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Abstract: Computer-extended Descriptive Geometry (CEDG) is a new approach to solving and
building computer models of three-dimensional (3D) geometrical systems through descriptive geom-
etry procedures (thus inheriting invariant-symmetry properties from projective geometry) that have
demonstrated reliability and accuracy. CEDG may calculate a parametric implicit functional form for
the spatial curves generated in the intersection of two surfaces, as well as of the flattened pattern
of any developable surface involved in those encounters. This study first presents the theoretical
foundations and methodology to calculate those curves. Secondly, a compound hopper is defined and
modeled through CEDG (implemented in GeoGebra) and CAD (Solid Edge© 2023) approaches to
evaluate the advantages of CEDG against CAD. The results demonstrate the robustness and accuracy
of the CEDG technique for he intersection and flattening of surfaces and the advantages of CEDG
against Solid Edge 2023 in solving the hopper case study.

Keywords: descriptive geometry; computer graphic parametric modeling; CAD; CEDG; dynamic
geometry software

1. Introduction

Descriptive geometry (DG), which inherits the invariant-symmetry properties of
projective geometry, is a science that was systematized by Gaspard Monge in 1794, and
its associated representation systems, such as the dihedral system, have determined the
foundations of graphic representation in engineering since the second half of the 19th
century. This discipline has huge importance in the development of spatial vision and
constitutes a fundamental pillar in university teaching, although its use in the professional
field has been practically replaced by computer-aided design (CAD) software [1]. CAD
technology emerged in the mid-1990s as a computer-based approach to create, modify,
analyze, and document 2D or 3D graphical representations of physical elements, providing
an alternative to manual drafts and product prototypes. The initial main reason for the
replacement of DG by CAD systems lies in the current wide availability of software
packages capable of representing three-dimensional shapes. The geometry of the CAD
model is essentially represented by curves and approximation surfaces, such as B-splines,
which provide high control and accuracy [2]. The subsequent evolution of CAD gives
tools to model very complex surfaces through Non-Uniform Rational B-Splines (NURBSs)
such as, for instance, those that define a human vascular system [3], overcoming the scope
of DG.

The determination of the intersection between two surfaces has been a problem in
CAD for around 60 years and continues to be an active topic of research today. The main
reason lies in the fact that the technique used has to balance three conflicting objectives,
accuracy, strength and efficiency [4]. The problem of intersection between surfaces involves
the design of algorithms suitable for evaluating and performing geometric operations, as
well as their representation. The exact requirements of the representation and algorithms
depend on the particular application. Generally speaking, any representation should
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provide functionality to perform the operations of evaluating and rendering the intersection
curve, deciding whether a point belongs to the intersection curve, organizing the points
that lie on the intersection curve, and using it as the boundary edge of a trimmed surface.

The evaluation of the intersection between two rational parametric surfaces is a
recurring operation in solid modeling and can be approached using algebraic sets in a
higher dimensional space. Using results from elimination theory, it is possible to project the
algebraic set onto a lower dimensional space, using the matrix itself as the representation of
the algebraic set in this space. Given this representation, properties of rectilinear programs
and linear algebra results are used to perform geometric operations on the intersection
curve. The accuracy of these operations can be improved by pivoting or other numerical
techniques [5].

Nearly 30 years ago, the strength deficiencies shown in the methods of intersection
between surfaces applied at the time [6] were being addressed. For this purpose, exact
methods based on rational arithmetic (oriented to rational B-spline surfaces) began to be
used, techniques that have been transferred to the usual CAD.

Subsequent studies reviewed the problem of intersection between surfaces for
CAD/CAM, also developing a new algorithm based on the geometric properties of the
surfaces and their intersection curves, establishing an integration of the segmentation
and tracing methods [7]. This algorithm translates the nonlinear problem of finding the
surface–surface intersection (SSI) curve into a series of steps for solving sets of linear equa-
tions. The starting points for the plotting are computed using a combination of numerical
and subdivision techniques. In the plotting phase, the intersection curve is drawn in the
direction of the combination of its tangent vector and the direction of the geodesic radius of
curvature, and the size of the steps is adaptively adjusted according to the curvature of the
intersection curve. Nevertheless, at the singular points, only the tangent direction was taken
into account. As an evolution of the previous methods, in [8], two hybrid models were
generated for the calculation of the intersection of two Bezier surfaces, obtaining results
that are more accurate and therefore closer to the real solution than using the plane/plane
intersection. Two matching methods were used to calculate exactly the intersection points,
employing tangential or circular steps. An important difference between the two tech-
niques lies in the step size. In the method using tangential steps, the step size must be fixed
and predefined, while in the circular step method, the step size is dynamic and changes
automatically. The choice of techniques to use will depend on the particular problem. If the
result is twisted or sinuous, the circular pitch is recommended; otherwise, it is enough to
use the tangential pitch.

A new improvement to the previous surface intersection methods was presented in [9]
for surfaces based on NURBS. The results obtained in this study allow some assumptions
to be eliminated that were necessary to apply in the parameterization of surfaces, thus
facilitating this process for two general surfaces. Finally, recent studies present new tech-
niques targeting toroidal patches in which the intersection curve of two free-form surfaces
is computed by employing a bounding volume hierarchy (BVH), where the leaf nodes
contain oscillating toroidal patches. The effectiveness of the technique applies, among other
cases, to two nearly identical surfaces ([10], Figure 7).

Computer-Extended Descriptive Geometry (CEDG) constitutes a new way of under-
taking computer modeling of 3D geometric systems [11], trying to offer a solution to the
previously identified constraints of the current CAD systems [6]. As discussed, CAD tools
favor the construction of virtual prototypes of 3D systems that can be manipulated in space
and projected in a simple way according to the chosen representation system. Nevertheless,
they do not allow the model to be generated when it depends on some implicit param-
eter (which can only be measured when the model is built). In addition, they still show
important deficiencies in the calculation of flat patterns of sheet metal surfaces.

The CEDG approach combines the ability of DG to solve spatial geometric problems
with the skill of dynamic geometry [12] in the building of geometric-mathematical models.
A CEDG model is a flat sequence of mathematical entities that may be associated with
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graphical objects in a one-to-one relationship. The entities consist first of 2D primitive
objects (point and lines), and other 2D curves, which combine themselves to produce
projections of 3D objects according to DG. Any entity in the CEDG model keeps mathemat-
ical dependencies with other previously built entities. In this manner, any change in an
entity’s parameter propagates to the dependent entities in a dynamic manner, ensuring the
consistency of the model. The model is completed with a second collection of mathematical
entities that implements mathematical procedures from DG and physical relationships that
could be required (e.g., forces equilibrium applied to a system).

The CEDG modeling is implemented in a dynamic geometry system working under
the deterministic condition (in opposition to continuous), to extend the mathematical
procedures of DG with the aim of describing the projections of 3D curves through implicit
parametric functions. To the best of our knowledge, this is the first approach that uses
the DG procedures to build parametric computer 3D models in a manner that exploits the
body of knowledge of DG, which includes the preservation of the integrity of curves and
surfaces, in contrast to CAD systems. The CEDG approach gives a response to the need
for DG in the world of 3D modeling [13], which is opposed to the opinion that DG is dead
Ortiz-Marín et al. [14].

The underlying concepts of CEDG appeared in the PhD thesis of Wottreng [15], al-
though the research was limited to the analysis of the influence of the developments of
Gaspard Monge on descriptive and differential geometry. A preliminary version of the
CEDG approach implemented on the dynamic geometry software Geogebra [16] demon-
strated its reliability to model some 3D systems [11].

The objective of this study is the development of theoretical methods for the compu-
tation of encounters between surfaces and for their flattening based on CEDG. For this
purpose, a methodology that is different from those presented so far will be used.

The usual procedure used in DG to calculate the intersection between two surfaces
consists of defining it by means of their projections, which are obtained through inter-
polation on a set of points belonging to them. The points are obtained by means of DG
techniques, which are applied iteratively so that the accuracy and complexity of the re-
sulting curve are proportional to the number of points attained [17]. The CEDG approach
extends the DG procedures to find a parametric mathematical function that defines the
sought intersection curve. The parametric function is extracted by means of a locus function
from the geometrical constructions of the model, which is computed from the sequence of
geometric-mathematical entities associated with the calculation of a single generic point of
the intersection [11].

This paper develops a theoretical technique that computes the intersections and
flattening (first objective), which is used to solve the case study defined by a compound
hopper, whose CEDG result (3D model and flat pattern) is compared with the solution
obtained using Solid Edge 2023 (second objective). The details of the comparison are
presented in the Section 2.

2. Materials and Methods

The study has two stages. The theoretical development of the CEDG technique for
surfaces’ intersection and flattening is presented in the first stage. We use the parametric
3D model of an oblique cone that intersects with an oblique cylinder (Figure 1) and is
subsequently flattened, to clarify the meaning and scope of the mathematical entities and
procedures involved in the novel method.

The variables and other terms used in the theoretical development are defined at their
first use. Notwithstanding, those that refer to especially relevant objects are listed also in
the Abbreviations section. The 3D surfaces and entities are defined by their vertical and
horizontal projections.
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Figure 1. Cone–cylinder intersection for illustrating the theoretical development (first stage).

The technique is applied in the second stage to solve the hopper defined by the projec-
tions of Figure 2, computing the surface intersections and flat patterns (flattening) of the
upper duct, Du (d’u − du), and the lower duct, Dl (d’l − dl), and comparing them against
the flat patterns obtained through Solid Edge 2023. According to the methodology pointed
out in Prado-Velasco and Ortiz-Marín [17] the flat pattern refers to the neutral surface (fiber)
of the hopper.

Figure 2. Hopper defined through its projections (second stage).

The hopper is completed by a fluid duct, Df (d’f − df), which transports fluid towards
the upper duct, and an oblique duct, Do (d’o − do), where aggregates (small discrete mass
of coarse to medium particles) from the aggregates border, Ba (b’a − ba) go into the system.
The fluid duct is a conical surface that discharges into Du through the discharge area, Ad,
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which, assuming that the system operates in a steady state, may be defined through the
following Equation (1), in which G is the mass flow rate of fluid through Df and ρ,~v and ~dS
are the density and velocity of the fluid and a differential element of area perpendicular to
~v at the position r in the discharge surface, Sd. Thus, ρd, vd and Ad are average values of
density and fluid velocity and the area of the discharge section.

G =
∫

Sd

ρ(r)~v(r)~dS(r) = ρdvdAd , (1)

The model needs to be optimized to achieve a very fast expansion of the fluid in the
last portion of the conical duct (quasi—adiabatic expansion). With that aim, the 3D model
must facilitate the research on the dimensional parameters that provide a fluid expansion
given by the outlet/inlet area ratio Ar = Ad/Ai > 3 (Ai is the fluid duct inlet area). The
value of Ar is controlled by the Du − Df connection curve, which depends on the conicity
of Df (Con) and the horizontal distance between the Df axis and the horizontal projection of
vertex, v (Eccentricity), Ecc, whereas the remaining dimensions of the hopper are constant.
The conicity induces a smooth increment of area, whereas the eccentricity promotes a
greater surface inside the Du − Df connection curve without a gradual increment along the
fluid duct.

The other hopper dimensions taken as parameters are the diameter of the inlet fluid
border (b’f − bf), Ddf, the diameter of the upper border (b’u − bu), Dbu, the diameter of the
lower border (b’l − bl), Dbl, the height of the lower duct with respect to its vertex, Hld, the
angle of fluid duct axis with respect to the vertical, αdf, and the angle of the oblique duct
with respect to the horizontal, αdo.

The discharge surface, Sd, may be defined by the cylindric surface inside the warped
intersection curve between surfaces Df and Du, which will be computed during the hopper
modeling. According to the Equation (1), the area Ad may be considered perpendicular to
the streamline. We are interested in performing an analysis focused on the 3D model and
independent of the fluid system. Therefore, we will use the 3D hopper model to propose
and compute a surrogate of Ad.

We define the following three specific targets in this second stage:

1. Feasibility to reach the parametric 3D hopper’s model and the required flat patterns.
2. Application of the 3D model to achieve Ar > 3 with minimum conicity through the

eccentricity dimension.
3. Accuracy of the Du and Dl flat patterns.

The values of model parameters were grouped in two main dimensional groups (Nom
and Var) and several variations within these ones, as shown in Table 1. Each row represents
the values of the dimensions referred to (Con, Ecc, Ddf, αdf and αdo) that were assigned to
evaluate the models according to the above specific targets.

The parameters that are not set in this table were kept constant during the study. These
are Dbu = 6 m, Dbl = 5 m, Hld = 7 m, αdf = 65°, and αdo = 45°. Nonetheless, they were
modified to verify that the final model responds properly to their change.

Table 1. Dimensions’ groups values (meters) for 3D model CEDG–CAD comparison.

Dim. Group Con † Ecc Ddf αdf
‡ αdo

‡

Nom0 0.27 0.6 2 65◦ 45◦

Nom1 0.09 1.66 2 65◦ 45◦

Var0 0.5 1.11 0.5 50◦ 52◦

Var1 0.5 0 0.5 50◦ 52◦

Var2 0.09 2.43 0.5 50◦ 52◦

† Dimensionless. ‡ Sexagesimal degrees.

The Nom dimensions’ group refers to the parameters used during the model building.
Nom0 was the initial model, whereas Nom1 was the model achieved for minimal conicity
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and Ar > 3 in the second target. The Var dimensions’ group is a variant group used to test
the accuracy of the model. It changes the axis of Df and Do, as well as the inlet fluid duct
diameter, Ddf. Conicity and eccentricity were swept across a wide set of values, including
quasi-non-conicity (Con = 0.09) and non-eccentricity (Ecc = 0).

The advantages and limitations of the CEDG and Solid Edge 2023 approaches were
evaluated through the first two targets. In order to simplify the metrics and extension of
the third target, we used three relevant points of the intersection curves from flat patterns.
Numeric precision will be limited to three decimals (mm).

3. Results
3.1. Surfaces’ Intersection and Flattening through Locus-Based Parametric Functions
3.1.1. Surface-to-Surface Intersections

The encounter or intersection curve between two 3D surfaces, S1 and S2, C, may be
defined as the set of all 3D points, P, that pertain to both surfaces (P ∈ S1 ∩ S1).

We define S(ω) as a collection of auxiliary surfaces that intersects both with S1 and
S2 when the argument ω ∈ Ω, where Ω is a reference set on <n for n = 1 or n = 2.
Accordingly, the point P(ω) = C1(ω) ∩ C2(ω) will pertain to C for C1(ω) = S1 ∩ S(ω)
and C2(ω) = S2 ∩ S(ω).

If we choose a reference set Ω such that the collection S(ω ∈ Ω) sweeps all the
points from S1 and S2, then we may compute the intersection curve as C = {P(ω) =
C1(ω) ∩ C2(ω) for all ω ∈ Ω }.

The projection of P(ω) from C onto a plane is called pσ(ω), in such a way that σ is the
projection curve of C on that plane. As we may completely define a 3D curve from any two
non-degenerated plane projections [18], we may compute the intersection curve C through
their orthogonal projections on the dihedral planes, σ (horizontal) and σ′ (vertical).

Descriptive geometry gives mathematical procedures that solve the pσ projection for
any value of ω. The encapsulation (sequence of mathematical entities in a dynamic geom-
etry model) of that series of mathematical procedures through dependent mathematical
objects for the parameter ω delivers a locus entity, which defines the following equation
for the horizontal projection curve, σ:

Lσ(ω) ≡ σ = locus(pσ(ω), ω ∈ Ω) , (2)

in which Lσ is a 2D parametric function in Ω, and locus is the mathematical entity that
gives the points pσ associated with all values of ω ∈ Ω.

The vertical projection, σ′, is achieved by the same Equation (2) when the horizontal
projection of P(ω), pσ, is substituted by the vertical projection, p’σ.

To illustrate this method, Figure 3 presents the computation of the intersection between
an oblique cone with an oblique cylinder according to Equation (2). The surfaces are defined
by their circular sections with a horizontal plane (bases) and their axis (and vertex v’ − v in
the cone). The vertical contour of the cone has been added to facilitate the interpretation.

We select the collection S(ω) of planes that contain the cone vertex, v’ − v, and a line
parallel to the cylinder axis, called r’ − r. As the incidence of this plane onto the horizontal
plane is the h’ − h point, a plane from this collection may be defined through the s’ −
s horizontal line, as shown in Figure 3. The line must intersect the two circular bases to
ensure that S(ω) intersects the two surfaces. The lines h − PLI and h − PLS define the
boundary planes of this collection for the relative position of the surfaces. These lines must
be tangents to any of the circular bases. In this manner, the PLS point is computed as PLS =
If(y(1) < y(3) then point 1 else point 3), where 1 and 3 are presented in Figure 3 and y is
the vertical coordinate. A similar condition with points 2 and 4 defines the PLI point. This
conditional logic attends any relative position of these oblique surfaces.
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Figure 3. Projection curves of cone–cylinder intersection (bite) in a CEDG model.

We have defined ω as the angle γP between lines s and h − PLS (9.8◦ in Figure 3).
Therefore, the reference set, Ω, is the interval [0, γPx], where γPx is the angle between lines
PLI − h − PLS (12.8◦ in Figure 3).

A general plane S(ω) intersects in two generatrix lines (C1(ω)) for the cylinder and
other two for the cone (C2(ω)), which intersects to give four intersection points (Pi(ω) =
C1(ω) ∩C2(ω), i = 1, 2, 3, 4), from C, as shown in Figure 3 (ac’ − ac, bc’ − bc, ad’ − ad, bd’
− bd). Therefore, the vertical and horizontal projections of C, σ′ and σ, are given by the
following four-leaf parametric curves:

σ′ ≡ Lσ′(ω) = locus({ac′, bc′, ad′, bd′}, ω ∈ Ω) (3)

σ ≡ Lσ(ω) = locus({ac, bc, ad, bd}, ω ∈ Ω) (4)

The leaves of σ′ and σ have been emphasized through alternating colors (see Figure 3).
Figure 3 presents the connection between C and the cone basis (b’1 − b1 and b’2 − b2),
beside the horizontal cone section just below C (dashed circle), to clarify the solution.

Reducing the distance between the centers of circular bases, o − o2, the bite between
surfaces changes to the penetration of the cylinder into the cone, as shown in Figure 4.
The boundary planes are now both tangent to the cylinder base (PLS is 3 and PLI is 4).
The intersection curve splits into two separate pieces, which are defined by the parametric
curves Lσ′(ω) and Lσ(ω) (Equations (3) and (4)) for the vertical and horizontal projections,
respectively.



Symmetry 2023, 15, 984 8 of 21

Figure 4. Projection curves of the cone–cylinder intersection (penetration) in a CEDG model.

The mathematical-geometric objects described in detail in previous paragraphs and
manipulated according DG procedures to calculate the intersections points Pi(ω) =
C1(ω) ∩ C2(ω), i = 1, 2, 3, 4) = (ac’ − ac, bc’ − bc, ad’ − ad, bd’ − bd) can be imple-
mented through mathematical entities in the CEDG model. As these points depend on ω,
which is a parameter in Ω = [0, γPx], it is possible to define the loci of Equations (3) and (4)
through subsequent mathematical entities that depend on the previous ones. We conclude
that this surface-to-surface intersection technique produces a sequence of dependent math-
ematical entities that may be implemented in a dynamic geometry software in a manner
compliant with the CEDG approach, as illustrated in Figures 3 and 4.

An important feature of this technique is that it keeps the geometric integrity of the
intersection curve. That is, C, defined through the vertical and horizontal projection, σ′

and σ, is not an approximation but the true mathematical object, expressed through the
parametric functions Lσ′(ω) and Lσ(ω). These functions, in turn, are implicitly coded in
the CEDG model, allowing transcendental (non-algebraic) functions.

Although the example is based on quadric surfaces, the method is not restricted to
this type of surface. According to descriptive geometry knowledge [18], S1 and S2 may be
any type of surfaces for which a collection of auxiliary surfaces S(ω) exists and produces
computable intersection curves C1(ω) = S1 ∩ S(ω) and C2(ω) = S2 ∩ S(ω) in S1 and S2,
respectively. The term computable is used here to refer to known curves (straight lines,
conics, or other ones implemented on well-known mathematical objects), and to curves
that may be calculated through the first ones in a recurrent process.

Although a deep analysis of this issue exceeds the scope of this paper, several examples
of non-quadric technical surfaces include polyhedral surfaces and even evolution surfaces
(e.g., a ship’s hull) [18].

3.1.2. Surface Flattening

Ruled single curvature surfaces can be flattened without deformation. Here, we
present a locus-based technique that gives the exact flat transformation of any 3D curve in
this type of surface. It has been implemented in GeoGebra as part of the built-in features of
CEDG.
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The flat transformation of a curve C that pertains to a ruled single curvature surface, S,
may be formally computed by means of a two-stage procedure. First, a generic generatrix
line of S, g, that contains a point P ∈ C is transformed to the flat domain. This transfor-
mation is equivalent to the placement of a line in the flat domain. Secondly, the point P is
transformed to the flat domain; that is, it is placed on the transformed g. This two-stage
procedure defines a sequence of dependent mathematical objects, which builds the locus
entity that defines the flat transform of C through a parametric function. Figure 5 shows a
scheme of this process for a cylinder and a cone, both oblique with generic directrix.

In the case of a cylinder (Figure 5–left), we must intersect it with a plane perpendicular
to the axis, to give the section σ. The flat transformed of σ is the R straight line, perpendicu-
lar to transformed generatrix lines. We may use any generatrix line as a reference in the
flat domain, as shown in Figure 5 (dashed line). Then, defining pσ ∈ σ as a parameter, it
is transformed to fR(pσ) onto R, ensuring the invariance of lengths of transformed paths.
That is, the distance between fR(Pσ) and fR(pσ0) is equal to the length of σ between Pσ and
Pσ0. The flat transform of the generatrix line through pσ is parallel to the reference one.
The function fR converts its argument from σ into the transform in R.

Figure 5. Flattening transformation with generatrix line mapping: cylinder (left)–cone (right).

Finally, the flat transform of PA ∈ A in the cylinder is Pπ , which pertains to the
flat transform of its generatrix line, with the distance between Pπ and fR(Pσ) equal to the
distance between PA and Pσ.

Considering that descriptive geometry provides mathematical procedures to achieve
invariance conditions and manipulate the 3D space through mathematical objects, the flat
transform of A, π, may be computed as:

π ≡ Lπ(ω) = locus(Pπ( fR(ω)), ω ∈ Ω) , (5)

where Lπ is a 2D parametric function of ω = Pσ ∈ σ, Ω is a subset of σ that defines the
cylinder piece to be flattened, and Pπ( fR(ω)) is a point of π defined by the generatrix line
through fR(ω).

In the case of an oblique cone as surface S to be flattened (Figure 5–right), we first
intersect this surface with a sphere centered in the cone’s vertex (V) to obtain a warped
curve in S, A, which is called support curve. We know that the flat transform of A is a
circular arch (D) with the radius of the sphere. The flat transform of PA ∈ A is fD(PA) ∈ D,
with a distance to the reference point fD(PA0) along D equal to the distance from PA to PA0
along A (see Figure 5). The flat transform of a generatrix line through PA ∈ A contains the
flat transform of vertex (Vref placed together with the reference generatrix line) and fD(PA).

The flat transform of PC ∈ C in the cone is Pτ , which pertains to the flat transform of
its generatrix line, with a distance between Pτ and fD(PA) equal to the distance between PC
and PA. Under the same consideration of Equation (5), the flat transform of C (τ) may be
computed as
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τ ≡ Lτ(ω) = locus(Pτ( fD(ω)), ω ∈ Ω) , (6)

where Lτ is a 2D parametric function of ω ∈ Ω, such that the generatrix line through
ω contains PA, and Ω is a plane section of the cone that facilitates the mathematical
manipulation of this surface.

The variable ω ∈ Ω may be substituted by another variable tω ∈ T , if there exists any
mapping function between Ω and T .

The computation of the distance from PA to PA0 along A is not trivial since A is
a warped curve with a geometry that depends on the conical surface. We use the flat
transformation of A as pertaining to a cylinder, taking advantage of the invariance of
lengths during the flat transformation.

This method for surface flattening is applied to the conical surface intersected with
the cylinder (bite) from the previous CEDG model, between two selected generatrix lines,
as presented in Figure 6.

Figure 6. Cone surface intersecting with a cylinder (bite, Figure 3) flattened between generatrix lines
through rA and rB. The projections of surfaces include auxiliary lines that help to follow the building
process that gives the flat pattern (right–bottom).

Projections are presented in lowercase, whereas flat transformations are in uppercase
(except for Greek symbols). In Figure 6, ωR is a point in Ω, which is the circular arch
from rB to rA in the circular base of the conical surface (plane section). It is defined as ωR
= Point(circular base, tωR), where tωR is a real parameter in T = [0, 1] and Point is the
mapping function between Ω and T .

The generatrix line through ωR intersects the sphere (radius equal to segment v’ −
r’A) in p’AR − pAR. Accordingly, pAR pertains to the horizontal projection of the support
curve A, which is calculated through Equation (2) using ωc in the circular base, defined
between rA and ωR. Therefore, the horizontal projection of A between rA and ωR is locus
(pAc, ωc) (orange horizontal projection).

We define a right cylinder from the horizontal projection of A (bottom base) to the
support curve (warped) A. The flat transform of A as a curve of the cylinder is π, which is
shown in Figure 6 (upper right). According to the Equation (5), π is defined as locus(PAR,
tωR). The distance between rA and pARL in the horizontal projection of A is computed
through Perimeter(locus) command.
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The distance between RA and PAR along D (circular arch in cone flat domain, Figure 6
bottom–right) must be equal to the distance between RA and PAR along π curve, which
is known. Therefore, PAR in D and its associated generatrix line through (ωR) may be
placed in the flat domain. The flat transformation of the cone base through RA to RB may
be computed as locus((ωR), tωR), according to Equation (6). Finally, the flat transformation
of the cone–cylinder intersection inside the flat pattern is defined by two parametric
functions, locus(ωRF, tωR) and locus(ωRE, tωR), since ωRf’ − ωRf and ωRe’ − ωRe are the
intersections of the generatrix line through ωR with the cylinder.

The CEDG model updates dynamically to changes in the parameters, which include
the modification of the intersection. In this manner, if we reduce the distance between
the centers of circular bases o − o2, as was performed in Figure 4, the bite changes to
penetration, splitting into two pieces, and the flat pattern dynamically changes to give what
shows Figure 7. It must be noted that we have also moved rB to increase the cone surface
that is flattened.

Figure 7. Cone surface intersecting with cylinder (penetrated, Figure 4) flattened between generatrix
lines through rA and rB.

We must remark on several issues of this novel surface flattening method. First, the
mathematical-geometric procedures that have been described and applied to compute the
parametric points (ωR), ωRF and ωRE in the flat domain, can be implemented through
mathematical entities in CEDG modeling to allow the determination of the loci given by
Equation (6). The implementation is performed automatically during the model build-
ing process in a dynamic geometry software such as GeoGebra. Second, the technique
keeps the geometric integrity of the flattened curves, through the parametric functions:
locus((ωR), tωR), locus(ωRF, tωR) and locus(ωRE, tωR), which in turn are implicitly coded in
the CEDG model.

Finally, the technique is limited to ruled single curvature surfaces S, in which for any
point P in C ∈ S there exists a generatrix line that includes P and may be converted to the
flat domain without surface deformation.

3.2. Hopper’s CEDG Modeling

Figure 8 shows the Du − Df connection, calculated according to the technique pre-
sented in Section 3.1.1.

We set a collection S(ω) of auxiliary planes through the cone vertex (fluid duct) and
parallel to the axis of the upper duct (vertical). The argument ω is a point in the circular
base of the upper duct, between p3 and p4 (Ω is that circular arch). The auxiliary plane
from S(ω) with ω ∈ Ω intersects the fluid duct in two generatrix lines, C1(ω), and the
upper duct in a generatrix line (at the inlet side), C2(ω). These generatrix lines intersect
themselves to give the points P1 and P2 through their projections. As seen, the horizontal
projection is p1 = p2 = ω, whereas the vertical projections are p’1 and p’2.
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Figure 8. CEDG modeling of Du − Df connection curve.

Therefore, the Du −Df connection curve is given by the parametric functions locus(p’1,
ω) and locus(p’2, ω) (vertical projection, two leaves), and locus(ω, ω) = Ω (horizontal
projection, one leaf).

The intersection curve Dl − Do is presented in Figure 9. It was calculated using a
collection of horizontal planes with heights from the low border, b’l, to the height of Q5, as
shown. In this manner, we define ω = zh (pointed out in Figure 9) and Ω = [z(b’l), z(q’5)].
C1(ω) and C2(ω) are now circles that intersect in q1 and q2 (horizontal projection), and
q’1 = q’2 (vertical projection), and thus the intersection curve is given by the parametric
functions locus(q’1, zh) = locus(q’2, zh) (vertical projection, one leaf), and locus(q1, zh) −
locus(q2, zh) (horizontal projection, two leaves).

Figure 9. CEDG modeling of Dl − Do connection curve.
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The Dl − Do connection curve is warped despite its horizontal projection seeming
elliptic.

Once the connection curves are defined in our CEDG model, the upper and lower
ducts may be flattened. The flat pattern of the upper duct was calculated, as indicated in
Figure 10. The section perpendicular to the axis of the cylinder is projected as the bu circle
in the horizontal plane. We have taken the generatrix line through A (a’ − a) as a reference
in the flat domain. We define the Ω subset of the bu circular section as the circular arch from
p3 to p4, which sets the boundaries where the Df cone intersects with Du (Figure 10). The
generatrix line through the point ω ∈ Ω intersects the Du − Df connection in two points,
p’1 and p’2, with horizontal projections p1 = p2 = ω. Then, they may be transformed to the
flat domain thanks to the transformation length invariance to give P1 and P2.

Figure 10. Flat pattern of the upper duct (Du) in the CEDG model.

We can apply now the Equation (5) according to the surface flattening technique,
which solves the flat transformation of the Du − Df connection curve as the parametric
functions locus(P1, ω) and locus(P2, ω) with ω = p1 = p1 (two leaves).

Figure 10 (right) also shows several relevant points within the intersection curve whose
positions with respect to A are used to verify the accuracy of the flat transform. These areas
PM and Pm, with maximum and minimum height, P3 and P4, associated with the curve’s
boundary limits, and P6 and P5 (which are defined below), will be used to compute Ar.

The lower duct, Dl, is a cone that is flattened according to Equation (6). The process
is presented in Figure 11, including the final flat pattern (right). As Dl is a revolution of
a circular cone, we have selected the sphere that generates the cone border, b’c − bc, as
support curve A. We use again the point A (a’ − a) to set the reference generatrix line,
which facilitates the patterns’ junction. As A is a flat curve, it may be also used as a plane
section and then Ω = A. Defining the point q (horizontal projection) from Ω, it may be
transported to the flat transformed of A, D, keeping the length between its transform, Q,
and A (reference) along D, as shown. The intersection of the generatrix line through q
with the Dl − Do connection curve is q’3 − q3, which is transported to the flat domain to
deliver Q3 (keeping the distance V − Q3). Therefore, the Dl − Do flat pattern is given by
the parametric function locus(Q3, q).
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Figure 11. Flat pattern of the lower duct (Dl) in the CEDG model.

The model solution also shows Q4, which is the intersection of the reference generatrix
line with the Dl − Do connection curve, and its highest point, Q5, which will be used
subsequently in the comparative analysis against the CAD model. These points were
computed in the hopper projections, using the associated generatrix lines from Do and Dl
and transformed to the flat domain.

Table 2 presents the coordinates of the selected relevant points within the intersection
curves’ flat patterns for each set of hopper dimensions’ values.

Table 2. Coordinates of selected points of flat patterns from upper and lower duct (m) and Ar ratio,
computed with CEDG for each dimension’s groups.

Dim.
Group P3y P3z P4z Pmy Pmz PMy PMz Q5g Q5α

‡ Ar
†

Nom0 3.487 3.275 3.691 1.979 1.563 1.633 4.921 5.440 51.728◦ 3.259
Nom1 3.657 3.147 4.269 2.656 2.016 1.637 4.777 5.440 39.679◦ 3.024

Var0 3.478 2.276 4.010 2.554 0.972 0.977 4.268 7.464 44.246◦ 56.361
Var1 2.287 2.476 2.476 1.124 0.881 1.098 3.668 7.464 62.302◦ 31.696
Var2 2.110 2.642 4.177 1.901 2.320 0.963 4.227 7.464 38.599◦ 15.825

† Dimensionless. ‡ Sexagesimal degrees.

The CEDG model of the hopper was visually inspected to propose a surrogate of the
discharge area of the fluid duct (Ao) that avoids a more complex computation in agreement
with the method’s requirements (see Section 2). Figure 12a shows the connection curve Du −
Df after two sequential rotations (φev and φeh with the axis through Df vertex perpendicular
to dihedral planes) in a position where the internal segment P5 − P6 (pertaining to a
generatrix from Du that encounters the Df contour generatrices in Figure 8) is parallel
to the vertical projection plane. It is clear that the second internal segment P3 − P4 is
approximately perpendicular to the first one. The product of the lengths of these segments
is the area of a rectangular surface that remains approximately perpendicular to the average
streamline. Accordingly, we decided to define Ao = P5P6 · P3P4. The last column in Table 2
shows the outlet/inlet area ratio, Ar, in the fluid duct.
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(a) Rotated Du − Df connection. (b) Outlet/inlet area ratio.

Figure 12. Visual inspection of the fluid duct connection (a) and numerical relation of its area section,
Ar, as a function of eccentricity (abscissa) and conicity (0.09–0.25 in blue, 0.27–0.35 in red, increments
of 0.02) (b) in the CEDG model.

For the values of dimensions used during the model building (Nom0, see Table 1),
P3P4 = 3.320 m, P5P6 = 3.339 m, and thus Ao = 11.085 m2. The inlet area is Ai = πD2

df/4 =
π m2, and then Ar = 3.529. Although the area ratio is greater than 3 as wished, the conicity
could be reduced.

The value Ar as a function of the conicity, Con, and the eccentricity, Ecc, of the fluid
duct is computed by the CEDG model and presented in Figure 12b. The conicity values
greater than or equal to 0.25 are marked in red. The point marked in that plot achieves a Ar
value slightly greater than 3 (3.024) with 1.66 m of eccentricity and a minimum value of
conicity (0.09). However, it is possible to even further reduce the tonicity, and the sensitivity
of Ao to errors in the hopper’s dimensions increases excessively. Therefore, we selected
Con = 0.09 and Ecc = 1.66 m as design parameters (Nom1 dimensions’ group).

The CEDG model of the hopper associated with the Nom1 design dimensions is
presented in Figure 13.

Figure 13. Final design of the hopper through CEDG modeling.
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3.3. Hopper’s CAD Modeling

Figure 14 shows the Du − Df connection. Both bodies were modeled with the support
of the 3D CAD solid modeling software, parametric features, and synchronous technology
Solid Edge 2023. We made use of the protrusion command in the solids module to model
both the cylinder and the truncated cone. In the case of the latter, a demolding operation
was also added to ensure the desired conicity in each case. Once the two solids were created,
a thickness of 0.0001 mm was applied because Solid Edge 2023 does not allow one to work
with the neutral surface (fiber) of the hopper, as indicated in the methodology pointed out
in Prado-Velasco and Ortiz-Marín [17], and the minimum thickness value allowed by this
software is the one indicated above.

Figure 14. Solid Edge modeling of the Du − Df ducts system.

In Figure 15, a Du cylinder is shown together with the intersection curve between it
and the previous Df straight truncated cone. To obtain this part of our whole 3D model in
such a way that its flat pattern could be computed, we needed to proceed as follows. First
of all, the solid cylinder was created with the protrusion command, and then a thickness of
0.0001 mm was applied. As said before, this is the minimum value allowed by the computer
application. Next, a conical cut was applied with the characteristics of the Df duct, thus
obtaining the cylinder together with the intersection curve produced by the truncated cone.

Figure 15. Solid Edge modeling of the Du duct with the Df connection curve.

Subsequently, it was necessary to make a tiny cut in the lateral surface of the cylinder to
generate a slot and be able to open the solid (see Figure 15). This is a fundamental condition
if the solid cylinder is required to be converted into a sheet metal module. Once the slot is
created, it is possible to access the tools command and select the icon to convert into the
sheet metal part. Finally, by selecting the flat pattern button in the tools tab, the flat pattern
of the cylinder, together with the conical encounter of the Df duct, is obtained, as shown
in Figure 16, which was obtained by using Solid Edge’s draft module. The spatial points
indicated are the same as those selected in the CEDG model. Models of Figures 14–16
correspond to the Nom1 design dimensions.
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Figure 16. Flat pattern of the Du cylinder together with the intersection curve produced by the Df

truncated cone in the Solid Edge model.

The intersection curve Dl −Do is presented in Figure 17. As in the case of the preceding
cylinder, both bodies were modeled with the Solid Edge 2023 solids module. The truncated
straight cone was generated with the protrusion by the revolution command, whereas the
oblique cylinder was created by using the protrusion sweep command. Then, a thickness
of 0.0001 mm was applied.

Figure 17. Solid Edge modeling of the Dl − Do ducts system.

The Dl truncated cone was processed in a similar manner to Du with the aim of
solving its flat pattern. The protrusion by the revolution command was used to generate
the truncated cone, which was subsequently made a swept hollowing with the same
characteristics as the Do oblique cylinder in order to generate on it the intersection curve
produced by this cylinder, as shown in Figure 18. After applying a thickness command
of 0.0001 mm, a tiny lateral slot was achieved for the truncated cone in order to open the
lateral surface for subsequent application of the sheet metal module. Nevertheless, it was
not possible to find a generatrix that would allow that flattening under the bite with the
oblique cylinder.

We tried to use the Sheet Metal Body in the Rough command to check if this option
could work. After performing several tests, we concluded that the Dl duct can only be
flattened when the intersection with Do is a penetration (two holes) in opposition to a bite
(one more complex hole). The Solid Edge surface module was also tested without success
because it cannot compute the Dl flat pattern.

Therefore, Table 3 was created with the available information, in which the coordinates
of the selected relevant points within the flat patterns of the intersection curves for each set
of hopper values are presented together with the values of the outlet (discharge)/inlet area
ratio, Ar, in the Df fluid conduit. We used the same surrogate of the discharge area as in
the CEDG model to facilitate the comparison.
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Figure 18. Solid Edge modeling of the Dl duct with the connection curve.

Table 3. Coordinates of selected points of flat patterns from upper duct (m) and Ar ratio, computed
with Solid Edge 2023 for each dimension’s groups.

Dim.
Group P3y P3z P4z Pmy Pmz PMy PMz Q5g Q5α

‡ Ar
†

Nom0 3.487 3.275 3.691 2.022 1.563 1.675 4.921 - - 3.543
Nom1 3.658 3.147 4.270 2.666 2.015 1.632 4.777 - - 3.003

Var0 3.478 2.276 4.009 2.551 0.971 0.981 4.268 - - 56.618
Var1 2.287 2.476 2.476 1.143 0.881 1.143 3.669 - - 31.694
Var2 2.111 2.642 4.177 1.831 2.312 0.761 4.228 - - 15.930

† Dimensionless. ‡ Sexagesimal degrees.

The obtained values are very similar to those calculated using the CEDG technique, as
expected. Notwithstanding, we could not apply the 3D model from Solid Edge to extract
the function Ar as a function of the eccentricity and conicity, nor the other parameters.

Finally, the Solid Edge model of the hopper associated with the Nom1 design dimen-
sions is presented in Figure 19.

Figure 19. Final design of the hopper through Solid Edge modeling.

4. Comparative Analysis and Discussion

According to the results obtained, Solid Edge could not complete the hopper modeling.
In addition, this CAD tool does not provide an easy method to compute and evaluate Ar,
as a function of the eccentricity and conicity of our 3D hopper. Each specific target of the
second stage of our study is compared as follows.

1. Feasibility to reach the required models. The 3D model of the hopper that includes
the ducts connections was properly obtained both in CEDG and CAD, as shown in
Figures 13 and 19. Nonetheless, Solid Edge 2023 was not able to compute the flat
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pattern of the lower duct (truncated cone) because this duct encounters the oblique
cylindrical duct with an intersection of the bite type. We used different strategies, as
described in the Section 3, without success.

2. Once the 3D models were computed, we tried to use them for the analysis of the
influence of the geometrical parameters in the outlet/inlet area ratio of the fluid
duct, Ar, and finally for the optimization of the hopper, to achieve Ar ≥ 3 in a fast
expansion. The CEDG model allowed a visual inspection of the fluid duct—upper
duct connection through spatial rotation, as well as the plotting and quantitative
computation of the relationship between Ar and any geometrical parameter of the
3D system. We used this feature to plot Ar(Ecc, Con) and select the design values
Ecc = 1.66 m and Con = 0.09 (Figure 12b). In opposition, we did not find a direct
manner to extract the Ar function in Solid Edge 2023.

3. With respect to accuracy, a comparison between Tables 2 and 3 shows that the position
of P3 − P4 (boundary points) in the flat pattern had relative deviations less than 0.01%.
In the case of Pm and PM, z relative deviations were lower than 0.02%, whereas y
relative deviations were lower than 3.9%. The relative deviations between Ar values
were lower than 0.6%, with the exception of the value for Nom0 dimensions’ group,
which was 8.7%. Values greater than 5% occurred in those cases where a manual
selection of some 3D object was needed. We conclude that the accuracy was high in
both models.

The failure of Solid Edge 2023 to achieve the flat pattern of a particular surface’s
configuration agrees with other comparative studies [17]. Although a more complete
analysis of this lack exceeds the scope of this paper, the strategy of current CAD technology
for surfaces’ flattening seems limited to a set of configurations previously defined in the
software. This approach is clear in some CAD tools focused on sheet metal, such as
LogiTRACE v14.

Our results validate the reliability and accuracy of the new theoretical method pre-
sented to compute surfaces’ intersections and their flattening for the type of surfaces of the
case study. This method takes advantage of the mathematical procedures of descriptive ge-
ometry and extends them by means of a locus implicit parametric equation within the novel
CEDG approach. The integrity of geometrical objects that characterizes CEDG [11,17] is
also kept in this method. Although this study does not evaluate the reliability and accu-
racy of CEDG and the surface–surface intersection method with non-quadric surfaces, the
underlying foundation is not limited to them, as pointed out in the Section 3. The study
of the reliability of our method to address the intersections among NURBSs surfaces is
a relevant subject that requires more research, since NURBS curves and surfaces are not
usually addressed in native form by dynamic geometry software, and thus they must be
first implemented as mathematical entities in an efficient computational manner.

The implicit building of parametric functions defining the intersection and flattened
curves is an important property shared by other 3D modeling techniques such as the implicit
complex (IC) framework of Kartasheva et al. [19] (the third condition of the definition of a
graphical cell in the IC). However, CEDG is based on locus-based parametric functions,
which differ completely from the IC concept. In addition, CEDG does not have a framework
that associates projections with 3D objects. The development of that framework is a current
research line in CEDG [20].

CEDG is implemented in a software of dynamic geometry, which provides a different
technology from the technology of current CAD systems. Other studies about 3D geometri-
cal modeling have used the locus concept with a different goal. For instance, Gao et al. [21]
uses the locus as a mathematical technique to solve some geometrical issues, such as the
geometric constraints problem that appears frequently in parametric CAD and other do-
mains, and Oprea and Ruse [22] addressed the computation of some loci problems through
descriptive geometry tools.

Other studies have tried to recover the interest in applying the locus concept to CAD
software tools. This is the case of the study by Rojas-Sola et al. [23] that improved the set of
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available resources to build sketches by incorporating a locus tool into several geometrical
cases and implemented them in Adobe Authorware v7 (e-learning authoring tool with a
graphical programming language that was officially discontinued in 2007). A more recent
study advanced that research line by implementing an algorithm to solve relevant loci
cases, which was designed for educational use [24]. Certainly, the development of new
mathematical algorithms that improve the locus equation computations is an ongoing
research line in industry and research [25].

Although CEDG is a computer parametric 3D approach designed for both educational
and professional domains, it is still immature for the professional domain, and it requires
more research to improve the usability, computational efficiency, and capability to interact
with other CAD tools. Concerning the GeoGebra implementation, the Locus implicit
function cannot be used as a general 2D geometric object, and the measurement of lengths
along it has limitations [16]. These issues define other ongoing research lines.
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Abbreviations

The following abbreviations are used in this manuscript:
Si Data surfaces for i = 1, 2
C Curve in 3D space
AB Distance between A and B points
A (a’ − a) Spatial (3D) object (vertical projection—horizontal projection)
Py horizontal distance between P and right A points in flat pattern (Figure 10)
Pz vertical distance between P and right A points in flat pattern (Figure 10)
CEDG Computer extended Descriptive Geometry
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