α, are dimensionless.

6. From Quantum Vacuum to Classical Physics via Symmetry Breaking

From Equation (12) it follows that in the Minkowski spacetime the tetrads have the
following values:

eµ
a = diag(−h̄, /h, /h, /h) , ea

µ = diag(−1
h̄

,
1
/h

,
1
/h

,
1
/h
) , (18)

Here, eµ
a are tetrads that are inverse to ea

µ. They have dimension of length, [ei
a] = [L],

and time [e0
a ] = [t]. Their determinant (which is inverse to the determinant e of ea

µ) has
dimension of the four-volume. As a result, the vacuum expectation value of the original
action (2) serves as the number of the elementary four-volumes.

From Equation (3) it follows that the tetrads ea
µ represent the order parameter of the

symmetry breaking phase transition with ea
µ = 0 in the symmetric phase. This suggests that,

in the AD approach to quantum gravity, the symmetric phase of the vacuum corresponds
to h̄ = ∞ and /h = ∞. It is the pure quantum vacuum, with quantum correlations at the
infinitely long distances due to scale invariance. The scale invariance is broken by the finite
values of h̄ and /h in the broken symmetry phases, and this, finally, gives rise to the classical
physics for large masses. The classical physics emerges only in the broken symmetry states.
The h̄ expansion in the classical limit [25] is opposite to the 1/h̄ expansion in the quantum
limit.

In this respect the Planck constant /h has analogy with the coherence length ξ in
the second order phase transitions in superconductors and superfluids. The scale of ξ is
intermediate between the microscopic length scale a, the interatomic distance, and the
macroscopic scale l of superfluid hydrodynamics, a � ξ � l. In microscopic physics
we use a/ξ as small parameter (quantum limit), while in macroscopic physics the small
parameter is ξ/l (classical limit).

The action for the massive Dirac particles is

S =
∫

d4x e (ieµ
a Ψ̄γa∇µΨ−MΨ̄Ψ) . (19)

The Dirac field is dimensionless, [Ψ] = [1], as well as the four-volume element,
[d3xdt e] = [1]. In the limit of large wavelength, λ � /h/M, one obtains the Schrödinger
equation for the non-relativistic fermions in Equation (13), and from that equation—the
classical physics of massive particle at large M.

Since the Minkowski metric in Equation (12) is quadratic in 1/h̄ and 1//h, these Planck
parameters may have negative signs, which corresponds to the different signs of the tetrad
elements in Minkowski vacuum in Equation (18). In principle, there can be the topological
objects related to the symmetry breaking, such as the cosmological domain walls between
the Minkowski vacua with positive and negative signs of 1/h̄ and/or 1//h [24,26]. Inside
the domain wall the symmetric quantum vacuum with 1/h̄ = 1//h = 0 is restored, or
partially restored if only one of the Planck constants changes sign. Example of such walls
can be found in Ref. [27]. The same takes place in the cores of the other topological objects,
such as torsion strings [26] and topological instantons [28,29]. Analytic extension of 1/h̄
and 1//h across the Big Bang is also possible, which is similar to the analytic extension of
metric in Refs. [30,31].
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7. Energy and Frequency

Since the action is dimensionless, it may serve as the phase of the wave function in
path integral presentation or in the path integrals over the quantum fields. For the point
particle, one has

eiS = eiM
∫

ds . (20)

Let us consider the particle at rest in the Minkowski vacuum:

eiS = ei
∫
L(t)dt = eiMt

√−g00 . (21)

This function is the periodic in time with period

T =
2π

M
√−g00

, (22)

which corresponds to the frequency of oscillations,

ω = M
√
−g00 . (23)

The quantum mechanical relation between energy of stationary particle and frequency,
M = h̄ω, demonstrates again that the Planck constant h̄ can be considered as the element
of Minkowski metric:

h̄ =
1√
−gMink

00

=
√
−g00

Mink . (24)

Note that the Planck constant was introduced by Planck as a quantum of action. How-
ever, now, since the action is dimensionless, the quantum of action is also dimensionless,
∆S = 2π (or ∆S = π for fermions). Nevertheless, the main property of the Planck con-
stant remains valid: the h̄ enters the relation between the energy and frequency, M = h̄ω.
However, now it has dimension of time, [h̄] = 1/[t].

8. de Sitter Spacetime and Planck Constants

The same parameters h̄ and /h exist for any D + 1 Minkowski spacetime. However,
these parameters are not diffeomorphism invariant. Being the element of the Minkowski
metric they are invariant only under space rotations. As a result the Planck constants
are not dimensionless. Then, according to the Weinberg criterion [32], they cannot be the
fundamental constants (see also Refs. [33–36] on fundamental constants).

Let us consider the possible variation of the Planck constants on example of the de Sit-
ter (dS) spacetime. The dS spacetime can be obtained from the 4 + 1 Minkowski spacetime:

− 1
h̄2 dt2 +

1
/h2

4

∑
1

XiXi = α2 . (25)

It contains one more parameter, the dimensionless constant α, the radius of the 4 + 1
sphere. The corresponding Hubble parameter has dimension of frequency:

H =
1

h̄α
, [H] =

1
[t]

. (26)

In the Paineve–Gullstrand form, the interval in dS spacetime contains three parameters,
h̄, /h, and H,

ds2 = − 1
h̄2 dt2 +

1
/h2

(
(dr− Hrdt)2 + r2dΩ2

)
. (27)

At r = 0 the metric is Minkowski. However, since the Planck constants are not
fundamental, it is not excluded that in the dS Universe they may deviate from their values
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in Minkowski vacuum and depend on H. The phonon analog of the metric emerging in
liquids suggests the following corrections to the Planck constants [37]:

∆/h
/h
∼ ∆h̄

h̄
∼ h̄2H2 =

/h2

r2
c
� 1 . (28)

Here, rc is the radius of the cosmological horizon.
Note that the main cosmological constant problem is not affected by this dependence

of h̄. In the q-theory of the quantum vacuum [15], the vacuum energy is self-tuned to zero
in the full equilibrium, and this does not depend on the value of h̄.

9. Black Hole and Planck Constants

Let us consider the possible variation of the Planck constants coming from the black
hole. The black hole metric in the Paineve–Gullstrand form is

ds2 = − 1
h̄2 dt2 +

1
/h2

(
(dr− vdt)2 + r2dΩ2

)
, (29)

where v(r) is the corresponding shift function. The radius of the black hole event horizon is

rh = 2MG , (30)

where M is the dimensionless mass of the black hole and G is the Newton constant, which
has dimension of length, see Section 11. So the metric also contains three parameters, h̄,
/h, and the parameter MG. The metric becomes Minkowski at r → ∞. However, near the
horizon it may deviate from the vacuum values. The comparison with Equation (28), where
the corrections to the Planck constants are inverse proportional to the square of the event
horizon radius, suggests the following corrections:

∆/h
/h
∼ ∆h̄

h̄
∼ /h2

r2
h
� 1 . (31)

10. Planck Constants and Tolman Law

In the dS spacetime, the probability of Hawking radiation of particle with mass M
detected by observer at r = 0 is determined by parameters h̄ and H:

w ∝ exp

− 2πM

H
√
−g00

Mink

 = exp
(
−2πM

h̄H

)
= (32)

= exp
(
− M

TH

)
. (33)

Here, TH is the Gibbons–Hawking temperature measured at r = 0, where the metric
is Minkowski:

TH = T(r = 0) =

√
−g00

MinkH

2π
=

h̄H
2π

. (34)

This temperature is dimensionless due to the time dimension of the Planck constant:
[TH ] = [h̄][H] = [t]/[t] = [1].

On the other hand, the parameter H/2π plays the role of Tolman temperature, which
enters the Tolman law

T(r) =
TTolman√
−g00(r)

, TTolman =
H
2π

, (35)

has dimension of inverse time, [TTolman] = [H] = 1/[t], see also Refs. [22,23].
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The Hawking temperature of black hole, which is measured at the asymptotic Minkowski
vacuum, is

TH = T(r = ∞) =
/h

4πrh
, (36)

where rh is the position of the black hole horizon. As the Gibbons–Hawking temperature in
Equation (34), the Hawking temperature (36) is also dimensionless, now due to the length
dimension of the second Planck constant, [TH ] = [/h]/[rh] = [L]/[L] = [1].

It is not excluded that the Tolman temperature is the parameter of the equilibrium
system, which may influence the Planck constants. Equations (28) and (31) suggest the
following corrections to the Planck constants:

∆/h
/h
∼ ∆h̄

h̄
∼ h̄2T2

Tolman � 1 . (37)

11. Length Dimension of Newton Constant and Planck Length

In the AD composite fermion gravity, the gravitational potential U(r) = −GM1M2/r
is dimensionless and contains masses M1 and M2, which are also dimensionless. As a
result the Newton constant has the dimension of length, [G] = [L]. This suggests that G
is not diffeomorphism invariant, and, thus, cannot be the fundamental constant. That is
why in the gravitational action it must be compensated by /h, which also has dimension of
length, [G] = [/h] = [L]:

S =
1

16π

/h
G

∫
d4x

√
−g R . (38)

Since the scalar curvature R is dimensionless, the Einstein–Hilbert action (38) is
dimensionless. It can be written via diffeomorphism invariant quantities if we introduce
the Planck mass MP =

√
/h/G, which is dimensionless as all the masses M in the composite

tetrad approach, [MP]
2 = [/h]/[G] = [L][L]−1 = [1]:

S =
M2

P
16π

∫
d4x

√
−g R . (39)

The Planck length scale has the conventional form l2
P = /hG, with [lP]2 = [/h][G] =

[L][L] = [L]2. The slash Planck constant /h has the same dimension as the Planck length,
[/h] = [lP] = [L]. Whether this “Planck constant length” is related to the “Planck length
scale”, is an open question [38]. This question was considered on the example of the acoustic
gravity, where the analog of the trans-Planckian phyics—atomic physics—is known [37]. It
was demonstrated that the acoustic analog of /h is on the order of the interatomic distance.
This suggests that in AD quantum gravity the Planck constant /h is on the order of Planck
length lP, i.e., the Planck mass is on the order of unity, MP =

√
/h/G ∼ 1.

12. No h̄ and /h in Diffeomorphism Invariant Equations

Let us consider the diffeomorphism invariant equations on example of the statistical
entropy, which is dimensionless in any units. The Gibbons–Hawking entropy of the de
Sitter cosmological horizon is

SH =
M2

P
4πT2

H
, (40)

where TH is the Gibbons-Hawking temperature in Equation (34). The Bekenstein–Hawking
entropy of the black hole is

SH =
4πM2

M2
P

=
M

2TH
, (41)

where M is the black hole mass and TH is the Hawking temperature of black hole radiation.
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All quantities in Equations (40) and (41) are dimensionless, [SH ] = [MP] = [TH ] =
[M] = [1]. Both equations do not contain Planck constants. This demonstrates the general
property of diffeomorphism invariant equations: they do not contain h̄ and /h, because the
Planck constants are not diffeomorphism invariant and have dimensions of time and length
correspondingly.

13. Conclusions

The important consequence of the Akama-Diakonov composite tetrads approach to
quantum gravity is the “dimensionless physics”; all the diffeomorphism invariant quantities
are dimensionless for any dimension of spacetime. These include the action S, interval
s, cosmological constant Λ, Hawking temperature TH , scalar curvature R, scalar field Φ,
Planck mass MP, masses M of particles and fields, etc.

Another consequence of this approach to quantum gravity, is that there are two Planck
constants, bar h̄ and slash /h, which are the elements of the Minkowski metric. As the
elements of the Minkowski metric, h̄ and /h are invariant only under SO(3) space rotations,
and, thus, they are not diffeomorphism invariant. As a result, the Planck constants are not
dimensionless, with bar h̄ having dimension of time, [h̄] = [t], and slash /h having dimension
of length [/h] = [L], and they do not enter the diffeomorphism invariant equations.

Since the Planck constants are not dimensionless, then according to Weinberg criterion
they cannot be the fundamental constants, and thus may vary with space and time. The
possible corrections to the Planck constants in the de Sitter Universe and near the event
horizon of black hole are in Equations (28) and (31).

According to Vladimirov and Diakonov [8], “the unconventional dimensions of the
fields ... are natural and adequate for a microscopic theory of quantum gravity”. The
similar “dimensionless physics” appears also in several other approaches to quantum
gravity. It appears, in particular, in the BF theories, where the composite metric is formed
by the triplet of the two-form fields (Schönberg-Urbantke metric) [39–44]. It appears also
in the model of the superplastic vacuum [45], which is described in terms of the so-called
elasticity tetrads [46–52], and in acoustic gravity [37]. All this suggests that the physics
with two Planck constants, bar h̄ and slash /h, can be reasonable.
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