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Abstract: In this article, we derived an equality for CR-warped product in a complex space form
which forms the relationship between the gradient and Laplacian of the warping function and second
fundamental form. We derived the necessary conditions of a CR-warped product submanifolds in
Kähler manifold to be an Einstein manifold in the impact of gradient Ricci soliton. Some classification
of CR-warped product submanifolds in the Kähler manifold by using the Euler–Lagrange equation,
Dirichlet energy and Hamiltonian is given. We also derive some characterizations of Einstein warped
product manifolds under the impact of Ricci Curvature and Divergence of Hessian tensor.
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1. Introduction

The evolution equation for a one-parameter family of a Riemannian metric g is charac-
terized

∂(g(t))
∂t

= −Ric(g(t)), (1)

where Ric indicates the Ricci curvature. Equation (1) is known as the Ricci flow Equation [1].
The Ricci flow equation is a nonlinear partial differential equation that is highly nonlinear
and weakly parabolic. This is strictly parabolic to the group of the diffeomorphism of
smooth manifold M, termed as a Gauge group [1–3] which has several applications in
quantum physics, particle physics, and general relativity. Gauge groups such as neutrinos
and leptons characterize numerous standard models in particle physics. The Yang–Mills,
general relativity, and electromagnetism are our greatest theories of nature. Each is based
on a gauge symmetry at its foundation. The concept of a gauge symmetry is undoubtedly
complicated. However, at its core, it is just an ambiguity in the words we use to explain
physics. Why should nature enjoy such uncertainty? Understanding nature as a redundant
set of variables is helpful for two reasons. First, although gauge symmetry makes our
explanation of physics redundant, it seems concise. Ricci flow has several applications in
relativity and physics [4]. The fixed point of Ricci flow is known as a Ricci soliton (for more
details, see [5]), which is characterized by the following relation

Ric +
1
2
LX g = λg, (2)
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where LX denotes the Lie derivative and λ ∈ R can be any constant. The nature of Ricci
soliton depends on the scalar λ. If λ > 0, λ < 0 and λ = 0, thus the Ricci soliton is known
as expanding, shrinking and steady, respectively. In the relation (2), if we replace vector
field X by gradient of some smooth function f then Equation (2) is transformed as follows:

Ric +∇2 f = λg, (3)

where ∇2 f is a Hessian of f . Equation (3) is known as gradient Ricci soliton equation, and
is equivalent to

Ric = λg + Hess f . (4)

The Equation (4) is the fundamental equation relating the Ricci tensor and Hessian
tensor. As a special case, if f is a constant function on a smooth manifold M admitting
gradient Ricci soliton, then (3) reduces to Ric = λg. This expression leads to M as an
Einstein manifold.

Furthermore, the geometry of warped products has significant use in mathematics and
physics. In physics, several solutions of the Einstein field equation have warped product
structures, for example, Schwarzschild’s solution and Friedmann–Lemaitre–Robertson–
Walker’s solution. In string theory, the RS model has a significant role which is a five-
dimensional anti-de Sitter warped product manifold. Such manifolds were first realized in
1969 by R. L. Bishop and B. O’Neill when they studied manifolds of negative curvature.
They proved that there does not exist any Riemannian product manifold whose curvature
is negative. After that, several authors studied warped product manifolds under different
circumstances. This was taking more attention at the beginning of the twenty-first century,
when authors such as [6–16] studied relevant topics and discussed some geometric proper-
ties related to singularity theory and submanifolds theory, etc. In 2002, B. Y. Chen derived
the existence of the CR-warped product of the form MT × f M⊥ in a Kähler manifold,
where MT is real submanifold and M⊥ is a complex submanifold. After that, numerous
geometers studied CR-warped product manifolds and their generalized classes in different
ambient spaces [6,7,17–20].

The warped product manifold denoted by M× f N is a product of Riemannian mani-
folds M1 and M2, which furnished a Riemannian metric g gratifying

g = gM + f 2gN , (5)

where gM and gN are the Riemannian metric of the smooth manifolds M and N, respectively,
and f : M −→ (0, ∞) bis a smooth function known as a warping function [21]. If M× f N
is a warped product manifold, then the following relations hold in

∇X1 Z1 = ∇Z1 X1 = X1(ln f )Z1, (6)

∇Z1 Z2 = ∇′Z1
Z2 −∇(ln f )g(Z1, Z2). (7)

From the above relation, we deduce that M and N are totally geodesic and totally umbilical
manifolds in M× f N.

Recently, the Ricci soliton of warped products is taking more attention from the
geometers. A Ricci soliton with warped product structure and gradient Ricci soliton with
warped product structure were classified by different authors [22–28]. The author of [23]
derived that if warped product manifold admits a gradient Ricci soliton, then the fiber
is necessarily Einstein, and the potential function depends on the base manifold. In [24],
the authors considered the Ricci soliton of a warped product. They derived useful results
for such a manifold and applied them to the different spacetime models. Recently, the
authors of [29] derived some useful results from Sasakian manifolds that admit an almost
?-Ricci soliton structure, and the authors of [30] extended a ?-Ricci soliton to a ?-η-Ricci
soliton in Kenmotsu manifold. Furthermore, the Ricci curvature of warped products is
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utilized in string theory and the general theory of relativity. In the well-known Einstein’s
field equations (for more details, see [31]), the Ricci tensor establishes the connection to the
matter distribution in the universe. Furthermore, the Ricci tensor is a part of the curvature
of spacetime, which represents gravity’s general relativity and also examines the degree
to which matter will tend to converge or diverge concerning time. More generally, the
Riemannian curvature is not more important than the Ricci curvature in physics. Suppose
the solution of the Einstein field equation is a Ricci flat Riemannian (pseudo-Riemannian)
manifold. In that case, it indicates that the cosmological constant is zero (for more details,
see [32–34]). Due to the huge application of the Ricci soliton or, more generally, the Ricci
tensor in physics, we are motivated to study the Ricci soliton of CR-warped product
submanifold in a complex space form. We consider the question and provide a partial
answer to it. The question is that what are necessary and sufficient conditions for warped
product immersions in complex space forms to be an Einstein warped product manifold
with the impact of a gradient Ricci soliton?

This article is arranged as follows: Second 2 includes some necessary information
about the Kähler manifold and its submanifolds. In Section 3, we derived an equality
for a CR-warped product in a complex space form, forming the relationship between the
gradient and Laplacian of the warping function and second fundamental form. The vector
field X is considered as the gradient of the warping function in the relation (2) and derived
the condition for such warped product to be Einsteinian and also derived some useful
results in this article as applications of Theorem 1 and Lemma 2 into the Euler–Lagrange
equation, in the Dirichlet energy and in the Ricci curvature in Section 4.

2. Preliminaries

From the well-known literature of complex geometry, an almost Hermitian manifold
is a smooth manifold that admits an almost complex structure J and Hermitian metric g
satisfying

J 2 = −I , g(U1, U2) = g(JU1,JU2), (8)

for every U1, U2 ∈ Γ(TM̃2n), Γ(TM̃2n) and I indicate for the section of tangent bundle M̃2n

and identity transformation, respectively, (see, [6,35–37]). The metric g is skew-symmetric

g(JU1, U2) = −g(U1,JU2). (9)

Definition 1. A Kähler manifold [6,35–37] is almost a Hermitian manifold, M̃2n satisfies

(∇U1J )U2 = 0, (10)

∀U1, U2 ∈ Γ(TM̃2n). Here, ∇̃ indicates the Levi-Civita connection on M̃2n.

Moreover, if the holomorphic sectional curvature of a non-flat Kähler manifold is
constant, then M̃2n is termed as a complex space form. In this article, we denote M̃(c) for a
complex space form. The the curvature tensor R̃ of M̃(c) is characterized by

R̃(U1, U2, U3, U4) = c
4 (g(U1, U3)g(U2, U4) + g(U1,JU3)g(JU2, U4))

− c
4 (g(U2, U3)g(U1, U4) + g(U1,JU4)g(U2,JU3))

+ c
2 g(U1,JU2)g(JU3, U4),

(11)

where c is holomorphic sectional curvature.
Let us assume that M is an m-dimensional Riemannian submanifold of a Kähler

manifold M̃2n. Let us denote Γ(TM) for the section of the tangent bundle of M and Γ(TM⊥)
for the set of all normal vector fields of M, respectively, and also ∇ for the Levi-Civita
connection on tangent bundle TM, ∇⊥ for the Levi-Civita connection on normal bundle
TM⊥, respectively. Thus, the Gauss and Weingarten formulas are described as follows:
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∇U1U2 =∇U1U2 + h(U1, U2), (12)

∇U1 ξ =− AξU1 +∇⊥U1
ξ, (13)

for all U1, U2 ∈ Γ(TM) and ξ ∈ Γ(TM⊥), where Aξ and h are shape operator and second
fundamental form, aided by

g(AξU1, U2) = g(h(U1, U2), ξ). (14)

The submanifold M is totally umbilical [6,7,19,20] if H satisfies h(U1, U2) = g(U1, U2)H,
is totally geodesic if h ≡ 0 and minimal if H = 0, where H is the mean curvature
vector described by H = 1

m trace(h). The covariant derivative of σ is computed by the
following relation

(∇U3 σ)(U1, U2) =∇⊥U3
σ(U1, U2)− σ(∇U3U1, U2)− σ(U1,∇U3U2). (15)

The following relation characterizes the Gauss and Codazzi equations

R(U1, U2, U3, U4) = R(U1, U2, U3, U4) + g(σ(U1, U3), σ(U2, U4))
−g(σ(U1, U4), σ(U2, U3)),

(16)

(R(U1, U2)U3)
⊥ =(∇U1 σ)(U2, U3)− (∇U2 σ)(U1, U3), (17)

for every U1, U2, U3, U4 ∈ Γ(TM). Moreover, for each U1 ∈ Γ(TM) and ξ ∈ Γ(TM⊥),
we have

JU1 = tU1 + nU1, (18)

J ξ = t
′
ξ + n

′
ξ, (19)

where tU1 = tan(JU1) (resp. t
′
ξ = tan(J ξ)) and nU1 = nor(JU1) (resp. n

′
ξ = nor(J ξ))

are the tangential and normal parts of JU1 (resp.J ξ), and tan and nor are orthogonal
projections on TM and TM⊥. With the help of (9), (18) and (19), we have

g(tU1, U1) = −g(U1, tU1), g(ξ, n
′
ζ) = −g(n

′
ξ, ζ), (20)

g(nU1, ξ) = g(U1, t
′
ξ). (21)

Furthermore, the covariant derivative of J , t and n are described by

(∇U1J )U2 =∇U1JU2 −J∇U1U2, (22)

(∇U1 t)U2 =∇U1 tU2 − t∇U1U2, (23)

(∇U1 n)U2 =∇⊥U1
nU2 − n∇U1U2, (24)

∀U1, U2 ∈ Γ(TM). By the utilization of (8), (10), (12), (13), (18), (19) and (22)–(24), we obtain

(∇U1 t)U2 =AnU2U1 + t
′
h(U1, U2), (25)

(∇U1 n)U2 =− h(U1, tU2) + n
′
h(U1, U2). (26)

for every U1, U2 ∈ Γ(TM). Consider a smooth function f : M −→ R, thus, the gradient
and Laplacian are described by
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‖∇ f ‖2 =
n

∑
q=1

(Eq( f ))2 and g(∇ f , U1) = U1 f , (27)

∆ f =
n

∑
q=1

(∇Eq Eq) f − Eq(Eq( f )), (28)

for any U1 ∈ Γ(TM). The relation (28) can be expressed as

∆ f = −
n

∑
q=1

g(∇Eq grad( f ), Eq). (29)

Let H f be the Hessian of f , thus the Laplacian and Hessian are ailed by

∆ f = −TraceH f = −
n

∑
q=1

H f (Eq, Eq). (30)

We will recall the above results for later use.

3. Curvature Inequality

In [36], Chen derived the general inequality for CR-warped product submanifold
MT × f M⊥ of Kähler manifold which forms a connection between the gradient of the
warping function and second fundamental form via the accompanying relation

‖h‖2 ≥ 2β‖∇ ln f ‖2, (31)

where β = dim(M⊥). The above relation establishes a relationship between intrinsic
invariant and extrinsic invariant. He also derived the classification of such types of warped
products by the solution of a special system of partial differentials in a complex space
form. After some time, he derived the curvature type inequality for a CR-warped product
submanifold MT × f M⊥ in a complex space theorem which is expressed as the following:

Theorem 1 ([35]). Let M = MT × f M⊥ is CR-warped product in M̃(c). Then the following
inequality holds in M = MT × f M⊥

‖h‖2 ≥ cαβ + 2β‖∇(ln f )‖2 − β∆(ln f ). (32)

where ∆(ln f ) denotes the Laplacian of ln f .

By the inequality (1), he classified CR-warped product manifolds in complex Eu-
clidean space satisfying the equality case of (1) up to rigid motion by the partial Serge
embedding defined as φ

pk
a : Ck

∗ × Sp −→ Cap+k, where CF
∗ = C ∼ {0} and a, p, k ∈ N.

With the help of Hopf fibration, he derived some conditions for CR-warped products in
complex projective space CPn(4) and in complex hyperbolic space CHn(−4) to satisfy the
equality sign in (1) (for more details, see Theorem 5.1 [35]). Thereafter, several authors
studied CR-warped products in different ambient manifolds.

Definition 2. Let M be a Riemannian submanifold of a Kähler manifold M̃2n. Then M is real
submanifold if J (TM) ⊂ TM and M is complex submanifold if J (TM) ⊂ TM⊥.

Definition 3. A CR-submanifold of Kähler manifold M̃2n whose tangent bundle decomposed as
TM = D⊕D⊥, where D is a real distribution and D⊥ is a complex distribution. Moreover, if
there is a Riemannian metric on M of the form g = gMT + f 2gM⊥ then M is a CR-warped product
of the form M = MT × f M⊥.
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Example 1. Let us consider 10-dimensional Euclidean space R10 with coordinate (x1, · · · , x5,
y1, · · · , y5) and Euclidean metric g. An almost complex structure on R10 is defined by

J
(

5

∑
q=1

Xq ∂

∂xq
+

5

∑
s=1

Ys ∂

∂ys

)
=

5

∑
q=1

Xq ∂

∂yq
−

5

∑
s=1

Ys ∂

∂xs
. (33)

Consider a subset M ⊂ R10 immersed as a submanifold by the following immersion

x1 = u, x2 = w, x3 = u sin θ, x4 = δ, x5 = v cos θ, (34)

y1 = v, y2 = δ, y3 = v cos θ, y4 = 2w, y5 = u sin θ. (35)

The basis spans the tangent subspace of M at each point

Zu =
∂

∂x1
+ sin θ

∂

∂x3
+ cos θ

∂

∂y5
, Zδ =

∂

∂x4
+

∂

∂y2
, (36)

Zv =
∂

∂y1
+ cos θ

∂

∂x5
+ sin θ

∂

∂y3
, Zw =

∂

∂x2
+

∂

∂y4
, (37)

Zθ = u cos θ
∂

∂x3
− v sin θ

∂

∂x5
+ v cos θ

∂

∂y3
− u sin θ

∂

∂y5
. (38)

With straightforward computation, we observed that the distribution spanned by {Zu, Zv, Zw, Zδ}
and distribution spanned by Zθ are invariant and anti-invariant distribution, respectively. This
shows that M is a warped product manifold with warping function f =

√
u2 + v2.

Now, we recall one lemma related to CR-warped product of Kähler manifold for
further use:

Lemma 1. For a CR-warped product M = MT × f M⊥ of Kähler manifold M̃2n, we obtain

g(h(X1, X2),J Z1) = 0, (39)

g(h(X1, Z1),J Z2) = −J X1(ln f )g(Z1, Z2), (40)

g(h(J X1, Z1),J Z2) = X1(ln f )g(Z1, Z2), (41)

g(h(J X1, Z1),J h(X1, Z1)) = ‖hν(X1, Z1)‖2, (42)

for all X1, X1 ∈ Γ(TMT) and Z1, Z2 ∈ Γ(TM⊥) .

Lemma 2. Let M = MT × f M⊥ be a CR-warped product in M̃(c). Then, we obtain

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2 + β∆(ln f ) =cαβ + β‖∇(ln f )‖2, (43)

∑2α
q=1 ∑

β
s=1 ‖h(Eq, E∗s )‖2 − β‖∇(ln f )‖2 = cαβ + β

(
∑α

q=1 Hessln f (Eq, Eq)
)

+β
(

∑α
q=1 Hessln f (J Eq,J Eq)

)
.

(44)

Proof. By the application of (17), we have

R(X1,J X1, Z1,J Z1) =g((∇X1 h)(J X1, Z1),J Z1)

− g((∇J X1 h)(X1, Z1),J Z1). (45)
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By the definition of (15), we obtain (∇X1 h)(J X1, Z1) = ∇⊥X1
h(J X1, Z1)− h(∇X1J X1, Z1)−

h(J X1,∇X1 Z1). By the application of covariant differentiation property into the last ex-
pression, we have

g((∇X1 h)(J X1, Z1),J Z1) = X1g(h(J X1, Z1),J Z1)− g(h(J X1, Z1),∇⊥X1
J Z1)

− g(h(∇X1J X1, Z1),J Z1)− g(h(J X1,∇X1 Z1),J Z1).

With the help of Definition 10, (12), (13) and (14) and (39), the above expression takes the
following form

g((∇X1 h)(J X1, Z1),J Z1) = X2
1(ln f )g(Z1, Z1)− 2(X1(ln f ))2g(Z1, Z1)
−∇X1 X1(ln f )g(Z1, Z1)− ‖hν(X1, Z1)‖2.

(46)

Similarly, we have

g((∇J X1 h)(X, Z1),J Z1) = −J X2
1(ln f )g(Z1, Z1) + ‖hν(J X1, Z1)‖2

+∇J X1J X1(ln f )g(Z1, Z1) + 2(J X1(ln f ))2g(Z1, Z1).
(47)

From (45)–(47), we have

− c
2‖X1‖2‖Z1‖2 = X2

1(ln f )g(Z1, Z1)− 2(X1(ln f ))2g(Z1, Z1)
−‖hν(J X1, Z1)‖2 − 2(J X1(ln f ))2g(Z1, Z1)
−∇J X1J X1(ln f )g(Z1, Z1)−∇X1 X1(ln f )g(Z1, Z1)
−‖hν(X1, Z1)‖2 + J X2

1(ln f )g(Z1, Z1).

(48)

Now, consider {E1, E2, · · · , Em, Em+1, · · · , E2n} to be an orthonormal frame for a tan-
gent bundle of M̃(c), in which {E1, E2, · · · , Em} are tangent to the CR-warped product
M and {Em+1, · · · , E2n} are normal to M. By using the fact that M is a CR-warped
product submanifold in M̃(c) then, we observe that m = 2α + β and 2n − m = β +
2k. Let {E1, E2, · · · , Eα, Eα+1 = J E1, Eα+2 = J E2, · · · , E2α = J Eα} be a basis of D,
{E2α+1 = E∗1 , E2α+2 = E∗2 , · · · , Em = E∗β, } be a basis of D⊥, {Em+1 = J E∗1 , Em+2 =

J E∗2 , · · · , Em+β = J E∗β, } be a basis ofnD⊥ and {Em+β+1 = Ê1, Em+β+2 = Ê2, · · · , Em+β+k =

Êk, Em+β+k+1 = Êk+1, · · · , E2n = Ê2k} be a basis of ν. Using above frame in the relation
of (48), we find

2α

∑
q=1

β

∑
s=1
‖hν(Eq, E∗s )‖2 = cαβ− β∆(ln f ). (49)

By the virtue of (40) and (41), we have

2α

∑
q=1

β

∑
s=1
‖hnD⊥(Eq, E∗s )‖2 = β‖∇ ln f ‖2. (50)

By the utilization of (49) and (50), we have (43). Since the Laplacian of some functions is a
trace of Hessian, by using this fact, we obtain (44).

Theorem 2. If M = MT × f M⊥ is CR-warped product in M̃(c). Then the second fundamental
form satisfies

‖h‖2 ≥ cαβ + β ∑α
q=1 Hessln f (Eq, Eq)

+β ∑α
q=1 Hessln f (J Eq,J Eq) + 2β‖∇(ln f )‖2.

(51)

Proof. By the direct use of (30) into (32), we obtain (51).
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4. Applications

The study of curvatures in differential geometry and physics has great importance.
The curvatures of the Riemannian (or pseudo-Riemannian) manifold are determined intrin-
sically and extrinsically. In curvatures, the Ricci curvature and scalar curvature are more
applicable in physics. The Ricci curvature Ric and scalar curvature ρ of M is defined as

Ric =∑
q

R(X, Eq)Eq, (52)

τ(TM) = ∑
1≤q 6=s≤m

K(Eq ∧ Es), (53)

where K(Eq ∧ Es) is the sectional curvature of the plane spanned by Eq and Es. Let Gk be
the k-plane section of TM spanned by the orthonormal basis {E1, E2, · · · , Ek}. Thus, the
scalar curvature ρ(Gk) of Gk is described by

τ(Gk) = ∑
1≤q 6=s≤r

K(Eq ∧ Es), (54)

In the potential theory, Dirichlet energies have significant use. If f : M −→ R is a smooth
function, then the Dirichlet energy is defined by

E( f ) =
1
2

∫
M
‖∇ f ‖2dV. (55)

where E( f ) and dV indicate Dirichlet energy and volume element, respectively. If R is
replaced by a smooth manifold, then the Sigma model evaluates the Dirichlet energy. The
Lagrange equation of the Sigma model has solutions that provide extreme Dirichlet energies.
In Lagrangian mechanics, the Lagrangian L of a mechanical system is T −V, where T is
kinetic energy and V is the system’s potential energy, respectively. As a generalization to
smooth manifolds, the Lagrangian of the smooth function f is determined by

L =
1
2
‖ f ‖2. (56)

The Euler–Lagrange equation for a Lagrangian L is ∆ f = 0. Now, we recall some useful
results for further use:

Lemma 3 ([7]). Let M be a compact, connected Riemannian manifold without boundary and f be
a smooth function on M such that ∆ f ≥ 0 (∆ f ≤ 0). Then f is a constant function.

Moreover, if we apply the Green Theorem on a compact orientable Riemannian mani-
fold without boundary, then we obtain∫

M
∆ f dV = 0, (57)

by using ∆ f = div(X), for X = ∇( f ), it immediately follows that∫
M

div(X)dV = 0, (58)

where div(X) indicates the divergence [7] for a connected, compact Riemannian manifold
with a boundary. The well-known Hopf lemma takes the following form:

Theorem 3 ([7]). Let M be a compact, connected Riemannian manifold with boundary and f be a
smooth function on M such that ∆ f = 0 on M and f∂M = 0, then f = 0.
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The above theorem is also known as the uniqueness theorem of the Dirichlet problem.
The Hamiltonian, denoted by H, represents the mechanical system’s total energy. On the
smooth even-dimensional manifold, the Hamiltonian induces a symplectic structure. The
Hamiltonian [7] on the manifold is characterized by

H(d f , x) =
1
2

n

∑
q=1

(d f (Eq))
2 =

1
2

n

∑
q=1

(Eq( f ))2 =
1
2
‖∇ f ‖2. (59)

4.1. Application to Euler–Lagrange Equation

Theorem 4. Let M = MT × f M⊥ be a CR-warped product in M̃(c) and warping function is a
solution of the Euler–Lagrange equation, then M is a Riemannian CR-product if

‖h‖2 ≥ cαβ. (60)

Proof. Suppose that ln f satisfies the Euler–Lagrange equation, i.e., ∆ f = 0. This implies
that

∆(ln f ) = 0. (61)

Since ‖h‖2 ≥ cαβ + 2β‖∇(ln f )‖2 − β∆(ln f ), therefore using the above equation, we have

‖h‖2 ≥ cαβ + 2β‖∇(ln f )‖2. (62)

Using the given relation (60), the above expression is reduced to ‖∇(ln f )‖2 ≤ 0. However,
‖∇(ln f )‖2 is always positive. Therefore, we must have ∇(ln f ) = 0. This implies that f is
constant; thus, the warped product is a Riemannian CR-product. This accomplishes the
proof.

Corollary 1. Let M = MT × f M⊥ be a CR-warped product in M̃(c) and warping function is a
solution of Euler–Lagrange equation, then M is a Riemannian CR-product if

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2 =cαβ. (63)

Proof. By the direct application of (43) and proceeding same steps as Theorem 4, we
achieve (63).

Theorem 5. Let M = MT × f M⊥ be a compact, orientable CR-warped product submanifold in
M̃(c) such that ∂M = φ. Then, M is a Riemannian CR-product if and only if

‖h‖2 ≤ cαβ. (64)

Proof. By taking integration of (32), we have∫
M

β∆(ln f )dV ≥
∫

M
cαβdV + 2

∫
M

β‖∇(ln f )‖2dV −
∫

M
‖h‖2dV. (65)

Now, utilizing the relations of (57) into Equation (65), we receive

0 ≥
∫

M
cαβdV + 2

∫
M

β‖∇(ln f )‖2dV −
∫

M
‖h‖2dV. (66)

By the application of (64) and (66), we observe
∫

M β‖∇(ln f )‖2dV ≤ 0. This implies that
‖∇(ln f )‖2 is negative, i.e., ‖∇(ln f )‖2 ≤ 0. The last expression leads to f being a constant.
This completes the proof.



Symmetry 2023, 15, 976 10 of 14

Theorem 6. Let M = MT × f M⊥ be a compact, orientable CR-warped product submanifold in
M̃(c) such that ∂M 6= φ. Then M is a Riemannian CR-product if and only if

E(ln f ) =
1

2β

(∫
M

(
2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2 − cαβ

)
dV

)
. (67)

Proof. By taking integration of (43), we have∫
M ∑2α

q=1 ∑
β
s=1
(
‖h(Eq, E∗s )‖2)dV + β

∫
M ∆(ln f )dV = β

∫
M ‖∇(ln f )‖2dV

+
∫

M cαβdV.
(68)

Now utilizing the relations (55) into Equation (68), we receive

β
∫

M ∆(ln f )dV =
∫

M cαβdV + 2βE(ln f )
−
∫

M ∑2α
q=1 ∑

β
s=1
(
‖h(Eq, E∗s )‖2)dV.

(69)

By the virtue of (69) and (67), we have
∫

M ∆(ln f )dV = 0. By applying the Hopf lemma,
we achieve that f is constant.

Theorem 7. Let M = MT × f M⊥ be a compact, orientable CR-warped product submanifold in
M̃(c) such that ∂M 6= φ. Then the M is a Riemannian CR-product if and only if Hamiltonian
H satisfies

H(d f , x) = − 1
2β

(
cαβ−

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2

)
. (70)

Proof. By the utilization of (59) into (43), we have

2α

∑
q=1

β

∑
s=1

(
‖h(Eq, E∗s )‖2

)
= cαβ + 2βH(d f , x)− β∆(ln f ). (71)

By virtue of (71), we observe that the relation (70) holds if and only if ∆(ln f ) = 0. Since M
is a compact, orientable Riemannian manifold, then by the application of Hopf lemma, we
have f as constant. This completes the proof.

4.2. Application to Gradient Ricci Soliton

The Ricci soliton is a natural generalization of Einstein manifolds. Such manifolds are
important to study warped product manifolds because any regular surface is Einsteinian,
and the surface of revolution is a warped product manifold. Moreover, they apply to each
other in a more general setting, which can be realized in current times. Another gener-
alization of the Einstein manifold is an almost Ricci soliton and quasi-Einstein manifold.
In this paper, we derive some characterization of Einstein manifolds with the impact of
Ricci soliton.

Theorem 8. Let M = MT × f M⊥ be a CR-warped product in M̃(c) admitting a shrinking
gradient Ricci soliton. Then the following inequality holds

‖h‖2 ≥ cαβ + β‖∇(ln f )‖2 + β
2α

∑
q=1

Ric(Eq, Eq). (72)

Additionally, the equality holds if MT is a totally geodesic submanifold and M⊥ is totally umbilical
submanifolds of M(c).
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Proof. If M = MT × f M⊥ is a CR-warped product submanifold of a complex space form
M(c) admitting a shrinking gradient Ricci soliton. Then, M fulfils the following relation

Ric(X1, X2) = λg(X1, X2) + Hessln f (X1, X2), (73)

for every X1, X2 ∈ Γ(TMT). By using the above defined frame for MT in (73), we have

α

∑
q=1

Ric(Eq, Eq) = λα +
α

∑
q=1

Hessln f (Eq, Eq). (74)

By replacing Eq by J Eq into (74), we have

α

∑
q=1

Ric(J Eq,J Eq) = λα +
α

∑
q=1

Hessln f (J Eq,J Eq). (75)

By the consequence of (74) and (75), we have

∑α
q=1 Hessln f (J Eq, J Eq) + ∑α

q=1 Hessln f (Eq, Eq)

= ∑α
q=1 Ric(Eq, Eq)− 2λα + ∑α

q=1 Ric(J Eq,J Eq).
(76)

Applying (76) into the relation (51), we have

‖h‖2 ≥ cαβ + β‖∇(ln f )‖2 − 2αλ +
2α

∑
q=1

Ric(Eq, Eq). (77)

This accomplishes the proof.

Theorem 9. Let M = MT × f M⊥ be a CR-warped product in M̃(c) admitting a shrinking
gradient Ricci soliton. Then M is Einsteinian if the following equality holds

c− 2λ +
1
α

2α

∑
q=1

Ric(Eq, Eq) =
1

αβ

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2. (78)

Proof. By the virtue of (44), (75) and (76), we receive that

∑2α
q=1 ∑

β
s=1 ‖h(Eq, E∗s )‖2 = αβ(c− 2λ) + β‖∇(ln f )‖2

+β
(

∑α
q=1
[
Ric(Eq, Eq) + Ric(J Eq,J Eq)

])
.

(79)

Suppose (78) satisfies in M then from (79), we have ‖∇(ln f )‖2 = 0. From the above
expression, we receive that ∇(ln f ) = 0. Therefore f is constant. Therefore, by the gradient
Ricci soliton equation, we easily observe that M is Einstein’s warped product. This finishes
the proof.

Corollary 2. Let M = MT × f M⊥ be a CR-warped product in Cn admitting a shrinking gradient
Ricci soliton. Then M is Einsteinian if the following equality holds

λ =
1

2α

2α

∑
q=1

Ric(Eq, Eq)−
1

2αβ

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2. (80)

Proof. Since Cn is flat space, therefore c = 0, and by the direct application of (78), we
obtain the result.



Symmetry 2023, 15, 976 12 of 14

Theorem 10. Let M = MT × f M⊥ be a CR-warped product in M̃(c) admitting a steady gradient
Ricci soliton. Then M is Einsteinian if the following equality holds

1
β

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2 = cα +

α

∑
q=1

Ric(Eq, Eq). (81)

Proof. For the steady gradient Ricci soliton λ = 0, we achieve the result by proceeding
with similar steps as the proof of Theorem 9.

Theorem 11. The necessary condition for a compact CR-warped product submanifold M =
MT × f M⊥ in M̃(c) to be a CR-product is that

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2 =cαβ− β

∫
M

Ric(∇(τ),−)dV. (82)

Proof. Since warping function f is smooth, ln f = τ is also a smooth function, applying τ
to the well known Ricci identity, we have

d(τ)R(X1, X2)X3 = ∇2d(τ)(X2, X1, X3)−∇2d(τ)(X1, X2, X3), (83)

for any vector fields X1, X2, X3 that are tangent to MT . Because f is a smooth function and
∇2

X1X2
= ∇X1X2 −∇∇X1X2

, then the curvature tensor behaves like the derivative defined
by RX1 X2 = ∇X2∇X1 −∇X1∇X2 . With the help of the property that τ is closed we can
easily prove ∇2d(τ)(X2, X1, X3) = ∇2d(τ)(X1, X2, X3). Now, for an orthonormal frame
{E1, E2, · · · , E2α} on MT , we have ∇Ei Ej(p) = 0, for fixed point p ∈ MT . If we describe
∇Ei X1 = 0 for any X1 ∈ Γ(TMT), and considering the trace with respect to X2 and X3 in
the relation ∇2d(τ)(X2, X1, X3) = ∇2d(τ)(X1, X2, X3), then using (83), we concede that

div(Hessτ) = Ric(∇(τ),−)− d(∆(τ)). (84)

Since M is a compact CR-warped product manifold with boundary then by taking the
integration of (84), we have∫

M
div(Hessτ)dV =

∫
M

Ric(∇(τ),−)dV − ∆(τ), (85)

where dV is the volume element. From the relation (43), we have

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2 =cαβ− β∆(ln f ) + β‖∇(ln f )‖2. (86)

Now, employing Green Theorem in (84), we have
∫

M div(Hessτ)dV = 0, therefore (84)
reduces into the following form

∆(τ) =
∫

M
Ric(∇(τ),−)dV. (87)

In view of (86) and (87), we obtain

2α

∑
q=1

β

∑
s=1
‖h(Eq, E∗s )‖2 =cαβ− β

∫
M

Ric(∇(τ),−)dV + β‖∇(ln f )‖2. (88)

If (82) holds in M then by relation (88), we have ‖∇(ln f )‖2 = 0. With the help of the last
expression, we conclude that f is constant. This accomplishes the proof.
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5. Conclusions

In short, this article includes some characterization results of Riemannian CR-product
and Einstein warped product in Kahler manifold under the impact of Euler–Lagrange
equation, Dirichlet energy, Hamiltonian, gradient Ricci soliton and divergence of the
Hessian operator. In the future, these characterizations will be studied under the effect of
?-Ricci soliton, ?-η-Ricci soliton and some other types of solitons.
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