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Abstract: Causal inference is a fundamental research topic for discovering the cause–effect rela-
tionships in many disciplines. Inferring causality means identifying asymmetric relations between
two variables. In real-world systems, e.g., finance, healthcare, and industrial processes, time series
data from sensors and other data sources offer an especially good basis to infer causal relation-
ships. Therefore, many different time series causal inference algorithms have been proposed in
recent years. However, not all algorithms are equally well-suited for a given dataset. For instance,
some approaches may only be able to identify linear relationships, while others are applicable for
non-linearities. Algorithms further vary in their sensitivity to noise and their ability to infer causal
information from coupled vs. non-coupled time series. As a consequence, different algorithms often
generate different causal relationships for the same input. In order to achieve a more robust causal
inference result, this publication proposes a novel data-driven two-phase multi-split causal ensemble
model to combine the strengths of different causality base algorithms. In comparison to existing
approaches, the proposed ensemble method reduces the influence of noise through a data partitioning
scheme in a first phase. To achieve this, the data are initially divided into several partitions and
the base causal inference algorithms are applied to each partition. Subsequently, Gaussian mixture
models are used to identify the causal relationships derived from the different partitions that are
likely to be valid. In the second phase, the identified relationships from each base algorithm are
then merged based on three combination rules. The proposed ensemble approach is evaluated using
multiple metrics, among them a newly developed evaluation index for causal ensemble approaches.
We perform experiments using three synthetic datasets with different volumes and complexity, which
have been specifically designed to test causality detection methods under different circumstances
while knowing the ground truth causal relationships. In these experiments, our causality ensemble
outperforms each of its base algorithms. In practical applications, the use of the proposed method
could hence lead to more robust and reliable causality results.

Keywords: causal inference; ensemble learning; time series; asymmetry

1. Introduction

To understand, modify, and potentially improve complex real-world systems, such as
production processes, ecosystems, and nervous systems, it is essential to study the internal
structure of relationships between different components of a system and understand
why the system exhibits certain behaviors. Research in the direction of causal inference
thematically addresses such problems. Causality refers to the relationship between causes
and effects [1,2], where the cause is responsible for the effect and the effect is dependent
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on the cause. Such one-directional influence represents an asymmetric relationship. Since
process data in real-world systems are mostly time series [3], we focus on causal modeling
in a time series setting. Here, the asymmetric nature of causality becomes especially
apparent: the past can influence the future, but the future cannot influence the past.

Some causal inference methods have been proposed to explore cause–effect relation-
ships between different variables of a system based on time series datasets. The Granger
causality test (GC) [4] is the first causal inference approach for time series, which is based
on statistical hypothesis testing. Transfer entropy (TE) [5] is a non-parametric statistic
measurement based on information theory to identify non-linear causal relationships.
Sugihara et al. [6] applied Takens’ embedding theorem to propose convergent cross map-
ping (CCM) for detecting causality in complex dynamic systems. In these approaches based
on the systems’ predictability, time series data with two or more variables are taken as
input, and the forecast on the cause–effect relationship among these variables is produced.

However, in many cases distinct causal inference approaches produce different causal-
ity relationships based on the same inputs [7,8]. When performing causal inference on
a given dataset, it is, hence, not clear which causal inference algorithm should be cho-
sen, since clearly no single algorithm is completely reliable. This is the main challenge
we address in this publication. Differences in causal results can arise due to a variety of
reasons. For instance, the Granger causality test works well at predicting linear relation-
ships but does not perform well in non-linear systems. CCM can be applied to investigate
strongly coupled complex systems, but it misses simple linear causal relationships in
many examples. Real-world datasets often feature diverse underlying relationships. In
such datasets, not only linear and weakly coupled relationships, but also non-linear and
strongly interacting feature pairs are integrated. Recent studies aim to address this com-
plexity by extending the classic causal inference algorithms with machine/deep learning
frameworks. Tank et al. [9] proposed the neural Granger causality algorithm by applying
structured multilayer perceptrons (MLPs) or recurrent neural networks (RNNs) combined
with sparsity-inducing penalties on the weights, which is a powerful non-linear extension
of the GC. Clark et al. [10] combine the CCM with dewdrop regression to build a novel
causality test scheme that leverages spatial replication, resulting in good performance in
the application of short and simple time series.

Next, the performance of many causal reasoning approaches is limited when process-
ing complex large-scale datasets because of the observational error and process noise [6].
To improve the performance of causality detection, Peng et al. [11] developed an inter-
pretable deep learning architecture for the GC estimation that integrates long short-term
memory (LSTM), autoencoder (AE), and a convolutional neural network (CNN). Further-
more, many algorithms, such as GC and graphical causal models [12], produce qualitative
causal results, but quantitative ones can provide more detailed and clearer causal informa-
tion [8]. Porta et al. [13] quantified the causality strength among multiple components in
network physiology and checked the reliability of the GC pipeline using hypothesis testing.
Zaremba et al. [14] quantified causality relationships through Gaussian process models. In
such an analysis, a nested model is formulated for deducing causality in both mean and
covariance through automatic relevance determination (ARD) construction of the kernel.

To address the issue of differing causality results from different methods, some ap-
proaches try to combine the strengths of multiple individual methods by applying ensemble
learning techniques. Ensemble learning [15] is a typical model combination method in
statistics and machine learning that has proven effective at providing equal or better re-
sults than any individual algorithm. In the domain of causal reasoning specifically, it
is known that more reasonable causal relationships can be extracted through the combi-
nation process of ensemble learning [16], which addresses the inconsistency of different
causal inference algorithms when applied to the same input. Such causality ensembles
have previously been investigated by Li et al. [17], who utilized a bagging mechanism
with a new weighting criterion to fuse different Bayesian network (BN) structures. This
framework has higher accuracy and a more powerful generalization ability than a single
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BN-learner. Athey et al. [18] proposed a weighted averaging model with weights deter-
mined by stacked regression based on cross validation, to ensemble three base causal
algorithms. Guo et al. [19] introduced a flexible two-phase ensemble framework by utiliz-
ing data partitioning and majority voting. The mentioned causal ensemble models are all
based on the conventional ensemble strategies, such as majority voting and bagging, and
most of them are one-phase frameworks, of which the accuracy is not high in some complex
experiments. Hence, a more comprehensive ensemble framework can be developed to take
full advantage of distinct base learners. This study developed a novel two-phase ensemble
framework, embedding softer classification strategies than majority voting and bagging
compared with the existing models. The proposed model adopted the split-and-ensemble
processing aimed at taking advantage of the causal information of the base algorithms
and reducing the noise effect in the large-scale datasets, which improves the accuracy and
stability of the causality detection.

To improve the limitations mentioned above, this paper proposes a stable and reliable
data-driven multi-split two-phase causal ensemble model for time series. It combines
state-of-the-art causal inference methods for time series, involving the GC [4], normalized
transfer entropy (NTE) [20], PCMCI+ [21], and CCM [6]. To make full use of the valu-
able information from the datasets and the results of multiple base learners, we develop
a split-and-ensemble framework, where the dataset is split into several partitions and
combined through a two-phase ensemble scheme. The split-and-ensemble process reduces
the influence of noise in the data, and the two-phase ensemble steps take advantage of all
base causal inference algorithms to cope with the inconsistency of their causal results under
the same input. Since real-world datasets typically lack a ground truth label for causal
relationships, we perform the evaluation of our approach on three synthetic datasets with
different volumes and complexity.

Reflecting on the outlined scope of this publication, our key contributions pertain to
the following aspects:

• To address the issue of distinct causal inference methods producing different results,
we introduce a multi-split two-phase causal ensemble model for time series data.
This model

– Reduces the influence of noise through a data partitioning scheme;
– Combines the advantages of distinct causal inference algorithms to arrive at

stronger results than each of them individually;
– Is flexible, which means that the number of base learners can be adjusted and

the chosen causal inference methods can be replaced by any other causality
discovery models.

• To assess the credibility of causality results from ensembles such as our approach, we
propose a novel evaluation index.

The structure of the paper is organized as follows. In Section 2, the individual causal
inference methods which are used in our ensemble approach are introduced. In Section 3,
the proposed causality ensemble model and the components are elaborated on and demon-
strated in detail. Section 4 presents the evaluation index towards the proposed model.
Section 5 explains the experiments on the synthetic datasets, as well as corresponding
results and discussions. Finally, Section 6 concludes the research and presents recommen-
dations for future work.

2. Causal Inference Algorithms for Time Series

In this section, the principle of four causal inference algorithms for time series data,
namely GC (Section 2.1), NTE (Section 2.2), PCMCI+ (Section 2.3), and CCM (Section 2.4),
are introduced in detail. We have selected these four models as the base learners of the
proposed ensemble model because of their different properties. These different properties
are rooted in the distinct internal mechanisms of the algorithms that each address certain
failings of causal models. Their detailed advantages and limitations, as well as how these
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are addressed in the ensemble, are elaborated in Section 2.1 to Section 2.4. Note that the
selected approaches only serve as examples for our ensemble approach. In principle, any
causal inference method can be employed in the ensemble.

2.1. Granger Causality Test

The GC has been widely used for causal inference in time series analysis since its in-
troduction in 1969 [22]. It is a statistical method that can identify linear causal relationships
in a proposed causal model.

Clive Granger defined causality by a linear prediction model for stochastic pro-
cesses [4]. The general idea behind it is that a time series Y causing X contains unique
information about X, helping explain its future trend. This method mainly focuses on linear
relations and processes instantaneous effects. The time series X Granger-causes another
time series Y, if, through statistical hypothesis tests (e.g., t-test [23] or F-test [24]) on lagged
values X and Y, statistically significant information is provided about future values of
Y. It signifies that the prediction of Y improves by incorporating X’s past values Xpast(t)
into its own history Ypast(t). Equation (1) is the mathematical expression of the GC and
Equation (2) [22,25] is the hypothesis to be tested.

GrangerCausalityX→Y ⇐⇒ Yt á Xpast(t) ∣ Ypast(t) (1)

where ⇐⇒ refers to “if and only if”, á represents “not independent”, and ∣ is the
condition symbol.

P[Yt+n ∈ A∣IN(t)] ≠ P[Yt+n ∈ A∣INY(t)] (2)

where n ∈ Z+, P refers to the probability, A represents an arbitrary non-empty set, IN(t)
denotes the information available at time t in the entire universe including X and Y, and
INY(t) is the information only from Y at time t.

Vector autoregressive model (VAR) [26] is typically fitted for the Granger causality analysis.

Ŷt+1 =
n−1
∑
i=0

αiYt−i + εY,t+1 (3)

Ŷt+1 =
n−1
∑
i=0

aiXt−i +
n−1
∑
i=0

biYt−i + εY∣X,t+1 (4)

where αi, ai, and bi are coefficients of models, εY and εY∣X refer to noise terms. If the
variance var(εY∣X) is significantly smaller than var(εY), Y is said to be Granger-caused by
X.

In application, the VAR model is utilized for linear regression. After prediction based
on Equations (3) and (4), a hypothesis test is performed to determine if the lagged values X
in the causal pair (X, Y) significantly influence Y. The hypothesis is based on Equation (2),
and a t-test or F-test is conducted to determine the statistical significance of the results
based on a preset significance level. When the hypothesis is accepted, it is concluded that
the regression function in Equation (3) performs better than that in Equation (4), so Y is
caused by X. The absolute correlation coefficient between the estimated values Ŷ and Y is
computed as the causal strength.

In this study, we employed the Python library statsmodels to perform the Granger
causality test [27].

To conclude, while the GC is a powerful tool for detecting linear causal relationships
in time series analysis, it may not be able to identify non-linear causality due to its re-
liance on linear VAR models. To overcome this limitation, the proposed ensemble model
incorporates three additional algorithms that are better suited for detecting non-linear
causal relationships.
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2.2. Normalized Transfer Entropy

The Transfer entropy (TE) [5] is capable of detecting non-linear causal relationships,
which is a good supplement of the GC. The NTE [20] normalizes the causality strength to
the range 0–1 prepared for the integration steps in the proposed ensemble model.

Information theory is a prominent research domain to analyzing the information flow
between two processes in time order. The TE [5] is a non-parametric statistic measurement
and a basic method for inferring non-linear causality connections, which is the conditional
mutual information (CMI) given the past values of the influenced variable. If the amount
of information is measured using Shannon’s entropy, the TE from a time series X to another
one Y can be defined as follows

TEX→Y = I(Yt; Xt−1∶t−L∣Yt−1∶t−L)
= H(Yt∣Yt−1∶t−L)− H(Yt∣Yt−1∶t−L, Xt−1∶t−L)

(5)

where TEX→Y is the TE from X to Y. I(x) represents CMI, and H(x∣y) represents the
conditional Shannon entropy given in Equation (6).

H(X∣Y) = −∑
x,y

p(x, y) log p(x∣y) (6)

where p(x, y) is the joint probability density function and p(x∣y) denotes the conditional
probability density.

When TEX→Y > 0, X is seen to be the cause of Y and the causal strength becomes
stronger with the increase in transfer entropy. However, since it is expensive to compute
high-dimensional probability density, approximation approaches should be developed for
an efficient application. To make the TE a faster and more efficient causality assessment tool,
Ikegwu et al. [28] investigated a new estimation implementation with Kraskov’s estimator
and multiple processes. They accomplished this by parallelizing queries on k-dimensional
trees, which are the binary search trees for organizing k-dimensional data points. This
approach significantly reduces the wall time. A. Kraskov [29] estimated entropy based
on kNN:

Ĥ(X) = − 1
n

n
∑
i=1

ψ(nx(i))− 1
k
+ψ(n)+ ln(cdx)+

dx

n

n
∑
i=1

ln(ε(i)) (7)

where Ĥ(X) represents the estimated entropy, n is the number of data instances, k is the
number of nearest neighbors, dx refers to the dimension of x, cdx represents the volume
of the dx-dimensional unit ball, and ε(i)

2 denotes the distance between the i-th data point
and its k-th neighbor. nx(i) refers to the number of data instances inside the unit ball,
which involves all the points xj, such that ∣∣xi − xj∣∣ ≤

ε(i)
2 , and ψ(x) comprises the digamma

function where

ψ(x) = Γ
′

(x)
Γ(x)

(8)

where Γ(x) denotes the gamma function.
Then, the mutual information is estimated based on Ĥ(X), Ĥ(Y), and Ĥ(X, Y).

Î(X, Y) = Ĥ(X)+ Ĥ(Y)− Ĥ(X, Y)

= ψ(k)− 1
k
+ 1

n

n
∑
i=1

[ψ(nx(i))+ψ(ny(i))]+ψ(n)
(9)

where Î(X, Y) is the estimated mutual information, and ny(i) refers to the number of all

data points yj, such that ∣∣yi − yj∣∣ ≤
εy(i)

2 .
The range of the TE (both analytical and estimated form) is [0,+∞), which is incon-

sistent with the causal strength from the other three learners (GC [4], PCMCI+ [21], and
CCM [6]), all of which have ranges of [0, 1]. Therefore, the NTE [20] is proposed to trans-



Symmetry 2023, 15, 982 6 of 27

form the TE values into a form with a range of [0, 1]. The NTE value from variable Xi to
X j is

NTEXi→X j =
TEXi→X j − TEShu f f led

Xi→X j

H(X j
t ∣X

j
t−1∶t−τmax

)
(10)

where TEXi→X j refers to the TE value from Xi to X j. TEShu f f led
Xi→X j is the shuffled TE, where

the values in Xi are drawn in random order. H(X j
t ∣X

j
t−1∶t−τmax

) represents the conditional
entropy of X j at time t given its past values. The subtraction of the shuffled TE overcomes
the bias in the TE calculation due to finite data size and limited time delay [30]. We use the
Python library PyIF [28] for the TE implementation.

As data complexity and volume increases, the NTE may fail to identify some causal
results due to the uncertainty in the estimation process. The following sections describe
PCMCI+ and CCM, which are especially suitable for complex and large-scale systems and
aim to balance out the weaknesses of NTE.

2.3. PCMCI+

PCMCI [31] is a state-of-the-art causality detection technique for processing large-scale
complex datasets, which provides convinced causal results in extremely complex systems.
PCMCI+ [21] extents PCMCI by detecting contemporaneous (also called instantaneous)
links, resulting in more reliable causal reasoning.

PCMCI takes advantage of graphical models to estimate causality structures from time
series data. This occurs in a time-dependent system Xt = (X1

t ,. . . , XN
t ) with

Xi
t = fi(P(Xi

t), ηi
t) (11)

where fi represents the dependency function, ηi
t is the random noise, and P(Xi

t) denotes
the causal parents of variable Xi

t among the past of all N features. If X j
t−τ ∈ P(Xi

t), X j
t−τ is

said to be the cause of Xi
t with τ delay.

PCMCI involves two steps. The PC algorithm [32] (named after its inventors) is the
first stage, which is an iterative Markov discovery mechanism for condition selection.
After the conditional independence (CI) tests, an estimate P̂(Xi

t), a superset of the parents
P(Xi

t), is obtained for all variables in Xt. In the second stage, the momentary conditional
independence test (MCI) [33] is applied. The estimated parents in step one are embedded
into the conditions of MCI. All variable pairs (Xi

t, X j
t−τ) with i, j ∈ {1, . . . , N} and time

delays τ ∈ {1, . . . , τmax} being tested, the causal link X j
t−τ → Xi

t is established if, and only if,

X j
t−τ á Xi

t ∣ P̂(Xi
t)/{X j

t−τ}P̂px(X j
t−τ) (12)

where “á” represents “not independent”, “∣” is the condition symbol, and P̂(Xi
t)/{X j

t−τ}
denotes that the estimate P̂(Xi

t) excluding the values X j
t−τ .

PCMCI+ [21] is the extension of PCMCI, including the discovery of contemporaneous
links. In applications, both lagged and contemporaneous causal links are significant, but the
original PCMCI paradigm only analyzes the time-lag causal effects such as Xi

t−τ → X j
t(τ >

0), resulting in missing causal information. In this algorithm, certain orientation phases
are utilized to orient the instantaneous adjacencies Xi

t −X j
t so that the performance of the

PC stage is enhanced. Firstly, the collider orientation phase orients the triple Xk
t−τ −Xi

t −X j
t .

If Xk
t−τ and X j

t are independent after the CI test, the direction should be Xk
t−τ → Xi

t ← X j
t

(for τ > 0, we always have Xi
t−τ → X j

t, because only the past can forecast the future).
Secondly, the rule orientation phase introduces several rules to determine the arrows in the
triple Xk

t −Xi
t −X j

t . The experiments [21,34] demonstrate that it can be extremely useful in
many real-world application scenarios in which time strong autocorrelation is present and
resolutions are too coarse to resolve time delays.
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We use the PCMCI+ implementation of the Python library tigramite [21] in this study.
Although the PCMCI+ algorithm is a powerful tool for causal inference in time series

data, it may fail to detect some causal relationships between coupled time series. To mitigate
this issue, CCM is incorporated as a base learner in our model, which is well-suited for
detecting causal relationships in non-linear and non-stationary systems.

2.4. Convergent Cross Mapping

Convergent Cross Mapping (CCM) [6] is a novel causal reasoning method based on
the theory of non-linear state space reconstruction. This method works well in coupled
time-series systems where the variables have interacting effects. Because GC, NTE, and
PCMCI+ all have the limitations in analyzing coupled time series, which can result in
missed causal relationships, CCM is a necessary component in our ensemble model.

In a dynamic system, a manifold [35] represents a topological space that locally
resembles the Euclidean space near each data point of this system. The attractor manifold
is the approximation of the dynamic system based on the real data, whereas the shadow
manifold is a lower-dimensional approximation. For instance, considering a 3-dimensional
system S = [X, Y, Z], the attractor manifold is constructed based on the information from
X, Y, and Z. The shadow manifold is estimated based on only X or Y.

Takens’ embedding theorem [36] states that an attractor manifold of a dynamical
system can be reconstructed from a single observation variable of the system by a generic
function. When the two time series X and Y belong to the same dynamics system, the corre-
sponding shadow manifolds MX and MY are diffeomorphic (have a one-to-one mapping)
to the true manifold M. Data points close to each other on the manifold MX are also in a
close distance on MY. Thus, the current state of the process Y can be forecast based on MX .
Ŷ∣MX is defined as the estimation of Y under the condition of MX . After several iterations
of the cross mapping, a causal link X → Y can be declared if correlation coefficients of Ŷ
and Y are convergent.

The procedure of the CCM is based on a k-nearest-neighbor algorithm (kNN) involving
exponentially weighted distances from nearby points on a reconstructed manifold to
execute kernel density estimations (KDE). Considering the time series X = (X1, X2,. . . , XN),
for any two time series (Xi, X j) with length L in X, the shadow manifold is set by forming
the lagged-coordinate vectors. For instance, the shadow manifold MXi is constructed in line
with the vector xi(t) = [Xi(t), Xi(t − τ), Xi(t − 2τ),. . . , Xi(t − (E − 1)τ)] for t = 1 + (E − 1)τ
to L. Then, X̂j(t)∣MXi , the cross-mapped estimation of Xj(t), is generated by identifying
E + 1 neighbors in Xj mapped from the E + 1 nearest neighbors in the MXi and computing
the weighted mean of these E + 1 values. E represents the dimension of the reconstructed
space. In this example, the original system is N-dimensional, so E should be smaller than
2N + 1 (E ≤ 2N + 1) based on Whitney embedding theorem [37].

X̂j(t)∣MXi =∑wkXj(tk) k = 1, 2, . . . , E + 1 (13)

where wk is the weight concerning the distance between xi(t) and its k-th nearest neighbor
on MXi and Xj(tk) are the instantaneous values of Xj. wk is defined by

wk = uk/∑ul l = 1, 2, . . . , E + 1 (14)

where
uk = exp{−d[xi(t), xi(tk)]/d[xi(t), xi(t1)]} (15)

and d[x, y] represents the Euclidean distance between two vectors.
Next, the correlation between Xj and X̂j(t)∣MXi is calculated, and the procedures are

iterated by increasing the length L. If Xi and Xj are dynamically coupled and Xi influences
Xj, X̂j(t)∣MXi should converge to Xj(t), which represents that the last n values of the
correlation coefficients should maintain stability.

We use the CCM implementation of the Python library skccm [6] in this study.
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CCM performs strongly in coupled systems for detecting causal relationships in
coupled time series; however, it may miss simple linear causal relationships and can be sen-
sitive to noise. The other three complementary base algorithms, GC, NTE, and CCM in our
ensemble model, are good supplements to improve the robustness and reliability of causal-
ity detection. These algorithms are well-suited for detecting linear causal relationships,
processing non-linear causality, and handling large-scale complex systems, respectively.

3. A Two-Phase Multi-Split Causal Ensemble Model

We propose to combine the methods introduced in the previous section in a two-phase
ensemble learning algorithm for time series causal reasoning. The general procedure of
the ensemble method is introduced in Section 3.1, the details of the key components are
discussed in Sections 3.2 to 3.4, and the evaluation processing is covered in Section 3.5.

3.1. General Pipeline

To improve the accuracy of existing causal inference approaches, we propose a two-
phase multi-split causal ensemble model to derive the full benefit of the four causal infer-
ence algorithms (GC, NTE, PCMCI+, and CCM). In many experiments [38,39], multiple
algorithms often lead to divergent causality conclusions when processing the same dataset,
which affects the trustworthiness of causal inference results. The proposed ensemble frame-
work aims to produce more robust results by integrating multiple causal detectors. Sources
of noise can often temporarily affect time series, leading to data which are unrepresentative
of the underlying causal mechanisms in sections of the time series. This can lead to wrongly
inferred causal relationships if the time series is examined as a whole.

To circumvent the mentioned challenges, our model follows a split-and-ensemble
approach as Figure 1 shows, meaning we first partition the given data, apply causal
inference methods to each partition, and, finally, combine the results. The split-and-
ensemble process makes full use of the data and reduces the impacts of noise in the
datasets. In the data partitioning step, the time series are split into many partitions with
an overlapping partitioning process. After each base algorithm has been applied to each
partition, the first ensemble phase uses a GMM to integrate the causal results of each base
algorithm from different data partitions in order to improve the robustness of each base
algorithm. This leads to one combined causal inference result for each base algorithm, and
the trustworthiness assessment is conducted to check the stability of the result. Therefore,
the first-layer ensemble outputs four combined causal inference results associated with
the base learners, as well as their evaluation results, which is demonstrated in the GMM
ensemble phase of Figure 1. The second ensemble phase combines these results through
three decision-making rules considering the first-layer evaluation results, which take
advantage of the strengths of diverse causal inference algorithms and make the results
more robust.

Finally, the ensemble result is optimized by removing the indirect causal links and the
credibility of the final result is evaluated by a proposed assessment coefficient. The overall
process is illustrated in Figure 1 and formalized in Algorithm 1. The following sections will
explain the individual steps of the algorithm which have been briefly introduced above.

3.2. Data Partitioning

Before the proposed ensemble algorithm can be applied, the time series observations
are split into several partitions to be processed by the four base learners. If there is any
seasonality or cyclicity in the time series, observations should be divided to account for
these properties. For example, if a process has a cycle of two hours, the time series
describing this process can be divided into the groups zero to four hours, two to six hours,
four to eight hours, and so on. Otherwise, the length of each slice is flexible. In the
partitioning process, one subset is overlapped with part of another one. It means some
data instances are sampled more than once, which allows the information of the data to be
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reused in different partitions and enhances the stability of the data-driven model. A brief
example of data splitting is demonstrated in Figure 2.

Figure 1. A two-phase multi-split causal ensemble framework.

Algorithm 1 demonstrates the general pipeline of the proposed causal ensemble model,
including Algorithms which are explained in detail in the following sections.

Algorithm 1 The data-driven two-phase multi-split causal ensemble model

Input: Time series dataset X = (X1, X2,. . . , XN), maximum time lag τmax, the number of
data partitions M.

Output: Causal strength matrix M̃RE with the size N × N, credibility score CS, causal
graph G

1: for all m ∈ {1,. . . , M} do
2: Run GC, NTE, PCMCI+, and CCM in parallel ▷ Base learners
3: Return strength matrices Ml,m (l = 1, 2, 3, 4)
4: end for
5: MEl , Tl ← Algorithm 2 (Ml,1,. . . , Ml,M) (l = 1,. . . , 4) ▷ GMM ensemble phase

(Section 3.3)
6: MRE ← Algorithm 3 (ME1,. . . , ME4; T1,. . . , T4) ▷ Rule ensemble phase (Section 3.4)
7: M̃RE ← optimization(MRE) ▷ Model optimization (Section 3.5)
8: Obtain the causal graph G concerning M̃RE
9: Compute CS by Equation (26)
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Figure 2. Illustration of data partitioning into overlapping subsets.

3.3. GMM Ensemble Phase

After the partitioning, the four base learners are applied to process each data partition
separately and in parallel. After partitioning of the data into n partitions, each partition is
processed by the four individual models, and 4× n causal strength matrices are obtained
(see Figure 1). Next, the results from each individual causal inference method are combined
using a Gaussian mixture model (GMM).

When using GMMs for clustering, each Gaussian component represents a cluster,
and the corresponding weight represents the probability that a data point belongs to said
cluster [40]. A datum point is assigned to the cluster with the highest probability, which is
called the soft assignment. Unlike the k-means algorithm, which can only detect spherical
clusters, the GMM can process elliptical or oblong clusters. Moreover, in contrast to the soft
assignments of GMM clustering, the k-means algorithm can only perform hard assignments.
Since the transformed dataset at this stage is oblong in shape, GMM clustering is the more
suitable approach to ensemble causal models. In this ensemble learning framework, the
relationships between two variables are divided into two groups, causal and non-causal.
Therefore, the number of components of the GMM is set as two.

In this ensemble phase, a two-component GMM is fitted to ensemble the causal
strength matrices from the same causal detector but from different data partitions. Figure 3
visualizes the steps of processing the observations in this phase in a dataset with n features
being split into K partitions. In this example, the results are K causal strength matrices with
sizes that are all n × n after the processing of any of the four base learners. The Mk(i, j)
(k ∈ {1,. . . , K})(i, j ∈ {1,. . . , n}) represents the causal strength from feature i to feature j for
the k-th partition, where Mk(i, j) ∈ [0, 1]∀i, j, k. Before the post-processing, the matrices are
filtered in the first step as Equation (16) shows, because the causal strengths in the four base
learners are all based on the correlation coefficient (CC). In order to not be too restrictive
too early, two features are considered a low-correlation pair and the causal inference is
weakly trustworthy if CC ≤ 0.3. Equation (16) shows the processing of weakly trustworthy
causal links.

Mk(i, j)← 0 if Mk(i, j) ≤ 0.3 (16)

In the second step, all the K matrices are flattened to vectors with size n(n − 1), where
n self-adjacent values are removed. In other words, the diagonal of the matrix is removed
because this model solely analyzes the relationships between different variables. In the
time series, the future values of a feature are assumed to be dependent on the past values,
so there is a causal relationship within the feature. However, it is not shown in the causality
model as the model is the rolled-up version without unrolling in the time dimension. Then,
the data points with the same position indices are integrated into one data instance with
K dimensions. Thus, a new dataset M∗ containing n(n − 1) K-dimensional instances is
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created as the input of the GMM clustering, which is illustrated in Figure 3 (step 2). The
left numbers are the indices of the instance in the M∗, and the right tuples represent the
position of the Mk where the values are generated. For instance, the first instance in the
M∗ is [M1(1, 2), M2(1, 2),. . . , MK(1, 2)]. The m-th instance in the M∗ is labeled M∗[m](i, j),
where m is the left index and (i, j) refers to the right index in Figure 3 (step 2).

Figure 3. Illustration of GMM ensemble phase.

Next, in the third step, the GMM with two components is fitted to cluster the input
data. The Gaussian with the lower mean is denoted as the cluster for the causal strength
data from the feature pairs without causal relationships, which is labeled “Group 0”. The
Gaussian with the higher mean represents the cluster containing the strength values of
causal pairs, which is labeled “Group 1”. All of the n(n − 1) inputs are assigned to the two
groups by the fitted GMM. Finally, each clustered K-dimensional data instance is mapped
to a single floating point value. In Figure 3 (step 3), C0 = {a1,. . . , ai} is the set containing the
instances in “Group 0” and f (x) is the corresponding mapping function.

f (al) = 0 ∀al ∈ C0 (17)

C1 = {b1,. . . , bj} is the set including the data points in “Group 1” and the corresponding
mapping function is g(x).

g(bl) = median+(bl) ∀bl ∈ C1 (18)

where median+(x) is a function to calculate the median of non-zero values in a vector. For
instance, assume bl = [x1, x2,. . . , xK] ∀bl ∈ C1, and Xl = {x1, x2,. . . , xK} is the set containing
the values of the coordinate of the vector bl . Define Xl2 ⊆ Xl by removing all elements
valued 0.

median+(bl) = median(Xl2) ∀bl ∈ C1 (19)

where median(Xl2) denotes the median of the values in the set Xl2. In this instance, the
median is selected instead of the mean because it represents the values’ average information
without the influence of outliers.

After the processing, an ensemble causal strength matrix ME is produced separately
for each base learner, and its size is n × n, which is shown in Figure 3 (step 5). The values of
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ME(i, i) ∀i ∈ {1,. . . , n} are set at 0 because causal detection does not consider self-related
pairs as discussed before. The values of ME(i, j) ∀i, j ∈ {1,. . . , n} (i ≠ j) rely on the ensemble
processing and correspond to the instance M∗[m](i, j) (Figure 3 (step 2)), which is processed
following Equation (20).

ME(i, j) =
⎧⎪⎪⎨⎪⎪⎩

f (M∗[m](i, j)) M∗[m](i, j) ∈ C0

g(M∗[m](i, j)) M∗[m](i, j) ∈ C1
(20)

where f (x) is based on Equation (17) and g(x) is derived from Equation (18).
It is necessary to evaluate the trustworthiness of the causal relationships from the

GMM ensemble phase and make preparations for the next ensemble phase in Section 3.3.
To accomplish that goal, an assessment pipeline is designed, as Figure 4 illustrates.

Figure 4. Trustworthiness evaluation for GMM ensemble.

The trustworthiness matrix T with the size n × n is proposed corresponding to the
ensemble causal strength matrix ME. The elements are then computed by the trustwor-
thiness index in Equations (21) and (22). If the value of ME(i, j) is 0, the corresponding
element T(i, j) is set at 0 as well. This is because, under the requirements of the following
rule ensemble phase, only causal relationships require assessment. If the value of ME(i, j)
is not 0, the value of T(i, j) is set by Equation (22).

T(i, j) =
⎧⎪⎪⎨⎪⎪⎩

0 ME(i, j) = 0
h(xi,j) ME(i, j) ≠ 0

(21)

where

h(xi,j) =
mean∗(xi,j)×m

[std∗(xi,j)+ δ]×K
(22)

where xi,j is a variable containing K elements. This variable is transformed from the K-
dimensional data point in the dataset of step 2 in Figure 4, which is derived from the
elements Mk(i, j), where k = 1,. . . , K. mean∗(xi,j) denotes the mean of non-zero values in
xi,j, std∗(xi,j) represents the standard deviation of non-zero values in xi,j, m refers to the
number of the non-zero values, and K is the number of elements in xi,j. δ is an extremely
small value (e.g., 10−20) used to avoid a divisor being equal to zero.

The range of any T(i, j) is [0,+∞). A value approaching 0 points to barely detectable
causal relationships, whereas an extremely high value represents stable and strong causal
relationships across all data partitions. In Equation (22), a high mean represents a strong
causal relationship. A high parameter m indicates a good consistency in the causal detection
among different partitions. A low standard deviation indicates the stability of causal
inference because the values are distributed over a narrow range. Therefore, a higher value
of h(x) indicates greater trustworthiness in the GMM-ensemble processing.

Algorithm 2 outlines the procedure of the GMM ensemble phase.
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Algorithm 2 GMM ensemble phase

Input: 4 × K causal strength matrices Ml,k with the size n × n (4 refers to the four base
learners, K is the number of partitions, l = 1,. . . , 4 and k = 1,. . . , K)

Output: GMM-ensemble strength matrices MEl with the size n × n and trustworthiness
matrices Tl with the size n × n (l = 1, 2, 3, 4)

1: for all l in {1, 2, 3, 4} do ▷ Run in parallel
2: for all k in {1,. . . , K} do
3: flatten Ml,k and remove values Ml,k(i, i) (i = 1,. . . , n) to the size 1× n(n − 1)
4: end for
5: Fl ← combine all flattened Ml,k ▷ the size of Fl is K × n(n − 1)
6: (Group 0, Group 1)← Run a GMM (number of components= 2) to process Fl
7: for all xi,j in Fl do
8: if xi,j is in Group 0 then
9: MEl(i, j)← 0

10: Tl(i, j)← 0
11: else
12: MEl(i, j)← g(xi,j) ▷ Equation (18)
13: Tl(i, j)← h(xi,j) ▷ Equation (22)
14: end if
15: end for
16: end for

3.4. Rule Ensemble Phase

The GMM ensemble phase is conducted to process the four base learners separately
and in parallel. The outputs of this step are the four ensemble causal strength matrices
ME1, ME2, ME3, and ME4, and the corresponding trustworthiness matrices T1, T2, T3,
and T4 with sizes that are all n × n. These serve as the inputs of the rule ensemble phase,
which is described in the following.

In this phase, the four intermediate ensemble matrices are integrated into one rule-
ensemble matrix MRE with the size n × n based on three rules as follows. To determine the
element MRE(i, j) (i, j = 1, 2,. . . , n), the setRi,j = {ME1(i, j), ME2(i, j), ME3(i, j), ME4(i, j)}
is created, and ri,j is denoted as the number of non-zero elements inRi,j. Before conducting
the following rules, the ME is filtered to improve the credibility of the ensemble processing.
Through a number of experiments, for any (i, j), if Tk(i, j) < 1.0 (k = 1, 2, 3, 4), the corre-
sponding element in the causal strength matrix MEk(i, j) is set at 0. This highlights that
such detected cause–effect pairs can not be trusted.

Next, three ensemble rules are developed to combine the intermediate ensemble re-
sults. The formal definition is as follows. Rule 1 states that there is no causal link if more
than half of the intermediate ensemble results indicate non causality. Similarly, as Rule 3
shows, when the majority of the intermediate results specify the causal relationship, the
causality is confirmed. Rule 2 expresses the decision-making process without majority.
The decisions are made based on the trustworthiness matrices and corresponding thresh-
olds. Furthermore, the quantitative causality result, causal strength, is determined by a
weighting strategy.

Rule 1: When ri,j = 0 or 1, set MRE(i, j) at 0.

Rule 2: When ri,j = 2, suppose MEk1(i, j) > 0 and MEk2(i, j) > 0.
If max{Tk1(i, j), Tk2(i, j)} > α21, set MRE(i, j) at WCS(i, j).
If max{Tk1(i, j), Tk2(i, j)} < α21 and min{Tk1(i, j), Tk2(i, j)} > α22, set MRE(i, j) at
WCS(i, j) as well, otherwise set MRE(i, j) at 0.

Rule 3: When ri,j = 3 or 4, set MRE(i, j) at WCS(i, j).

The parameters α21 and α22 are the relevant threshold. Based on many experiments,
α21 can be selected between 10 and 20, and α22 can be chosen between 1.5 and 2.5.



Symmetry 2023, 15, 982 14 of 27

WCS(i, j) is the weighted causal strength based on Equation (23).

WCS(i, j) =
4
∑
k=1

T̃k(i, j)MEk(i, j) ∀i, j = 1, . . . , n (23)

where T̃k(i, j) refers to the normalized weight based on the trustworthiness matrix Tk
(k = 1, 2, 3, 4), which ranges from 0 to 1. Furthermore, the MEk (k = 1, 2, 3, 4) represents the
values in the GMM-ensemble causal strength matrix.

T̃k(i, j) =
Tk(i, j)

∑4
l=1 Tl(i, j)

∀i, j = 1, . . . , n (24)

Algorithm 3 demonstrates the procedure of the rule ensemble phase.

Algorithm 3 Rule ensemble phase

Input: GMM-ensemble strength matrices MEl with the size n × n and trustworthiness
matrices Tl with the size n × n (l = 1,. . . , 4), the threshold α21 and α22

Output: GMM-ensemble strength matrices MRE with the size n × n
1: Initialize Ri,j = {ME1(i, j), ME2(i, j), ME3(i, j), ME4(i, j)} ∀i, j ∈ {1,. . . , n} & i ≠ j and

ri,j representing the number of non-zero elements inRi,j
2: for all MEl(i, j) ∀l ∈ {1,. . . , 4} i, j ∈ {1,. . . , n} & i ≠ j do
3: if Tl(i, j) < 1 then
4: MEl(i, j)← 0
5: end if
6: end for
7: for allRi,j ∀i, j ∈ {1,. . . , n} & i ≠ j do
8: if ri,j = 0 or 1 then ▷ Rule 1
9: MRE(i, j)← 0

10: else if ri,j = 2 then ▷ Rule 2
11: Select the largest element inRi,j MEk1(i, j) and the second largest one

MEk2(i, j)
12: if Tk1(i, j) ≥ α21 then
13: MRE(i, j)←WCS(i, j) ▷ Computing WCS in Equation (23)
14: else if Tk1(i, j) < α21 & Tk2(i, j) ≥ α22 then
15: MRE(i, j)←WCS(i, j)
16: else
17: MRE(i, j)← 0
18: end if
19: else ▷ Rule 3
20: MRE(i, j)←WCS(i, j)
21: end if
22: end for

The three rules constitute the rule ensemble phase, where the causal pairs detected by
multiple base learners with high trustworthiness scores are selected and embedded into the
final causal strength matrix. The comprehensive evaluation and selection process enhances
the reliability of the causal models and is more robust than majority voting and averaging.

3.5. Model Optimization

In the rule-ensemble result MRE, both direct and indirect causal relationships are
present. In the applications, the direct causal relationships are more significant than the
indirect ones for analyzing the system’s performance [41]. Hence, the indirect causal links
should be extracted and removed from the MRE.

Many experiments [41] demonstrate that the indirect adjacency is weaker than the
direct one. As Figure 5 shows, for instance, X2 influences X3 directly, but X1 can only
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influence X3 through X2. MRE(i, j) denotes the causal strength from Xi to X j. Under
the conclusion from the experiments, for instance, the triple ⟨X1, X2, X3⟩ contains the
inequalities MRE(1, 2) > MRE(1, 3) > 0 and MRE(2, 3) > MRE(1, 3) > 0. MRE(1, 4) is the
weakest value among all causal strengths.

Figure 5. Direct and indirect causal links. Xi
(i = 1,. . . , 4) in black circles represent four distinct time

series. The blue dashed lines denote the indirect links, the black solid lines represent the direct
adjacencies, and the arrows illustrate the directions of the cause–effect relationships.

To remove the indirect links of the time series dataset X = (X1, X2,. . . , XN), all triples
⟨Xi, X j, Xk⟩ (i, j, k = 1,. . . , N, i ≠ j ≠ k) meeting the conditions of (Xi → X j → Xk) and
(Xi → Xk) in the rule-ensemble result are analyzed. If MRE(i, j) > MRE(i, k) > 0 and
MRE(j, k) > MRE(i, k) > 0, it indicates that (Xi → Xk) is the indirect adjacency and should
be removed from the causal links. In turn, this means that MRE(i, k) should be set at 0.
The filtered matrix from MRE is denoted as M̃RE.

The optimization step marks the end of the causal discovery procedure. The final
causal strength matrix M̃RE, as well as the corresponding causal graph G is then pro-
duced. In the next section, an evaluation index is proposed to assess the credibility of the
ensemble model.

4. Causal Ensemble Model Evaluation

When evaluating the causal results, the most commonly used approach in applications
is the confusion matrix, which compares the detected causal links with the ground truth [42].
However, no ground truth is provided in many cases, which makes it impossible to evaluate
causal results by comparing them with true causal relationships. Therefore, it is necessary
to explore an evaluation metric that is based on the mechanisms of the algorithms. Such a
metric should be able to statistically evaluate the robustness and stability of the algorithm
in various experiments. When evaluating the proposed causal ensemble model, particular
attention should be given to assessing the ensemble process.

In this section, the credibility score (CS) is developed based on the final causal strength
matrix M̃RE and the first-layer GMM-ensemble causal strength matrices MEk (k = 1, 2, 3, 4)
to evaluate the credibility of the proposed causal ensemble model. This evaluation metric
is to measure the agreement between the intermediate ensemble parts. When most of the
base learners reach similar results, it represents that the GMM ensemble phase successfully
reduces the influence of noise and we define the similarity of the four intermediate causal
results after the GMM processing as stable. Equation (25) defines the similarity index
for a single causal relationship between two variables and Equation (26) denotes the
credibility score CS by averaging the similarity indexes and normalizing it to the range
[0, 1]. CS represents the stability and credibility of the causal results, because the more
stable the results from the base learners, the more trustworthy the causal results in the rule
ensemble phase.

Assume that the input contains n features, for all i, j = 1,. . . , n and i ≠ j,

CSi,j =
⎧⎪⎪⎨⎪⎪⎩

U/K M̃RE(i, j) = 0
(K −U)/K M̃RE(i, j) ≠ 0

(25)

where K is the number of base learners (K = 4 in this ensemble model), and U represents
the number of zero elements in the set {ME1(i, j), ME2(i, j), ME3(i, j), ME4(i, j)}.
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The similarity index CSi,j assesses the consistency between the final result of the causal
ensemble model and the four results obtained from the base algorithms applying the GMM
ensemble. K and U are utilized to quantify the consistency in Equation (25). Based on rule
1–3 in rule ensemble phase (Section 3.4), if M̃RE(i, j) = 0, U ∈ {2, 3, 4}. If M̃RE(i, j) ≠ 0,
U ∈ {0, 1, 2}. Hence, all the potential values of CSi,j are included in {0.5, 0.75, 1.0}.

Then, the mean of all CSi,j values are calculated, and that mean number is normalized
to the range of [0, 1], which is the final evaluation index CS. Normalization makes the
metric comparable across indicators, because all indexes in the confusion matrix evaluating
the causal results are in the range [0, 1].

CS = (
∑CSi,j

n(n − 1)
− 0.5)× 2 (26)

If CS < 0.5, it indicates that most CSi,j values are 0.5 in the assessment. This reveals
that, in the detection of these causal pairs, half of the base learners affirm the causal
relationships while the other half do not. This is the maximum level of disagreement that
is possible among parts of the ensemble. When such a credibility score is observed, the
results should, therefore, be treated with caution. In contrast, when the values 0.75 and 1.0
are more prevalent, there is more agreement among parts of the ensemble. With CS = 1.0,
all of the base algorithms generate the same causal results, increasing the confidence in
the inferred causal relationships. Between the extremes of CS < 0.5 and CS = 1.0, there is
a continuum of values quantifying the level of agreement between different parts of the
ensemble, which can be used to inform ones confidence in the results. Table 1 shows the
relationships between the levels of credibility and the range of CS.

Table 1. Level of credibility of the causal ensemble model.

Range of CS Level of Credibility

0 ≤ CS < 0.5 weak credibility
0.5 ≤ CS < 0.75 medium credibility
0.75 ≤ CS < 1 strong credibility

This proposed CS index is designed specifically for the causal ensemble model in this
study. This is because all of the components used to calculate the evaluation metric are
based on specific parameters within this model.

5. Experiments and Discussion
5.1. Set Up

A series of experiments are designed and conducted in our study to compare the
performance of the ensemble causal results and the results of the individual base algorithms,
testing whether the proposed causal ensemble model outperform its base learners. We use
generated datasets with distinct sizes and complexities in the experiments to test how the
data volumes and non-linear relationships affect the performance of the proposed model.

The following parameters are set when initializing the algorithm to process distinct
datasets, and they are selected based on several experiments. The global parameters are
the number of data partitions K and the maximum time lag τmax, which are set depending
on the input data. In the GC and PCMCI+, the p-value thresholds for significant tests are
both set at 0.05. The following parameters in the NTE and CCM are selected to keep a
balance of runtime and accuracy. In the NTE, the number of nearest neighbors is set to 6.
In the CCM, the percentage of training data is set at 0.75, and the number of iterations is
25. Moreover, the number of values for checking convergence is set to 6 and the threshold
of determining convergence is set to 0.03. In the GMM ensemble phase, the number of
initializations for the GMM is set to 10 to select a reasonable clustering result and the other
parameters of the GMM are considered the default values in the Python library Scikit-learn
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(version 1.1.2) [43]. In the rule ensemble phase, the two thresholds in “Rule 2” are set to
10.0 and 2.0, respectively, based on the discussion in Section 3.3.

5.2. Description of the Datasets

For the experiments examining the synthetic data, three datasets with different sizes
and complexities are generated based on predefined equations, similarly to [44]. In the
generated datasets, Xi

t denotes the i-th variable at time t, and ε is the Gaussian-distributed
random noise followingN (0, 1) with distinct random seeds. datasets 1–3 are demonstrated
in Equations (27)–(29), respectively.

Dataset 1 is a linear dataset containing 5 variables. In total, 20,000 observations are
generated from each variable and the maximum time lag τmax is 4. Variables X1 and X4 are
generated following the uniform distribution U[0, 100] with different random seeds, which
indicates that X1 and X4 are independent of each other. X2, X3, and X5 are computed based
on Equation (27). The coefficients are selected randomly around [0.5, 1.5] to control the
range of each sequence to avoid the exponential trend. The random selection of coefficients
can test the stability of the proposed framework,which can be applied to a diverse range of
time series datasets flexibly.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X2
t = 1.34X1

t−2 − 1.23X2
t−4 + ε11

X3
t = −1.26X2

t−1 + 1.03X2
t−2 + ε12

X5
t = 0.71X4

t−2 + 1.05X4
t−3 + ε13

(27)

Dataset 2 is a non-linear dataset involving 5 variables. In total, 30,000 observations are
generated from each variable and some of the variables are interacting. The maximum time
lag τmax is 5. The variables X1 and X4 are generated following the uniform distribution
U[0, 100] with different random seeds, which indicates that X1 and X4 are independent of
each other. X2, X3, and X5 are computed based on Equation (28). The coefficient selection
follows the principle in dataset 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X2
t = 1.06X2

t−1 − 1.22X1
t−3X2

t−2 − 1.41(X1
t−3)

2X1
t−4 + ε21

X3
t = −1.23X2

t−1X2
t−2X3

t−2 + 0.69(X2
t−1)

2 + 1.07(X2
t−2)

2X2
t−5X3

t−3 + ε22
X5

t = −0.78X1
t−4X4

t−2 + 0.91(X4
t−1)

2X5
t−4 − 0.86(X1

t−1)
2X5

t−2 + 1.17X1
t−5X4

t−3 + ε23

(28)

Dataset 3 is a more complex non-linear dataset including 12 variables, where
45,000 observations are generated from each variable and τmax is 6. The variables X1,
X4, and X9 are generated following the uniform distribution U[0, 100] with different ran-
dom seeds, which indicates that X1, X4, and X9 are independent of each other. X2, X3,
X5, X6, X7, X8, X10, X11, and X12 are computed based on Equation (29). The coefficient
selection follows the principle in dataset 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X2
t = 0.99X1

t−3X2
t−2 − 1.24X1

t−2(X1
t−4)

2 + ε31
X3

t = −1.06X9
t−2X3

t−2 + 0.54(X9
t−1)

2 + 0.72(X9
t−5)

2X3
t−3 + ε32

X5
t = −0.86X1

t−6 + 0.67X4
t−1 − 0.88X1

t−2X4
t−2 + ε33

X6
t = 0.69X6

t−1(X8
t−2)

2 − 0.59sin(X8
t−1)+ ε34

X7
t = 0.91X7

t−2(X9
t−3)

2 + 0.66X7
t−4X9

t−4 − 0.33exp(X9
t−2)+ ε35

X8
t = 1.18X3

t−1 − 0.71cos(X3
t−3)X8

t−3 + ε36
X10

t = 0.78X5
t−2X10

t−3 + 1.02X5
t−6 + ε37

X11
t = 1.31(X1

t−2)
2X12

t−4 + 1.14(X12
t−2)

2X1
t−1 + ε38

X12
t = 0.68X10

t−5X12
t−4 + 0.26X9

t−2(X10
t−2)

2X12
t−2 − 0.45X9

t−3X10
t−4 + ε39

(29)

Table 2 summarizes the general information of the three synthetic datasets and the
corresponding data partition settings for the following experiments.
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Table 2. General information and initialization of the datasets

Name Complexity Variables Observations Partitions Partition Lengths

dataset 1 linear 5 20,000 10 3000
dataset 2 nonlinear 5 30,000 12 3750
dataset 3 extreme nonlinear 12 45,000 15 4500

5.3. Results

Figures 6–8 demonstrate the results of processing dataset 1.
In Figure 6, the heatmaps are used to illustrate the causal strength. A dark-blue block

in position (Xi, X j) represents that Xi influences X j strongly. A light-blue block, in contrast,
refers to a weak connection, and the lightest blue indicates no direct causal relationship
between the two variables. For instance, 0.82 in ME1(GC) locates in position (X1, X2),
representing X1 causes X2 and the causal strength is 0.82. Moreover, the dark blue block
shows a strong causal relationship. The comparison graphs reveal that the outcomes from
diverse causal detectors are different. The PCMCI+ discovers all causal links correctly.
The GC performs well in processing linear systems but the indirect adjacency X1 → X3 is
also identified. The NTE and CCM do not perform well in linear systems. Therefore, the
following steps of the rule ensemble and optimization are significant for improving the
stability and trustworthiness of causal inference.

Figure 6. GMM-ensemble results of dataset 1. The four matrices represent four casual results of
distinct base learners after GMM-processing. The element in position (Xi, X j

) demonstrates that Xi

influences X j, and the digital number refer to the causal strength, where 0 denotes none causality and
1 denotes strongest causality (e.g., 0.82 in ME1(GC) represents that X1 causes X2 and causal strength
is 0.82). The color legend represents the correspondence between causal strength and block color.
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Figure 7 shows the final result of the proposed causal ensemble model and the causality
ground truth for comparison. It indicates that all causal links in dataset 1 are derived and
no false positives are detected. Figure 8 is the causal graph of dataset 1 based on the left plot
in Figure 7. The arrow denotes the direction of causality, and the shades of blue represent
the causal strength. The dark-blue arrow indicates that the causality in this direction is
strong, whereas the light-blue arrow reveals a weak causal relationship.

Figure 7. Final causal strength matrix and the ground truth of dataset 1. The left sub-figure is the final
quantitative causal results, and its structure is same as those in Figure 6. The right sub-figure is the
ground truth based on Equation (27), which denotes the setting causal relationship qualitatively. The
dark-blue block represents causality whereas the light-blue block refers to non-causality. Quantitative
causal strengths are only generated by causal inference algorithms, and are not defined within the
dataset itself. Therefore, there is no numerical representation in the right sub-figure.

Figure 8. Causal graph of dataset 1. X1,. . . , X5 in the circle represent distinct time series. The arrow
denotes the direction of causality, where the shades of blue represent the causal strength and the
correspondence is denoted in the color legend.

The evaluation index, Credibility Score (CS) is 0.8, which means that this result can be
80% trusted and that the credibility is strong.
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Now, looking at dataset 2, Figure 9 illustrates the results of the GMM ensemble phase.
The PCMCI+ and CCM both detect three out of four causal links, but their conclusions are
different. The NTE discovers one correct causality pair and misses three. The GC derives
all cause–effect pairs, as well as three false positives. It is not considered a convincing
detection because of the false positives. However, after the rule ensemble and optimization,
as Figures 10 and 11 illustrates, the final outcome is satisfying. Specifically, it discovers all
correct causal connections without any false positive values. In the evaluation index, CS is
0.8 which signals that this result can be 80% trusted (strong credibility).

Figure 9. GMM-ensemble results of dataset 2. The four matrices represent four casual results of
distinct base learners after GMM-processing. The element in position (Xi, X j

) represents that Xi

influences X j, and the digital number refer to the causal strength where 0 denotes none causality and
1 denotes strongest causality (e.g., 0.83 in ME1(GC) represents that X1 causes X2 and causal strength
is 0.83). The color legend represents the correspondence between causal strength and block color.
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Figure 10. Final causal strength matrix and the ground truth of dataset 2. The left sub-figure is the final
quantitative causal results, and its structure is same as those in Figure 9. The right sub-figure is the
ground truth based on Equation (28), which denotes the setting causal relationship qualitatively. The
dark-blue block represents causality whereas the light-blue block refers to non-causality. Quantitative
causal strengths are only generated by causal inference algorithms, and are not defined within the
dataset itself. Therefore, there is no numerical representation in the right sub-figure.

Figure 11. Causal graph of dataset 2. X1,. . . , X5 in the circle represent distinct time series. The arrow
denotes the direction of causality, where the shades of blue represent the causal strength and the
correspondence is denoted in the color legend.

Dataset 3 is an exceedingly complex, non-linear system. Figure 12 displays the out-
comes of the GMM ensemble phase. with the increasing complexity of the datasets, the
GC cannot derive a credible conclusion although it discovers all the correct cause–effect
pairs. This is because it also detects many false positives. The NTE detects nearly half
the correct causal links with only one false positive result. The CCM discovers more
than half correct causal effects but identifies 9 false positives as well. The PCMCI+ per-
forms better than the other approaches in such a complex dataset, finding 10 out of the
12 causal links without any false positives. After the rule ensemble and optimization, as
Figures 13 and 14 illustrates, the final result is more convincing than any of the four base
learners. Indeed, it discovers all correct causal connections with only two false positives.
In the evaluation index, CS is 0.814 which indicates that this causality result can be 81.4%
trusted (strong credibility).
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5.4. Comparison and Evaluation

This section quantitatively evaluates the performance of the proposed causal ensemble
model. To perform that evaluation, a confusion matrix is defined based on the causality
ground truth. The confusion matrix is originally used to visualize the performance of
supervised learning algorithm for classification tasks. In causal inference, the synthetic
dataset processing involves defining the causality ground truth as the actual condition. In
such instances, the causal effect denotes the positive value (P) and non-causality represents
the negative value (N). After this step, the four outcomes, including true positives (TP),
false negatives (FN), false positives (FP), and true negatives (TN), are generated and the
indexes, including accuracy, precision, recall, and F1 score are computed.

In addition to comparing the model performance on diverse datasets, the two-phase
ensemble result is compared with the GMM-ensemble results of the four base causal
detectors. This is performed to evaluate whether the two-phase ensemble functions better
than the single causal reasoning algorithm.

Tables 3–5 demonstrate the performance of the four base learners and the proposed
two-phase causal ensemble model on datasets 1–3, respectively. The bold values represent
that the relevant method performs best based on this specific evaluation index.

The proposed ensemble model ranks first in all indexes (accuracy, precision, recall,
and F1 score) on all three datasets except on dataset 3, where it ranks second in preci-
sion. This indicates that the proposed algorithm performs better than the single causality
discovery algorithm.

The complexity and volume of the three datasets differ but this ensemble model
derives good causality conclusions on both linear and non-linear systems. This is true
regardless of the number of variables and observations, which reveals its stability and
generalization ability. The CS indexes in all experiments are greater than 0.75, indicating
that the causal detection can be strongly trusted. The evaluating results prove the stability
and reliability of the proposed causal ensemble model.

Table 3. Performance comparison of the single causal inference model and the proposed causal
ensemble model on dataset 1.

Name TP FN FP TN Accuracy Precision Recall F1 Score CS

GC 3 0 1 16 0.95 0.75 1.0 0.86 /
NTE 1 2 0 17 0.9 1.0 0.33 0.5 /

PCMCI+ 3 0 0 17 1.0 1.0 1.0 1.0 /
CCM 1 2 3 14 0.75 0.25 0.33 0.28 /

Ensemble model 3 0 0 17 1.0 1.0 1.0 1.0 0.8

Table 4. Performance comparison of the single causal inference model and the proposed causal
ensemble model on dataset 2.

Name TP FN FP TN Accuracy Precision Recall F1 Score CS

GC 4 0 3 13 0.85 0.57 1.0 0.73 /
NTE 1 3 0 16 0.85 1.0 0.25 0.4 /

PCMCI+ 3 1 0 16 0.95 1.0 0.75 0.86 /
CCM 3 1 0 16 0.95 1.0 0.75 0.86 /

Ensemble model 4 0 0 16 1.0 1.0 1.0 1.0 0.8
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Table 5. Performance comparison of the single causal inference model and the proposed causal
ensemble model on dataset 3.

Name TP FN FP TN Accuracy Precision Recall F1 Score CS

GC 12 0 26 94 0.8 0.32 1.0 0.48 /
NTE 5 7 1 119 0.94 0.83 0.42 0.56 /

PCMCI+ 10 2 0 120 0.98 1.0 0.83 0.91 /
CCM 7 5 9 111 0.89 0.44 0.58 0.5 /

Ensemble model 12 0 2 118 0.98 0.86 1.0 0.93 0.81

Figure 12. GMM-ensemble results of dataset 3. The four matrices represent four casual results of
distinct base learners after GMM-processing. The element in position (Xi, X j

) represents that Xi

influences X j, and the digital number refer to the causal strength where 0 denotes none causality and
1 denotes strongest causality (e.g., 0.74 in ME1(GC) represents that X1 causes X2 and causal strength
is 0.74). The color legend represents the correspondence between causal strength and block color.
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Figure 13. Final causal strength matrix and the ground truth of dataset 3. The left sub-figure is the final
quantitative causal results, and its structure is same as those in Figure 12. The right sub-figure is the
ground truth based on Equation (29), which denotes the setting causal relationship qualitatively. The
dark-blue block represents causality whereas the light blue block refers to non-causality. Quantitative
causal strengths are only generated by causal inference algorithms, and are not defined within the
dataset itself. Therefore, there is no numerical representation in the right sub-figure.

Figure 14. Causal graph of dataset 3. X1, . . . , X12 in the circle represent distinct time series. The
arrow denotes the direction of causality, where the shades of blue represent the causal strength and
the correspondence is denoted in the color legend.

5.5. Limitations and Future Work

The experiments have produced dependable and persuasive results for our causal
ensemble model, but there are still some aspects that can be further improved. Firstly, the
present model fixes the time lag, which may not be optimal for the system. A method
that considers dynamic time-lag selection could be developed in future work. Secondly,
the rules in the second ensemble phase could be further enhanced by incorporating more
comprehensive conditions. Lastly, while the evaluation index CS is suitable for assessing
this specific model, a more universal and precise statistical index could be developed for
broader evaluation purposes.
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6. Conclusions

We presented an ensemble approach for causal inference consisting of two phases. In
the first phase, parallel computation of individual causal inference methods is enabled by
partitioning the given datasets into multiple overlapping subsets. This enables a speed-up
while limiting the information loss resulting from the partitioning. The results computed
on individual partitions are then combined by applying GMM clustering. This process is
repeated for every one of the four base learners in the ensemble, resulting in four different
intermediate results.

In the second phase, these intermediate results are then integrated by comprehensive
evaluation and comparison based on three rules. This step takes advantage of the strength
of the base learners and avoids their weaknesses as much as possible.

The proposed ensemble framework is a general and flexible structure, meaning that
the base learners can be freely exchanged. In our experiments, the causal ensemble model
improves the reliability of time series causality discovery of the four employed causal
inference models (GC, NTE, PCMCI+, and CCM). The experiments yield good accuracy
and well-controlled false positives.

Next to the ensemble approach itself, we make another contribution by developing an
evaluation approach for ensemble causal inference algorithms, which we call the credibility
score (CS). It is designed to assess the credibility of causal ensemble models by comparing
the final ensemble result to the intermediate results from distinct base learners. Our
proposed ensemble model achieves high credibility based on the evaluation index CS
presented in Section 4.

The performance of our ensemble approach may be further improved by extend-
ing it to combine causal links of different time lags. Further, the rule ensemble phase
can be enhanced by introducing additional and more comprehensive rules. Thirdly, a
more general and accurate statistical index can be developed to evaluate the credibility of
causal inference.
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