
Citation: Jafri, S.T.A.; Ahmed, I.;

Ali, S.; Yahaya, J.; Qamar, F.;

Abdullah, Z.H. Split Hop Penalty for

Transmission Quality Metrics in

a Better Approach to Mobile Ad Hoc

Networking (BATMAN) for

IoT-Based MANET. Symmetry 2023,

15, 969. https://doi.org/10.3390/

sym15050969

Academic Editors: Razvan Bocu,

Sabin Tabirca, Daniel C. Doolan,

Debiao He and Sergei D. Odintsov

Received: 16 December 2022

Revised: 9 January 2023

Accepted: 19 January 2023

Published: 24 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Split Hop Penalty for Transmission Quality Metrics in a Better
Approach to Mobile Ad Hoc Networking (BATMAN) for
IoT-Based MANET
Syed Talib Abbas Jafri 1 , Irfan Ahmed 2 , Sundus Ali 3 , Jamaiah Yahaya 4 , Faizan Qamar 5,*
and Zuriani Hayati Abdullah 4

1 Department of Electronic Engineering, NED University of Engineering and Technology,
Karachi 75270, Pakistan

2 Department of Physics, NED University of Engineering and Technology, Karachi 75270, Pakistan
3 Department of Telecommunications Engineering, NED University of Engineering and Technology,

Karachi 75270, Pakistan
4 Center for Software Technology and Management, Faculty of Information Science and Technology (FTSM),

Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
5 Centre for Cyber Security, Faculty of Information Science and Technology (FTSM), Universiti Kebangsaan

Malaysia (UKM), Bangi 43600, Selangor, Malaysia
* Correspondence: faizanqamar@ukm.edu.my

Abstract: Various routing protocols have been developed for wireless ad hoc networks to shift
from infrastructure-based networks to self-controlling and self-configurable networks. These ad
hoc networks are easy to implement and have plenty of application in the fields of healthcare,
transportation, smart cities, etc. Although almost all of the routing protocols work on the Open
Systems Interconnection (OSI) model’s network layer, a few routing protocols support routing on the
data link layer of the OSI model rather than the conventional one. One of these routing protocols
include the Better Approach To Mobile Ad Hoc Networking (BATMAN). Though BATMAN is
a comparably new routing protocol and included in the Linux kernel, it suffers from performance
deterioration and latency issues that need to be addressed especially in the Internet of Things (IoT).
This paper presents a split hop penalty for BATMAN version 4 to improve the network’s performance
in multi-hop scenarios. This paper presents a symmetry-based split hop penalty for BATMAN
version 4 to improve the network’s performance in multi-hop scenarios. Split hop penalty defines
two different sets of penalties to accommodate the routing protocol metric based on the interface
media type. The experiments were conducted within the campus building of the university with
physical nodes, and the obtained results highlight that overall performance is improved in terms of
throughput, latency, and jitter while no performance gain is measured in packet loss and routing
loops that are still present.

Keywords: MANET; routing protocol; batman-adv; hop penalty; IoT

1. Introduction

Mobile ad hoc networks (MANET) [1] support or enhance next-generation networks
for applications including but not limited to the Internet of Things (IoT) [2], Industrial
IoT [3], massive IoT [4], fifth-generation (5G) cellular network [5,6], and software-defined
networks [7]. Almost all of the currently available routing protocols for ad hoc networks
already support most of the mentioned network types, with or without modifications to
better suit individual applications [8–10]. Apart from Media Access Layer (MAC) opti-
mizations [11,12], the type of routing protocol selected (proactive or reactive) affects the
performance and reliability of the whole network and the ability to deliver or drop the
packets for unknown networks successfully [13]. Several symmetric and asymmetric cryp-
tography techniques provides security in MANETs[14]. BATMAN [15] (Better Approach To

Symmetry 2023, 15, 969. https://doi.org/10.3390/sym15050969 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15050969
https://doi.org/10.3390/sym15050969
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3831-1544
https://orcid.org/0000-0003-3629-5034
https://orcid.org/0000-0002-5496-8303
https://orcid.org/0000-0003-2429-4114
https://orcid.org/0000-0002-0390-7842
https://doi.org/10.3390/sym15050969
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15050969?type=check_update&version=2

Symmetry 2023, 15, 969 2 of 22

Mobile Ad Hoc Networking) was introduced with limited functionality, after which several
updates were made to provide better flexibility and convenience for network engineers to
set up and maintain mesh networks and adapted to wide array of networks such as IEEE
802.11s as shown in Figure 1.

Symmetry 2023, 15, x FOR PEER REVIEW 2 of 20

Ad Hoc Networking) was introduced with limited functionality, after which several up-
dates were made to provide better flexibility and convenience for network engineers to
set up and maintain mesh networks and adapted to wide array of networks such as IEEE
802.11s as shown in Figure 1.

Figure 1. IEEE 802.11s Wireless Mesh Network Architecture.

BATMAN is a distance-vector proactive routing protocol initially designed for self-
configurable networks or wireless mesh networks with low overhead to support a wide
array of ad hoc networks [15], e.g., IEEE 802.11s. Initially, BATMAN was a layer-3 routing
protocol available with a daemon to be termed as Batmand but soon, the development of
a layer-2 mesh routing protocol was started to support seamless network configuration to
layer 3 and Batmand was abundant and is no longer developed or supported [16].

An advanced version of BATMAN, namely BATMAN-adv, follows the development
from algorithm version IV and incorporates the newly devised algorithm version V. BAT-
MAN-adv is purely designed on layer-2, which utilizes a virtual network interface to com-
municate with the neighboring nodes. BATMAN-adv no longer uses a daemon to control
BATMAN-related tasks and works as a kernel module of Linux to implement the routing
protocol. BATMAN-adv transports all the information using raw Ethernet frames rather
than sending UDP packets and handles all the data forwarded by BATMAN nodes until
it reaches the destination. The unique behavior of the routing protocol emulates a local
area network using a virtual Ethernet switch rather than a router. This enables all nodes
to appear as flat topology on the link–local interface and remains unaffected by any rout-
ing changes happening on layer 3 of the OSI model. BATMAN uses a handy tool to man-
age all the routing and debugging functions offered by the protocol named “batctl” which
can be invoked from the user space of the operating system.

1.1. Problem Statement
The BATMAN routing algorithm was made for mesh networks with multiple hops

that can be extended to heterogeneous networks with the inclusion of non-mesh nodes.
The default implementation of BATMAN hop penalty needs optimization as wireless in-
terfaces are treated as unidirectional links by the routing protocol and therefore, any hop
penalty set is implemented twice, decreasing the metric quality of the routing protocol.
This hop penalty leads to decreased overall performance of the routing protocol as it di-
minishes the metric of the routing protocol by a large margin when the number of nodes
is high.

Figure 1. IEEE 802.11s Wireless Mesh Network Architecture.

BATMAN is a distance-vector proactive routing protocol initially designed for self-
configurable networks or wireless mesh networks with low overhead to support a wide
array of ad hoc networks [16], e.g., IEEE 802.11s. Initially, BATMAN was a layer-3 routing
protocol available with a daemon to be termed as Batmand but soon, the development of
a layer-2 mesh routing protocol was started to support seamless network configuration to
layer 3 and Batmand was abundant and is no longer developed or supported [17].

An advanced version of BATMAN, namely BATMAN-adv, follows the develop-
ment from algorithm version IV and incorporates the newly devised algorithm version
V. BATMAN-adv is purely designed on layer-2, which utilizes a virtual network interface
to communicate with the neighboring symmetric nodes. BATMAN-adv no longer uses
a daemon to control BATMAN-related tasks and works as a kernel module of Linux to
implement the routing protocol. BATMAN-adv transports all the information using raw
Ethernet frames rather than sending UDP packets and handles all the data forwarded
by BATMAN nodes until it reaches the destination. The unique behavior of the routing
protocol emulates a local area network using a virtual Ethernet switch rather than a router.
This enables all nodes to appear as flat topology on the link–local interface and remains
unaffected by any routing changes happening on layer 3 of the OSI model. BATMAN uses
a handy tool to manage all the routing and debugging functions offered by the protocol
named “batctl” which can be invoked from the user space of the operating system.

1.1. Problem Statement

The BATMAN routing algorithm was made for mesh networks with multiple hops
that can be extended to heterogeneous networks with the inclusion of non-mesh nodes. The
default implementation of BATMAN hop penalty needs optimization as wireless interfaces
are treated as unidirectional links by the routing protocol and therefore, any hop penalty
set is implemented twice, decreasing the metric quality of the routing protocol. This hop

Symmetry 2023, 15, 969 3 of 22

penalty leads to decreased overall performance of the routing protocol as it diminishes the
metric of the routing protocol by a large margin when the number of nodes is high.

1.2. Contribution of the Paper

Based on the problem statement defined in Section 1.1, the contribution of this paper
can be summarized by the following:

• An analytical study is carried out which highlights the impact of the original hop
penalty when the hop count increases up to 10 nodes.

• The design and implementation of a test-bed suitable for implementing and testing
BATMAN routing protocol with original hop penalty in a real environment.

• The design and implementation of a novel split-hop penalty for transmission quality
of the routing protocol. The developed split-hop penalty was analyzed on a test-bed
in an indoor environment using IoT prototypes.

• A comparison of the discussed collected results by testing the original hop penalty
with the modified split-hop penalty in various network configurations.

The rest of the paper is organized as follows: Section 2 provides details of the method-
ology used to diagnose the vanilla version of BATMAN and the production of the split
hop penalty. Experimental setup, software configuration, and assumptions made to make
the experiment tractable and reproducible are presented in Section 3. Results and compar-
isons are presented and discussed in Section 4, while Section 5 concludes the findings and
presents remarks on the performance of the proposed method.

2. Literature Review

The initial and recent versions of BATMAN have been compared to other similar
routing protocols in [18,19]. As a proactive routing protocol, BATMAN is similar to most
proactive routing protocols, including AODV [20] and OLSR, which it is most alike [21].
The initial work of the BATMAN routing protocol was derived and inspired by IETF
Optimized Link State Routing Protocol (OLSR) [22]. Both routing protocols maintain
a neighbor table with 2-hop nodes [23]; OLSR selects Multipoint Relays (MP), while
BATMAN uses all the available neighbors to pass information [24]. Neighbor discovery
in OLSR is carried out with HELLO messages, while the same function is carried out by
Originator Messages (OGM). The only difference is that the link quality is also measured
through OGM while OLSR separates Topology Control (TC) messages to announce network
information. Some authors have also compared BATMAN with Destination Sequenced
Distance Vector (DSDV), concluding that DSDV is much closer to BATMAN as both use
sequence numbers to identify and discard obsolete information and prevent routing loops
in the topology [25]. Some of the works carried out on the BATMAN routing protocol are
discussed below in Table 1.

Symmetry 2023, 15, 969 4 of 22

Table 1. BATMAN extensions or modifications in the literature.

Title Method Application Drawback

JOKER: A Novel
Opportunistic Routing
Protocol [26]

Uses link quality metrics based on
distance penalty.

Multimedia and
streaming.

Tradeoff between better
energy consumption and
quality of user
experience exist.

B.A.T.Mobile: Leveraging
Mobility Control Knowledge
for Efficient Routing in Mobile
Robotic Networks [27]

Extension to BATMAN with
a mobility prediction component
which selects forwarder nodes
based on the mobility
prediction data.

Unmanned Autonomous
Vehicles (UAVs)

No major
drawbacks mentioned.

Improving B.A.T.M.A.N.
Routing Stability and
Performance [28]

Enforces loop-freeness in
BATMAN by removing the global
window, fast OGM forwarding
and only considering latest TQ
values without taking averages.

Mobile ad hoc networks
and all its derivatives.

Assigning zero TQ value for
lost OGMs will lead to heavily
decree TQpath and decreased
performance of the
overall network.

Table 1. Cont.

Title Method Application Drawback

A hybrid MANET-DTN
routing scheme for emergency
response scenarios [29]

Uses delay tolerant feature of
store and forward in BATMAN
and OLSR.

Emergency response and
first responder networks

High buffer requirements and
higher routing overhead

BATMAN store-and-forward:
The best of the two
worlds [30]

Store and forward BATMAN
implementation same as in [29]
but with reduced overhead.

Wireless Mesh network Increased overhead and high
buffer requirements

Design and experimental
performance analysis of a
B.A.T.M.A.N.-based double
Wi-Fi interface mesh
network [31]

Uses two wi-fi interfaces, one to
connect to BATMAN network,
and other used as an access point
for non-BATMAN
compatible devices.

Wireless Mesh network
Network performance
degrades as number of
hops increased

Proposed method

Uses split hop penalty for
unidirectional links where
BATMAN deducts hop penalty
twice on the same interface

Wireless mesh networks,
especially IoT ad hoc
networks (suitable for
large networks)

Performance suffers with
small networks

3. Methodology
3.1. BATMAN Algorithm

The very first step will be to announce the presence of the self to every neighbor using
a customized message OGM after the initialization of the BATMAN protocol. This message
will be broadcasted with the parameter time-to-live (TTL) equal to 1, ensuring that it only
reaches direct neighbors and is not forwarded to other nodes. This message will continue
being broadcast with a delay of 1 s by default (originator interval) until the algorithm is
taken offline or the node is powered off. Each OGM is marked with a sequence number
(SN), which helps in eliminating any received obsolete information. The SN also helps
prevent any routing loops from forming as any packet re-broadcasted to the originator
node can verify that it is the same information it broadcasted earlier, eliminating some
of the causes of routing loops. The metric used by the protocol is termed Transmission
Quality (TQ), which is calculated for each link toward the destination between neighbor
nodes by analyzing the OGMs received by the neighbors. A similar transmission quality
metric was also utilized, but based on geolocation [32]. A basic flowchart for BATMAN
general components is presented in Figure 2.

Symmetry 2023, 15, 969 5 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 20

A hybrid MANET-DTN
routing scheme for
emergency response
scenarios [28]

Uses delay tolerant feature of
store and forward in
BATMAN and OLSR.

Emergency response
and first responder
networks

High buffer requirements and
higher routing overhead

BATMAN store-and-
forward: The best of the two
worlds [29]

Store and forward BATMAN
implementation same as in
[28] but with reduced
overhead.

Wireless Mesh network
Increased overhead and high
buffer requirements

Design and experimental
performance analysis of a
B.A.T.M.A.N.-based double
Wi-Fi interface mesh
network [30]

Uses two wi-fi interfaces, one
to connect to BATMAN
network, and other used as an
access point for non-BATMAN
compatible devices.

Wireless Mesh network Network performance degrades
as number of hops increased

Proposed method

Uses split hop penalty for
unidirectional links where
BATMAN deducts hop
penalty twice on the same
interface

Wireless mesh
networks, especially
IoT ad hoc networks
(suitable for large
networks)

Performance suffers with small
networks

3. Methodology
3.1. BATMAN Algorithm

The very first step will be to announce the presence of the self to every neighbor using
a customized message OGM after the initialization of the BATMAN protocol. This
message will be broadcasted with the parameter time-to-live (TTL) equal to 1, ensuring
that it only reaches direct neighbors and is not forwarded to other nodes. This message
will continue being broadcast with a delay of 1 s by default (originator interval) until the
algorithm is taken offline or the node is powered off. Each OGM is marked with a
sequence number (SN), which helps in eliminating any received obsolete information. The
SN also helps prevent any routing loops from forming as any packet re-broadcasted to the
originator node can verify that it is the same information it broadcasted earlier,
eliminating some of the causes of routing loops. The metric used by the protocol is termed
Transmission Quality (TQ), which is calculated for each link toward the destination
between neighbor nodes by analyzing the OGMs received by the neighbors. A similar
transmission quality metric was also utilized, but based on geolocation [31]. A basic
flowchart for BATMAN general components is presented in Figure 2.

Figure 2. Flowchart for BATMAN algorithm.

TQ is the performance measure between two neighbor nodes for sending and
receiving information [32]. Two nodes communicating on a single wireless link will not
exhibit similar performance measures towards each other, as in the case of wired links
[30]. This behavior of wireless interfaces limits the ability of TQ to determine the
performance of two neighbor nodes just by equating (sending only or receiving only)
OGMs on one side. Therefore, TQ can be further classified into two parameters, receive
quality (RQ) and echo quality (EQ), to measure the performance between two nodes, first

Figure 2. Flowchart for BATMAN algorithm.

TQ is the performance measure between two neighbor nodes for sending and receiving
information [33]. Two nodes communicating on a single wireless link will not exhibit similar
performance measures towards each other, as in the case of wired links [31]. This behavior
of wireless interfaces limits the ability of TQ to determine the performance of two neighbor
nodes just by equating (sending only or receiving only) OGMs on one side. Therefore, TQ
can be further classified into two parameters, receive quality (RQ) and echo quality (EQ),
to measure the performance between two nodes, first by sending the OGM (RQ) and then
after receiving the re-broadcasted OGM to compute the EQ.

The mentioned mechanism is only observed in BATMAN IV, which has its disadvan-
tages, such as delay caused by the information collection procedure as OGM transmission
and echo from the neighbor would take some time to transfer while data rate and packet
losses in wireless channels vary over time. Therefore, a mechanism was required where
local link quality can be detected with high frequency (default for OGMv1 vs. 1 s), and
OGM advertisements would be separate from local link quality metric calculations for the
stability of the network. Therefore, BATMAN V was introduced, which is still in the initial
stages of development. In BATMAN V, Echo Location Protocol (ELP) is used to discover
neighbors and announce their presence, while a modified variant of OGM, OGMv2, is used
to calculate the transmit qualities of the links and flood this information onto the network.
The metric for BATMAN V relies heavily on throughput rather than packet losses. The
throughput can be either queried from the interface or ethtool can be used to determine the
throughput at any stage. The transmission quality on the local level (between neighbors)
can be found by using the numbers of packets sent and echo received to determine a statis-
tical measure for reference to other nodes. This can be achieved by the mechanism and can
be denoted using the expression [17]:

TQ =
EQ
RQ

(1)

The same can be calculated for each neighbor of the node, and all the nodes with their
neighbors can calculate the same.

3.1.1. Path Transmission Quality

Path transmission quality is computed from source to destination with 1 or more
intermediate nodes. The value of path transmission quality is measured with the incoming
TQ in the OGMs and inducing it with the local TQ calculated towards that node and
forwarded in the OGM to its neighbors. Since local TQ is the ratio of transmitted packets
with the number of packets received through re-broadcast or echoes towards the sending
node, it can be presented as a percentage of the quality of the node towards another node.
We must consider the scenario presented in Figure 3, where node 1 transmits its TQ via
OGM to node 2 assuming the best TQ of 100%.

Symmetry 2023, 15, 969 6 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 20

Figure 3. Path transmission quality computation and forwarding mechanism.

In such scenarios, where multiple paths lead to the destination, the best path metric
would be identified by comparing the pathTQ obtained from Equation (2) of two nodes.

A similar case is presented in Figure 4, where node 1 and node 3 transmit their TQ to
node 2, and node 2 pathTQ results as 75% and 81 for the paths from 1 and 3, respectively.

Figure 4. Best path TQ calculation.

Since 81% offers a better quality of the link than 75% of node 1, node 2 will use the
best value of 81% in the forwarding OGM(s). The compound path TQ can be found us-
ing all the node(s) of TQ using the below equation, where p is the total number of
nodes in a selected path towards the destination [16].

path local
p

TQ TQ= ∏ (3)

3.1.2. Penalty for Asymmetric links
Since the wireless channel from node 1 to 2 and vice versa are not the same, a penalty

is therefore introduced in BATMAN to reduce the TQ value such that the link that has low
RQ values should be penalized (reduced) in the overall TQ, as shown in the below equa-
tion [16].

3(1 (1))asym localTQ TQ RQ= × − − (4)

The value presented herein (4) is derived analytically rather than by measuring the
performance difference between RQ and EQ.

Figure 3. Path transmission quality computation and forwarding mechanism.

For the simplicity of the metric computations, all other TQs towards their neighbors
are considered as 75%. When node 2 receives the OGM at time t, it will compute the path
transmission quality [17] as follows:

TQpath = TQrecieved × TQlocal (2)

where TQrecieved is extracted from the OGM received from node 1. The TQ that will
be forwarded to another neighbor in the direction of the path will be TQpath, which
when received by node 3 will be termed as simply TQrecieved, while TQlocal is the same
as calculated in the previous section. Node 3 at time interval t + 2 will compute the new
TQpath using (2) and transmit the calculated TQ when sending OGM to other neighboring
in the path. The same procedure will be repeated for all other consecutive nodes in the
path until the destination is reached.

In such scenarios, where multiple paths lead to the destination, the best path metric
would be identified by comparing the TQpath obtained from Equation (2) of two nodes.
A similar case is presented in Figure 4, where node 1 and node 3 transmit their TQ to node
2, and node 2 TQpath results as 75% and 81 for the paths from 1 and 3, respectively.

Symmetry 2023, 15, 969 7 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 20

Figure 3. Path transmission quality computation and forwarding mechanism.

In such scenarios, where multiple paths lead to the destination, the best path metric
would be identified by comparing the pathTQ obtained from Equation (2) of two nodes.

A similar case is presented in Figure 4, where node 1 and node 3 transmit their TQ to
node 2, and node 2 pathTQ results as 75% and 81 for the paths from 1 and 3, respectively.

Figure 4. Best path TQ calculation.

Since 81% offers a better quality of the link than 75% of node 1, node 2 will use the
best value of 81% in the forwarding OGM(s). The compound path TQ can be found us-
ing all the node(s) of TQ using the below equation, where p is the total number of
nodes in a selected path towards the destination [16].

path local
p

TQ TQ= ∏ (3)

3.1.2. Penalty for Asymmetric links
Since the wireless channel from node 1 to 2 and vice versa are not the same, a penalty

is therefore introduced in BATMAN to reduce the TQ value such that the link that has low
RQ values should be penalized (reduced) in the overall TQ, as shown in the below equa-
tion [16].

3(1 (1))asym localTQ TQ RQ= × − − (4)

The value presented herein (4) is derived analytically rather than by measuring the
performance difference between RQ and EQ.

Figure 4. Best path TQ calculation.

Since 81% offers a better quality of the link than 75% of node 1, node 2 will use the
best value of 81% in the forwarding OGM(s). The compound path TQ can be found using
all the node(s) of TQ using the below equation, where p is the total number of nodes in
a selected path towards the destination [17].

TQpath = ∏
p

TQlocal (3)

3.1.2. Penalty for Asymmetric links

Since the wireless channel from node 1 to 2 and vice versa are not the same, a penalty
is therefore introduced in BATMAN to reduce the TQ value such that the link that has
low RQ values should be penalized (reduced) in the overall TQ, as shown in the below
equation [17].

TQasym = TQlocal × (1− (1− RQ)3) (4)

The value presented herein (4) is derived analytically rather than by measuring the
performance difference between RQ and EQ.

3.1.3. Hop Penalty

In an ad hoc network, each node acts as a router and is responsible for processing
each packet, computing TQ, and forwarding OGM to neighbors, other than receiving and
forwarding data packets. The processing delay also affects the transmission quality and is
yet to be included as it is not easy to map the processing delay of the node as it will vary
depending on the configuration/specification of the node, queue length, and number of
free resources that a node possesses when processing a data packet or OGM. Therefore,
many routing algorithms utilize a parameter called hop counter or hop penalty to affect
the metric depending on the number of nodes/hops a data packet takes in reaching its
destination. Hop penalty in BATMAN IV is a pre-defined and configurable parameter that
can be altered at will to achieve desired results, e.g., enhancing the effect of hops into the
metric or marring so that path transmission quality is less or more depending on the TQlocal

Symmetry 2023, 15, 969 8 of 22

parameter, respectively. To compute the hop penalty effect on TQ, another parameter is
introduced to show the maximum achievable TQ for any path set to 255 by default. This
ensures that paths with an increasing number of hops are penalized regardless of their local
transmission quality, and it is provided below [17]:

TQHP = TQpath ×
TQmax − HP

TQmax
(5)

where HP is the hop penalty that is set to 30 by default in BATMAN.

3.2. Impact of Hop Penalty Value on the Performance of BATMAN

Experiments in [34] show that a hop penalty higher than 15 would have an overall
impact on TQ, which will diminish the local link quality, and BATMAN as a routing
protocol becomes a hop count rather than a composite metric. The variation in hop count
also impacts the overall network throughput and delay performance. To better understand
the impact of the hop penalty on the TQ, consider Figure 5, where 10 hop-to-hop nodes
are presented in a serial fashion. All nodes have a TQ value of 255 (the maximum as per
BATMAN specifications) and analytical results are plotted with the impact of increasing
hop numbers. The figure shows that increasing hop decreases the overall TQ quality by 42%
after 10 hops; therefore, networks with a higher number of hops suffer more as compared
to networks with fewer hops. Another example of delay impact on the network where
nodes are considered symmetric in nature is presented in [35].

Symmetry 2023, 15, x FOR PEER REVIEW 7 of 20

3.1.3. Hop Penalty
In an ad hoc network, each node acts as a router and is responsible for processing

each packet, computing TQ, and forwarding OGM to neighbors, other than receiving and
forwarding data packets. The processing delay also affects the transmission quality and is
yet to be included as it is not easy to map the processing delay of the node as it will vary
depending on the configuration/specification of the node, queue length, and number of
free resources that a node possesses when processing a data packet or OGM. Therefore,
many routing algorithms utilize a parameter called hop counter or hop penalty to affect
the metric depending on the number of nodes/hops a data packet takes in reaching its
destination. Hop penalty in BATMAN IV is a pre-defined and configurable parameter that
can be altered at will to achieve desired results, e.g., enhancing the effect of hops into the
metric or marring so that path transmission quality is less or more depending on the

localTQ parameter, respectively. To compute the hop penalty effect on TQ, another param-
eter is introduced to show the maximum achievable TQ for any path set to 255 by default.
This ensures that paths with an increasing number of hops are penalized regardless of
their local transmission quality, and it is provided below [16]:

max

max
HP path

TQ HPTQ TQ
TQ

−= × (5)

where HP is the hop penalty that is set to 30 by default in BATMAN.

3.2. Impact of Hop Penalty Value on the Performance of BATMAN
Experiments in [33] show that a hop penalty higher than 15 would have an overall

impact on TQ, which will diminish the local link quality, and BATMAN as a routing pro-
tocol becomes a hop count rather than a composite metric. The variation in hop count also
impacts the overall network throughput and delay performance. To better understand the
impact of the hop penalty on the TQ, consider Figure 5, where 10 hop-to-hop nodes are
presented in a serial fashion. All nodes have a TQ value of 255 (the maximum as per BAT-
MAN specifications) and analytical results are plotted with the impact of increasing hop
numbers. The figure shows that increasing hop decreases the overall TQ quality by 42%
after 10 hops; therefore, networks with a higher number of hops suffer more as compared
to networks with fewer hops.

Figure 5. Impact of hop penalty on transmission quality metric.

3.3. Split Hop Penalty for Unidirectional Links
All wireless links are unidirectional as opposed to Ethernet connections; although it

is highly dependent on the hardware of the wireless interface, it causes the algorithm of
the hop penalty to be doubled or implemented twice. This duplication of the hop penalty
on the incoming and outgoing packets increases the hop penalty’s pre-configured value
to twice the size and causes the TQ metric to decrease to low values, resulting in severely

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

TQ
H

P

Hops

Original hop penalty

Modified hop penalty

Figure 5. Impact of hop penalty on transmission quality metric.

3.3. Split Hop Penalty for Unidirectional Links

All wireless links are unidirectional as opposed to Ethernet connections; although it is
highly dependent on the hardware of the wireless interface, it causes the algorithm of the
hop penalty to be doubled or implemented twice. This duplication of the hop penalty on the
incoming and outgoing packets increases the hop penalty’s pre-configured value to twice
the size and causes the TQ metric to decrease to low values, resulting in severely affected
multi-hop transmission. The problem is also present for multi-channel and multi-antenna
multiple input/multiple output (MIMO) systems as the data link layer for all the antennas
is the same and a packet is processed twice when entering layer 2 from the physical layer
and when it is being forwarded to the physical layer of the OSI model.

The default implementation of BATMAN IV suffers from performance issues caused
by the high hop penalty values, which have twice the effect and cause the metric to function

Symmetry 2023, 15, 969 9 of 22

as a simple hop-count metric. To solve the above problem, several different formations of
a split hop penalty were tested to differentiate the links that cause this problem from those
interfaces in which this problem does not exist. The tests were conducted on a hit-and-trial
basis rather than analytically derived for multi-hop communication. The scenario was
chosen to be diverse enough so that the topology supports more than one path towards the
destination in an indoor scenario. The basic idea was to use a different hop-penalty value
to compute the overall TQ such that the effect caused by the duplication of the hop penalty
can be dismissed. This is achieved by dividing the hop penalty configured value by 2, as it
will be implemented on a unidirectional interface exactly two times; therefore, the actual
value set by the user will be accommodated on the TQ metric only once. The new penalty is
similar or symmetrical to the original one but only uses half of the HP value. If the interface
chosen is a wired interface, the hop penalty value is implemented as defined by the user
with no change. Therefore, TQpath can be incorporated with the newly developed hop
penalty through the below equation:

TQHP =

{
TQlocal ×

TQmax− HP
2

TQmax
for uni-directional links

TQlocal × TQmax−HP
TQmax

for bi-directional links
(6)

The path metric presented in (6) will be used after the TQpath is calculated with its
own metric according to (3) and before the transmission of TQpath into the forwarding
OGM. This would prevent any deduction that may happen twice for the hop penalty and
cause the link cost to be of better quality as compared to the original. It is important to
notice that if a node has multiple interfaces, then each node will calculate individual hop
penalties for each physical interface as presented in Figure 6.

The algorithm of the code that was inserted to modify the behavior exhibited by the
BATMAN nodes is presented in Algorithm 1.

Algorithm 1 Split hop penalty for batman-adv version iv

1. Input: HP, TQpath
2. Output: TQpath
3. Function split_hop_penalty (HP, TQpath)
4. For all bat interfaces
5. For all bind interfaces
6. If the interface is uni-directional then

7. TQHP = TQlocal ×
TQmax− HP

2
TQmax

8. Else
9. TQHP = TQlocal × TQmax−HP

TQmax

10. End If
11. End for
12. End for
13. Return TQpath

The algorithm takes the HP value and TQpath value as input to the function. The
TQpath value is taken after it is calculated using (3) and before the inclusion of TQpath in
OGM that is to be sent out to the wireless interface through its own interface bat0. The
algorithm checks the type of interface and applies the appropriate hop penalty to the
TQpath metric. A list of frequently used notations can be found in Table A5. The algorithm
is simple enough not to cause any performance lag or excess CPU utilization. The effect is
either negligible or too small to measure by normal methods and therefore is best suited to
mobile applications, including IoT, MANET, and other similar architecture-based networks.

Symmetry 2023, 15, 969 10 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 20

affected multi-hop transmission. The problem is also present for multi-channel and multi-
antenna multiple input/multiple output (MIMO) systems as the data link layer for all the
antennas is the same and a packet is processed twice when entering layer 2 from the phys-
ical layer and when it is being forwarded to the physical layer of the OSI model.

The default implementation of BATMAN IV suffers from performance issues caused
by the high hop penalty values, which have twice the effect and cause the metric to func-
tion as a simple hop-count metric. To solve the above problem, several different for-
mations of a split hop penalty were tested to differentiate the links that cause this problem
from those interfaces in which this problem does not exist. The tests were conducted on a
hit-and-trial basis rather than analytically derived for multi-hop communication. The sce-
nario was chosen to be diverse enough so that the topology supports more than one path
towards the destination in an indoor scenario. The basic idea was to use a different hop-
penalty value to compute the overall TQ such that the effect caused by the duplication of
the hop penalty can be dismissed. This is achieved by dividing the hop penalty configured
value by 2, as it will be implemented on a unidirectional interface exactly two times; there-
fore, the actual value set by the user will be accommodated on the TQ metric only once. If
the interface chosen is a wired interface, the hop penalty value is implemented as defined
by the user with no change. Therefore, pathTQ can be incorporated with the newly devel-
oped hop penalty through the below equation:

max

max

max

max

2 for uni-directional links

for bi-directional links

local

HP

local

HPTQ
TQ

TQTQ
TQ HPTQ
TQ

 −
×

=
 −×

 (6)

The path metric presented in (6) will be used after the pathTQ is calculated with its

own metric according to (3) and before the transmission of pathTQ into the forwarding
OGM. This would prevent any deduction that may happen twice for the hop penalty and
cause the link cost to be of better quality as compared to the original. It is important to
notice that if a node has multiple interfaces, then each node will calculate individual hop
penalties for each physical interface as presented in Figure 6.

Figure 6. Split hop penalty flow-chart for each interface in node.

The algorithm of the code that was inserted to modify the behavior exhibited by the
BATMAN nodes is presented in Algorithm 1.

Figure 6. Split hop penalty flow-chart for each interface in node.

3.4. Overall Transmission Quality

All the individual transmission qualities have been computed in (2), (4), and (6) for
TQpath, TQasym and TQHP, respectively. To compute the overall TQ or combined TQ
(as mentioned in open-mesh documentation), the product of all individual transmission
qualities is taken, and since each TQ has a range of 0.255, to normalize the combined TQ to
retain it in the same boundary, the product is then divided by the cube of TQmax, which
has a default value of 255 and is presented below:

TQ =
TQlocal × TQpath × TQasym × TQHP

(TQmax)
3 (7)

4. Test-Bed Implementation Setup
4.1. Hardware Setup

In order to present the performance improvements that are incurred with the inclusion
of the split hop penalty in the path transmission quality metric, a test-bed is set up within
the campus of NED University of Engineering and Technology, which comprises four labs
with a maximum lab size of 24 feet × 56 feet. The total covered area of the labs where the
experiment is conducted is 4896 sq ft or 545.8533 m2. The testbed is composed of a total
of 14 real nodes, complete with power backup on a single board. Each node comprises
a raspberry pi 4 model B with 4 GB RAM, 8 GB SD card, a 7-inch touchscreen-enabled LCD
mounted on top of the raspberry pi, and a 30,000 mAh rechargeable battery to support
both raspberry pi and touch-screen. Each node is pasted with the node’s IP address for
easy access to Secure Shell (SSH) as the MAC address would not be used directly in any
test, and address resolution protocol (ARP) will be used to translate IP addresses to MAC
addresses. It is also necessary as the tools required to generate data and collect performance
measurements also require IP addresses rather than MAC addresses. The touch-screen
is mounted with the help screws onto the board so that ample space is available for heat
dissipation for both the touchscreen and raspberry pi.

Symmetry 2023, 15, 969 11 of 22

The complete node is presented in Figure 7, in which the image is captured from the
top; therefore, raspberry pi is hidden as it is mounted below the touchscreen. The node is
easy to carry and place anywhere around the campus.

Symmetry 2023, 15, x FOR PEER REVIEW 10 of 20

of a total of 14 real nodes, complete with power backup on a single board. Each node
comprises a raspberry pi 4 model B with 4 GB RAM, 8 GB SD card, a 7-inch touchscreen-
enabled LCD mounted on top of the raspberry pi, and a 30,000 mAh rechargeable battery
to support both raspberry pi and touch-screen. Each node is pasted with the node’s IP
address for easy access to Secure Shell (SSH) as the MAC address would not be used di-
rectly in any test, and address resolution protocol (ARP) will be used to translate IP ad-
dresses to MAC addresses. It is also necessary as the tools required to generate data and
collect performance measurements also require IP addresses rather than MAC addresses.
The touch-screen is mounted with the help screws onto the board so that ample space is
available for heat dissipation for both the touchscreen and raspberry pi.

The complete node is presented in Figure 7, in which the image is captured from the
top; therefore, raspberry pi is hidden as it is mounted below the touchscreen. The node is
easy to carry and place anywhere around the campus.

Figure 7. Top view of a node comprising raspberry pi (below the touch-screen), touch-screen, and
power bank.

4.2. Software Configuration
Each node is accompanied by an operating system provided by the manufacturer,

which aims to provide the majority of the hardware functions, and a keen focus is on the
performance. A lot of operating systems are available for raspberry pi in the market, but
Raspbian OS is chosen due to its affiliation with the hardware manufacturer, and the per-
formance it provides is beyond any other OS except the operating systems without x-
server (which is GUI for Linux). The latest Raspbian OS (sometimes called Raspberry Pi
OS) is available at the experiment’s time, and Debian version 10 (buster) is installed.
Buster comes with Linux kernel version 5.10, but it was later upgraded to kernel 5.15 be-
fore any experiment was conducted. Although batman-adv is already part of Linux as a
kernel module, any modification is not possible directly into the kernel module. Therefore,
the latest version of batman-adv (2022.0-13-ge009ae23-dirty) was downloaded from
GitHub, recompiled from scratch, and then loaded into kernel memory through the avail-
able modprobe program in Linux for kernel module management.

All the wireless interfaces of the raspberry pi OS are managed by the wpa_supplicant
program which is responsible for connecting and managing infrastructure-based net-
works that support Wi-Fi Protected Access (WPA). Since all the nodes do not need any
infrastructure access point in ad hoc mode to enable communication, wpa_supplicant util-
ity is terminated on all nodes, and iwconfig (also a free utility in Linux to manage wireless
interfaces) is used to create an ad hoc network with the essid “batman-network”. After
setting all the parameters through the iwconfig and ifconfig utility, the batman-adv module

Touch Screen

Power Bank
RPi beneath

touchscreen

Figure 7. Top view of a node comprising raspberry pi (below the touch-screen), touch-screen, and
power bank.

4.2. Software Configuration

Each node is accompanied by an operating system provided by the manufacturer,
which aims to provide the majority of the hardware functions, and a keen focus is on
the performance. A lot of operating systems are available for raspberry pi in the market,
but Raspbian OS is chosen due to its affiliation with the hardware manufacturer, and the
performance it provides is beyond any other OS except the operating systems without
x-server (which is GUI for Linux). The latest Raspbian OS (sometimes called Raspberry
Pi OS) is available at the experiment’s time, and Debian version 10 (buster) is installed.
Buster comes with Linux kernel version 5.10, but it was later upgraded to kernel 5.15 before
any experiment was conducted. Although batman-adv is already part of Linux as a kernel
module, any modification is not possible directly into the kernel module. Therefore, the
latest version of batman-adv (2022.0-13-ge009ae23-dirty) was downloaded from GitHub,
recompiled from scratch, and then loaded into kernel memory through the available
modprobe program in Linux for kernel module management.

All the wireless interfaces of the raspberry pi OS are managed by the wpa_supplicant
program which is responsible for connecting and managing infrastructure-based networks
that support Wi-Fi Protected Access (WPA). Since all the nodes do not need any infras-
tructure access point in ad hoc mode to enable communication, wpa_supplicant utility is
terminated on all nodes, and iwconfig (also a free utility in Linux to manage wireless inter-
faces) is used to create an ad hoc network with the essid “batman-network”. After setting
all the parameters through the iwconfig and ifconfig utility, the batman-adv module was
loaded through the batctl command. Batctl is the controlling application for batman, which
includes all the commands for controlling batman routing protocol in user space.

Since, the operating system boots and loads all the kernel modules and utilities by
pushing them into RAM, which takes some time. Therefore, a delay of 30 s was included
before the script began. Eliminating the delay between the execution of the script and the
point where crontab is executed will result in misconfiguration. During the experiments,

Symmetry 2023, 15, 969 12 of 22

several parameters of the initialization script were changed over the runtime, including
the wireless interface transmit power and batman routing algorithm. Regarding the steps
required for initialization of the batman network, Table 2 highlights the tasks that need to
be executed in that specific order at boot.

Table 2. Pseudocode for bash script executed on node boot.

S no. Task

1 Disable wpa_supplicant module from loading at boot
2 Add batman-adv module to the Linux kernel
3 Turn off the wireless interface
4 Set the required MTU for wireless interface
5 Change the wireless interface mode to ad hoc
6 Assign the essid to the wireless interface
7 Allow wireless interface to join any open access point with same essid
8 Set the wireless interface channel (same for every node)
9 Choose the batman-adv routing algorithm
10 Wait for the kernel module to change the routing algorithm
11 Turn on the wireless interface
12 Wait for the wireless interface to turn on
13 Add the physical wireless interface to the virtual batman-adv interface
14 Turn on the virtual batman-adv interface
15 Assign static IP address to the virtual batman-adv interface
16 Set the appropriate transmit power for wireless interface

4.3. Test-Bed Parameters

Table 3 summarizes the earlier discussed and other parameters necessary to be set up
for the reproduction of the results. An explanation of some of the parameters was discussed
in previous sections.

Table 3. BATMAN-adv experimental (test-bed) parameters.

Description Value

Lab Size 24′ × 56′, 24′ × 36′

Total Area covered 1344 + 1344 + 1344 + 864 = 4896 sq ft. (545.8533 sq meter)
Number of nodes 2, 4, 6, 8, 10, 12, 14
WLAN transmit power 0, 10, 20, 30 (dBm)
K1, K2, K3, and K4 1 (all)
Tests conducted Latency (delay), packet loss, throughput, Jitter, Packet Delivery Ratio
Number of ping tests per experiment 100
Number of throughput tests per experiment 3
Duration for throughput test 10 s
Transport layer protocol used TCP, UDP
WLAN band 2.4 GHz
WLAN bandwidth 20 MHz
WLAN channel 9 (2452 MHz)
Debian Version 10 (Buster)
Linux Kernel Version 5.15.32-v7l+
Batman-adv version 2022.0-13-ge009ae23-dirty

The experiment was conducted in a lab environment with consecutive labs in a corridor
situated on the first floor in the Telecommunication Department of NED University of
Engineering and Technology. The map of the experiment’s location is presented in Figure 8.
It is important to note that there are several configurations where different numbers of
nodes were deployed. Therefore, Figure 8 contains a legend that shows the configurations
of nodes and placement in a tabular manner. The nodes were placed such that a smaller
number of nodes cover the entire area provided for this experiment. After covering the
entire lab area of 4896 sq ft. with only eight nodes, an additional number of nodes were

Symmetry 2023, 15, 969 13 of 22

placed in between the nodes, which caused multiple paths between source and destination
with a relatively good transmission quality metric.

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 20

Linux Kernel Version 5.15.32-v7l+
Batman-adv version 2022.0-13-ge009ae23-dirty

The experiment was conducted in a lab environment with consecutive labs in a cor-
ridor situated on the first floor in the Telecommunication Department of NED University
of Engineering and Technology. The map of the experiment’s location is presented in Fig-
ure 8. It is important to note that there are several configurations where different numbers
of nodes were deployed. Therefore, Figure 8 contains a legend that shows the configura-
tions of nodes and placement in a tabular manner. The nodes were placed such that a
smaller number of nodes cover the entire area provided for this experiment. After cover-
ing the entire lab area of 4896 sq ft. with only eight nodes, an additional number of nodes
were placed in between the nodes, which caused multiple paths between source and des-
tination with a relatively good transmission quality metric.

Figure 8. Placement of nodes at various locations in the campus block with configuration.

Since there is always clutter in the lab (compared to the experimental setup), e.g.,
computers, furniture, electrical components fittings, and other lab equipment and train-
ers, it is essential to attach images with this report to achieve a better idea of every lab part
of the experiment. The following images, including Figure 9, were captured during the
conduction of the experiment.

(a) (b)

Figure 9. (a) Lab 1 with 3 nodes (2 in sight) and (b) Lab 4 with 3 nodes (2 in sight).

Figure 8. Placement of nodes at various locations in the campus block with configuration.

Since there is always clutter in the lab (compared to the experimental setup), e.g.,
computers, furniture, electrical components fittings, and other lab equipment and trainers,
it is essential to attach images with this report to achieve a better idea of every lab part
of the experiment. The following images, including Figure 9, were captured during the
conduction of the experiment.

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 20

Linux Kernel Version 5.15.32-v7l+
Batman-adv version 2022.0-13-ge009ae23-dirty

The experiment was conducted in a lab environment with consecutive labs in a cor-
ridor situated on the first floor in the Telecommunication Department of NED University
of Engineering and Technology. The map of the experiment’s location is presented in Fig-
ure 8. It is important to note that there are several configurations where different numbers
of nodes were deployed. Therefore, Figure 8 contains a legend that shows the configura-
tions of nodes and placement in a tabular manner. The nodes were placed such that a
smaller number of nodes cover the entire area provided for this experiment. After cover-
ing the entire lab area of 4896 sq ft. with only eight nodes, an additional number of nodes
were placed in between the nodes, which caused multiple paths between source and des-
tination with a relatively good transmission quality metric.

Figure 8. Placement of nodes at various locations in the campus block with configuration.

Since there is always clutter in the lab (compared to the experimental setup), e.g.,
computers, furniture, electrical components fittings, and other lab equipment and train-
ers, it is essential to attach images with this report to achieve a better idea of every lab part
of the experiment. The following images, including Figure 9, were captured during the
conduction of the experiment.

(a) (b)

Figure 9. (a) Lab 1 with 3 nodes (2 in sight) and (b) Lab 4 with 3 nodes (2 in sight). Figure 9. (a) Lab 1 with 3 nodes (2 in sight) and (b) Lab 4 with 3 nodes (2 in sight).

4.4. Assumptions

Since the raspberry pi OS driver for WLAN only provides support for a maximum
MTU (Maximum Transmission Unit) of up to 1500 bytes and increasing the limit requires
Linux kernels to be configured, recompiled, and reconfigured, it is left as a maximum of
1500 bytes. It is also acceptable to set the maximum MTU to 1500 bytes as indicated in the
batman-adv documentation. In this case, the batman algorithm automatically fragments
the frames on the data-link layer and combines the de-fragmented frames on the receiver
node. Though the authors of BATMAN do not recommend this method, additional over-
head for fragmentation and de-fragmentation is required and may impact the network’s
performance. As the topology utilized in the experimental setup is the same for all the tests

Symmetry 2023, 15, 969 14 of 22

conducted (BATMAN IV, BATMAN V, and BATMAN IV with split hop penalty) during the
study, they are comparable, and therefore, any changes to the MTU would affect the results
in the same manner for all protocols tested.

Another assumption is that the availability of the RF medium on the 2.4 GHz band for
all the nodes to communicate is limited in the tested scenarios, as labs (where the evaluation
has been conducted) are within the wi-fi range of the campus. Channel 9 with a band of
2.542 GHz was chosen for the ad hoc network, though choosing a different channel would
have the same density as choosing the 8 or 9 channel of the wi-fi. However, due to the
nature of radio waves, coverage and throughput might change but will exhibit similar
performance deltas as presented in the results [36]. Due to the real scenario, the footprint
movement of the people involved in the experiment and a limited number of people part
of the staff was minimized to the best of our abilities but could not be kept to zero.

5. Experimental Results
5.1. BATMAN IV with Split Hop Penalty

The results collected after the experimental work for the split hop penalty are presented
in this section. Since the results are collected for seven different node setups and with
four different transmit powers, presenting all of them with two different algorithms will
be hard to differentiate on a single graph. Therefore, the results presented here contain
two graphs each for different types of hop penalties. The summarized results will be used
to average the results for better comparison.

The average roundtrip time or end-to-end delay is presented in Figure 10 with (a) origi-
nal hop penalty and (b) split hop penalty. The experimental data are shown in Table A1. The
results show a great performance increment overall, with some points where BATMAN IV
still performs slightly better than the newly adapted hop penalty. The lowest RTT achieved
by the original hop penalty was 2.362 ms compared to 2.45 ms for the split hop penalty.
The highest delay was recorded to be 91.921 ms for the original hop penalty in contrast
to 84.867 ms for the split hop penalty. The overall average gain of 10.2% was recorded
in average roundtrip time for the two techniques. The most obvious performance gain
was recorded with the highest number of nodes, i.e., 14, which was found to be a 22.09%
improvement over the original hop penalty.

All the packets that are lost during the transfer of information from source to destina-
tion lead to information loss and sub-quality hardware. However, some techniques might
help recover some of the lost information but will require additional hardware and further
cause a delay in processing or due to re-transmissions. The packet loss information is
provided in Figure 11, whose results can be seen by dividing the graphs into two different
phases depending on the number of nodes. The experimental data are shown in Table A3.
Scenarios, from the lowest number of nodes to a total of eight nodes, including the split
hop penalty show remarkable performance in keeping packet loss low as compared to
the original hop penalty. There is a whopping 37.01% greater chance of packets reaching
the final destination than the earlier technique. Although this good performance is later
stopped as we increase the number of nodes, the original hop penalty provides better
results than the split hop penalty. Therefore, it is safe to say that the split hop penalty will
not always provide a better performance, especially where the number of nodes is large in
the same area.

Symmetry 2023, 15, 969 15 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 13 of 20

4.4. Assumptions
Since the raspberry pi OS driver for WLAN only provides support for a maximum

MTU (Maximum Transmission Unit) of up to 1500 bytes and increasing the limit requires
Linux kernels to be configured, recompiled, and reconfigured, it is left as a maximum of
1500 bytes. It is also acceptable to set the maximum MTU to 1500 bytes as indicated in the
batman-adv documentation. In this case, the batman algorithm automatically fragments
the frames on the data-link layer and combines the de-fragmented frames on the receiver
node. Though the authors of BATMAN do not recommend this method, additional over-
head for fragmentation and de-fragmentation is required and may impact the network’s
performance. As the topology utilized in the experimental setup is the same for all the
tests conducted (BATMAN IV, BATMAN V, and BATMAN IV with split hop penalty)
during the study, they are comparable, and therefore, any changes to the MTU would
affect the results in the same manner for all protocols tested.

Another assumption is that the availability of the RF medium on the 2.4 GHz band
for all the nodes to communicate is limited in the tested scenarios, as labs (where the eval-
uation has been conducted) are within the wi-fi range of the campus. Channel 9 with a
band of 2.542 GHz was chosen for the ad hoc network, though choosing a different chan-
nel would have the same density as choosing the 8 or 9 channel of the wi-fi. However, due
to the nature of radio waves, coverage and throughput might change but will exhibit sim-
ilar performance deltas as presented in the results [34]. Due to the real scenario, the foot-
print movement of the people involved in the experiment and a limited number of people
part of the staff was minimized to the best of our abilities but could not be kept to zero.

5. Experimental Results
5.1. BATMAN IV with Split Hop Penalty

The results collected after the experimental work for the split hop penalty are pre-
sented in this section. Since the results are collected for seven different node setups and
with four different transmit powers, presenting all of them with two different algorithms
will be hard to differentiate on a single graph. Therefore, the results presented here con-
tain two graphs each for different types of hop penalties. The summarized results will be
used to average the results for better comparison.

The average roundtrip time or end-to-end delay is presented in Figure 10 with (a)
original hop penalty and (b) split hop penalty. The experimental data are shown in Table
A1. The results show a great performance increment overall, with some points where
BATMAN IV still performs slightly better than the newly adapted hop penalty. The lowest
RTT achieved by the original hop penalty was 2.362 ms compared to 2.45 ms for the split
hop penalty. The highest delay was recorded to be 91.921 ms for the original hop penalty
in contrast to 84.867 ms for the split hop penalty. The overall average gain of 10.2% was
recorded in average roundtrip time for the two techniques. The most obvious perfor-
mance gain was recorded with the highest number of nodes, i.e., 14, which was found to
be a 22.09% improvement over the original hop penalty.

(a) (b)

Figure 10. Average roundtrip time for (a) original hop penalty and (b) split hop penalty.

0
10
20
30
40
50
60
70
80
90

100

2 4 6 8 10 12 14

Av
er

ag
e

ro
un

d
tri

p
tim

e
m

se
c

Number of nodes

0dBm
10dBm
20dBm
30dBm

0
10
20
30
40
50
60
70
80
90

100

2 4 6 8 10 12 14Av
er

ag
e

ro
un

d
tr

ip
 ti

m
e

(m
se

c)

Number of nodes

0dBm
10dBm
20dBm
30dBm

Figure 10. Average roundtrip time for (a) original hop penalty and (b) split hop penalty.

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 20

All the packets that are lost during the transfer of information from source to desti-
nation lead to information loss and sub-quality hardware. However, some techniques
might help recover some of the lost information but will require additional hardware and
further cause a delay in processing or due to re-transmissions. The packet loss information
is provided in Figure 11, whose results can be seen by dividing the graphs into two dif-
ferent phases depending on the number of nodes. The experimental data are shown in
Table A3. Scenarios, from the lowest number of nodes to a total of eight nodes, including
the split hop penalty show remarkable performance in keeping packet loss low as com-
pared to the original hop penalty. There is a whopping 37.01% greater chance of packets
reaching the final destination than the earlier technique. Although this good performance
is later stopped as we increase the number of nodes, the original hop penalty provides
better results than the split hop penalty. Therefore, it is safe to say that the split hop pen-
alty will not always provide a better performance, especially where the number of nodes
is large in the same area.

(a) (b)

Figure 11. UPD packet loss for (a) original hop penalty and (b) split hop penalty.

It is also important to note here that during our experimental results, we found mul-
tiple incidents where duplicate packets were received and several duplicate packets were
equal in both techniques. This needs further investigation as routing loops or unnecessary
broadcasts may cause it. The most important factor for communication is the speed of-
fered by the protocol or speed difference that is caused by a change in the operation of the
network. Figure 12 represents the spontaneous speed in Kbps toward the destination for
both techniques. The experimental data are shown in Table A2. An average difference of
21 times greater was recorded for the proposed split hop penalty compared to the original
hop penalty. This proves that the split hop penalty can be utilized in a wide variety of
applications requiring a high data rate, as the proposed scheme boosts the performance
of BATMAN drastically. The difference is most prominent where a higher number of
nodes were utilized, e.g., an average of 209 Kbps throughput was recorded for the original
scheme, while the proposed scheme increases the average throughput to 9840 Kbps, which is
at least 47 times greater as compared to the original scheme. This difference is caused by the
appropriate metric adjustment provided in the new scheme and proves its worthiness to be
used in advanced communication systems requiring high transmission rates.

0
5

10
15
20
25
30
35
40
45
50

2 4 6 8 10 12 14

U
D

P
pa

ck
et

 lo
ss

 (%
ag

e)

Number of nodes

0dBm
10dBm
20dBm
30dBm

0
5

10
15
20
25
30
35
40
45
50

2 4 6 8 10 12 14

U
PD

 p
ac

ke
t l

os
s

(%
ag

e)

Number of nodes

0dBm
10dBm
20dBm
30dBm

Figure 11. UPD packet loss for (a) original hop penalty and (b) split hop penalty.

It is also important to note here that during our experimental results, we found multi-
ple incidents where duplicate packets were received and several duplicate packets were
equal in both techniques. This needs further investigation as routing loops or unnecessary
broadcasts may cause it. The most important factor for communication is the speed offered
by the protocol or speed difference that is caused by a change in the operation of the
network. Figure 12 represents the spontaneous speed in Kbps toward the destination for
both techniques. The experimental data are shown in Table A2. An average difference of
21 times greater was recorded for the proposed split hop penalty compared to the original
hop penalty. This proves that the split hop penalty can be utilized in a wide variety of
applications requiring a high data rate, as the proposed scheme boosts the performance of
BATMAN drastically. The difference is most prominent where a higher number of nodes
were utilized, e.g., an average of 209 Kbps throughput was recorded for the original scheme,
while the proposed scheme increases the average throughput to 9840 Kbps, which is at
least 47 times greater as compared to the original scheme. This difference is caused by the
appropriate metric adjustment provided in the new scheme and proves its worthiness to be
used in advanced communication systems requiring high transmission rates.

Symmetry 2023, 15, 969 16 of 22Symmetry 2023, 15, x FOR PEER REVIEW 15 of 20

(a) (b)

Figure 12. UPD average throughput for (a) original hop penalty and (b) split hop penalty.

Jitter, a measure of variance in the delay, is an important factor for real-time applica-
tions, where updated information has a higher priority as compared to the number of
packets lost during the mission-critical transmission. Figure 12 presents the comparisons
of jitter for (a) the original hop penalty and (b) the split hop penalty. The experimental
data are shown in Table A4. The differences can be spotted at several points in Figure 13.
The most prominent is the axis which shows that the overall jitter for the newly proposed
scheme is much less than the original hop penalty. The less jitter will contribute to much
more reliable communication, less re-transmission, and smaller delays. The most promi-
nent measure of jitter 243 ms was recorded with the highest number of nodes of 14, while
it is only 156 ms with the same number of nodes in split hop penalty. Similarly, the small-
est average calculated with the original hop penalty is 9.95 ms as compared to 5.64 ms for
the split hop penalty. The data recorded at 0 dBm are mostly distinguished as compared
to other transmit power. Still, the split hop penalty not only performs better but is also
comparable to other transmit powers in the range of 2 to 6 nodes, while increasing rapidly
as the number of nodes increases.

(a) (b)

Figure 13. UDP jitter for (a) original hop penalty and (b) split hop penalty.

5.2. Comparison of Original Hop Penalty and Split Hop Penalty
To better understand the differences in performance for the proposed scheme, it is

better to average out all the results with different transmit powers and present them
against the increasing number of nodes. Though including 0 dBm is not recommended, it
is also kept to show unbiased results to help cover all possible transmission powers.

Figure 14 shows a brief comparison of the latency or delay incurred throughout the
experiment, accumulating all the transmit power presented in the previous section. Except
for when the number of nodes is 2 and 10, the performance gain is visible in the graph,
adapting the newly suggested split hop penalty. The most noticeable difference is when
the number of nodes is maximum, e.g., 14 with a difference of 12.05 ms, while the least
performance difference is 0.9 ms improvement over the original hop penalty. However,

0
50000

100000
150000
200000
250000
300000
350000
400000

2 4 6 8 10 12 14A
v

er
ag

e
th

ro
ug

hp
ut

 (
K

bp
s)

Number of nodes

0dBm
10dBm
20dBm
30dBm

0

50000

100000

150000

200000

250000

300000

2 4 6 8 10 12 14A
v

er
ag

e
th

ro
ug

hp
ut

 (
K

bp
s)

Number of nodes

0dBm
10dBm
20dBm
30dBm

0

100

200

300

400

500

600

700

2 4 6 8 10 12 14

Ji
tt

er
 U

D
P

 (m
se

c)

Number of nodes

0dBm
10dBm
20dBm
30dBm

0

100

200

300

400

500

600

700

2 4 6 8 10 12 14

Ji
tt

er
 U

D
P

 (m
se

c)

Number of nodes

0dBm
10dBm
20dBm
30dBm

Figure 12. UPD average throughput for (a) original hop penalty and (b) split hop penalty.

Jitter, a measure of variance in the delay, is an important factor for real-time appli-
cations, where updated information has a higher priority as compared to the number of
packets lost during the mission-critical transmission. Figure 12 presents the comparisons of
jitter for (a) the original hop penalty and (b) the split hop penalty. The experimental data are
shown in Table A4. The differences can be spotted at several points in Figure 13. The most
prominent is the axis which shows that the overall jitter for the newly proposed scheme
is much less than the original hop penalty. The less jitter will contribute to much more
reliable communication, less re-transmission, and smaller delays. The most prominent
measure of jitter 243 ms was recorded with the highest number of nodes of 14, while it is
only 156 ms with the same number of nodes in split hop penalty. Similarly, the smallest
average calculated with the original hop penalty is 9.95 ms as compared to 5.64 ms for
the split hop penalty. The data recorded at 0 dBm are mostly distinguished as compared
to other transmit power. Still, the split hop penalty not only performs better but is also
comparable to other transmit powers in the range of 2 to 6 nodes, while increasing rapidly
as the number of nodes increases.

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 20

(a) (b)

Figure 12. UPD average throughput for (a) original hop penalty and (b) split hop penalty.

Jitter, a measure of variance in the delay, is an important factor for real-time applica-
tions, where updated information has a higher priority as compared to the number of
packets lost during the mission-critical transmission. Figure 12 presents the comparisons
of jitter for (a) the original hop penalty and (b) the split hop penalty. The experimental
data are shown in Table A4. The differences can be spotted at several points in Figure 13.
The most prominent is the axis which shows that the overall jitter for the newly proposed
scheme is much less than the original hop penalty. The less jitter will contribute to much
more reliable communication, less re-transmission, and smaller delays. The most promi-
nent measure of jitter 243 ms was recorded with the highest number of nodes of 14, while
it is only 156 ms with the same number of nodes in split hop penalty. Similarly, the small-
est average calculated with the original hop penalty is 9.95 ms as compared to 5.64 ms for
the split hop penalty. The data recorded at 0 dBm are mostly distinguished as compared
to other transmit power. Still, the split hop penalty not only performs better but is also
comparable to other transmit powers in the range of 2 to 6 nodes, while increasing rapidly
as the number of nodes increases.

(a) (b)

Figure 13. UDP jitter for (a) original hop penalty and (b) split hop penalty.

5.2. Comparison of Original Hop Penalty and Split Hop Penalty
To better understand the differences in performance for the proposed scheme, it is

better to average out all the results with different transmit powers and present them
against the increasing number of nodes. Though including 0 dBm is not recommended, it
is also kept to show unbiased results to help cover all possible transmission powers.

Figure 14 shows a brief comparison of the latency or delay incurred throughout the
experiment, accumulating all the transmit power presented in the previous section. Except
for when the number of nodes is 2 and 10, the performance gain is visible in the graph,
adapting the newly suggested split hop penalty. The most noticeable difference is when
the number of nodes is maximum, e.g., 14 with a difference of 12.05 ms, while the least
performance difference is 0.9 ms improvement over the original hop penalty. However,

0
50000

100000
150000
200000
250000
300000
350000
400000

2 4 6 8 10 12 14A
v

er
ag

e
th

ro
ug

hp
ut

 (
K

bp
s)

Number of nodes

0dBm
10dBm
20dBm
30dBm

0

50000

100000

150000

200000

250000

300000

2 4 6 8 10 12 14A
v

er
ag

e
th

ro
ug

hp
ut

 (
K

bp
s)

Number of nodes

0dBm
10dBm
20dBm
30dBm

0

100

200

300

400

500

600

700

2 4 6 8 10 12 14

Ji
tt

er
 U

D
P

 (m
se

c)

Number of nodes

0dBm
10dBm
20dBm
30dBm

0

100

200

300

400

500

600

700

2 4 6 8 10 12 14

Ji
tt

er
 U

D
P

 (m
se

c)

Number of nodes

0dBm
10dBm
20dBm
30dBm

Figure 13. UDP jitter for (a) original hop penalty and (b) split hop penalty.

5.2. Comparison of Original Hop Penalty and Split Hop Penalty

To better understand the differences in performance for the proposed scheme, it is
better to average out all the results with different transmit powers and present them against
the increasing number of nodes. Though including 0 dBm is not recommended, it is also
kept to show unbiased results to help cover all possible transmission powers.

Figure 14 shows a brief comparison of the latency or delay incurred throughout the
experiment, accumulating all the transmit power presented in the previous section. Except
for when the number of nodes is 2 and 10, the performance gain is visible in the graph,
adapting the newly suggested split hop penalty. The most noticeable difference is when
the number of nodes is maximum, e.g., 14 with a difference of 12.05 ms, while the least

Symmetry 2023, 15, 969 17 of 22

performance difference is 0.9 ms improvement over the original hop penalty. However,
there are some instances where the newly adapted scheme has subpar performance, as
recorded to be −1.16 ms and −2.41 ms difference (greater than the original hop penalty).

Symmetry 2023, 15, x FOR PEER REVIEW 16 of 20

there are some instances where the newly adapted scheme has subpar performance, as
recorded to be −1.16 ms and −2.41 ms difference (greater than the original hop penalty).

(a) (b)

Figure 14. Comparison of average end-to-end delay (a) values and (b) difference.

Since throughput is an important factor, to highlight all the differences clearly, it is
plotted against Figure 15a on a linear scale and Figure 15b logarithmic scale. The linear
scale shows a massive improvement when the number of nodes is low and throughput is
maximum. As the number of nodes starts increasing, the average throughput keeps be-
coming smaller due to the massive number of broadcasts in the network, and more OGM
packets are re-transmitted and consume overall bandwidth. The improvement trend as
compared to the original hop penalty continues if we start increasing the number of nodes,
which may not be clear in Figure 15a, but is very much visible in the logarithmic scale
presented in Figure 15b. As mentioned previously, the average improvement by employ-
ing the split hop penalty is found to be 21 times that offered by the original scheme.

(a) (b)

Figure 15. Comparison of average throughput with (a) linear scale and (b) logarithmic scale.

Packet loss percentage as compared with a varying number of nodes is presented in
Figure 16. As presented in Section 4.1, the graph presented can be seen as a two-part dif-
ference, where split hop penalty provides lesser packet losses as compared to the original,
while as the number of nodes increases the performance of split hop penalty drops below
the original base-line provided by the default hop penalty. This parameter is considered
the only con of the newly proposed scheme; therefore, caution is advised in implementing
a split hop penalty on networks with a large number of nodes. However, further investi-
gation might help in this regard.

0
10
20
30
40
50
60
70

2 4 6 8 10 12 14

Av
er

ag
e

en
d-

to
-e

nd
 d

el
ay

(m

se
c)

Number of nodes (n)

Original

Split

-4
-2
0
2
4
6
8

10
12
14

2 4 6 8 10 12 14

D
iff

er
en

ce
 in

 le
te

nc
y

fo
r t

w
o

sc
he

m
es

 (m
se

c)

Number of nodes (n)

0 50,000 100,000 150,000

2
4
6
8

10
12
14

Average throughput (bps)

Nu
m

be
r

of
 n

od
es

 (n
)

Original
Split

1 100 10,000 1,000,000

2
4
6
8

10
12
14

Average throughput (bps)

Nu
m

be
r

of
 n

od
es

 (n
)

Original
Split

Figure 14. Comparison of average end-to-end delay (a) values and (b) difference.

Since throughput is an important factor, to highlight all the differences clearly, it is
plotted against Figure 15a on a linear scale and Figure 15b logarithmic scale. The linear
scale shows a massive improvement when the number of nodes is low and throughput
is maximum. As the number of nodes starts increasing, the average throughput keeps
becoming smaller due to the massive number of broadcasts in the network, and more OGM
packets are re-transmitted and consume overall bandwidth. The improvement trend as
compared to the original hop penalty continues if we start increasing the number of nodes,
which may not be clear in Figure 15a, but is very much visible in the logarithmic scale
presented in Figure 15b. As mentioned previously, the average improvement by employing
the split hop penalty is found to be 21 times that offered by the original scheme.

Symmetry 2023, 15, x FOR PEER REVIEW 16 of 20

there are some instances where the newly adapted scheme has subpar performance, as
recorded to be −1.16 ms and −2.41 ms difference (greater than the original hop penalty).

(a) (b)

Figure 14. Comparison of average end-to-end delay (a) values and (b) difference.

Since throughput is an important factor, to highlight all the differences clearly, it is
plotted against Figure 15a on a linear scale and Figure 15b logarithmic scale. The linear
scale shows a massive improvement when the number of nodes is low and throughput is
maximum. As the number of nodes starts increasing, the average throughput keeps be-
coming smaller due to the massive number of broadcasts in the network, and more OGM
packets are re-transmitted and consume overall bandwidth. The improvement trend as
compared to the original hop penalty continues if we start increasing the number of nodes,
which may not be clear in Figure 15a, but is very much visible in the logarithmic scale
presented in Figure 15b. As mentioned previously, the average improvement by employ-
ing the split hop penalty is found to be 21 times that offered by the original scheme.

(a) (b)

Figure 15. Comparison of average throughput with (a) linear scale and (b) logarithmic scale.

Packet loss percentage as compared with a varying number of nodes is presented in
Figure 16. As presented in Section 4.1, the graph presented can be seen as a two-part dif-
ference, where split hop penalty provides lesser packet losses as compared to the original,
while as the number of nodes increases the performance of split hop penalty drops below
the original base-line provided by the default hop penalty. This parameter is considered
the only con of the newly proposed scheme; therefore, caution is advised in implementing
a split hop penalty on networks with a large number of nodes. However, further investi-
gation might help in this regard.

0
10
20
30
40
50
60
70

2 4 6 8 10 12 14

Av
er

ag
e

en
d-

to
-e

nd
 d

el
ay

(m

se
c)

Number of nodes (n)

Original

Split

-4
-2
0
2
4
6
8

10
12
14

2 4 6 8 10 12 14

D
iff

er
en

ce
 in

 le
te

nc
y

fo
r t

w
o

sc
he

m
es

 (m
se

c)

Number of nodes (n)

0 50,000 100,000 150,000

2
4
6
8

10
12
14

Average throughput (bps)

Nu
m

be
r

of
 n

od
es

 (n
)

Original
Split

1 100 10,000 1,000,000

2
4
6
8

10
12
14

Average throughput (bps)

Nu
m

be
r

of
 n

od
es

 (n
)

Original
Split

Figure 15. Comparison of average throughput with (a) linear scale and (b) logarithmic scale.

Packet loss percentage as compared with a varying number of nodes is presented
in Figure 16. As presented in Section 4.1, the graph presented can be seen as a two-
part difference, where split hop penalty provides lesser packet losses as compared to the
original, while as the number of nodes increases the performance of split hop penalty
drops below the original base-line provided by the default hop penalty. This parameter
is considered the only con of the newly proposed scheme; therefore, caution is advised in
implementing a split hop penalty on networks with a large number of nodes. However,
further investigation might help in this regard.

Symmetry 2023, 15, 969 18 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 20

Figure 16. Comparison of packet loss vs. number of nodes.

Figure 17 shows the performance improvement in the jitter as plotted with averages
over all transmit powers. Most of the time, the jitter is less than the original hop penalty.

Figure 17. Comparison of average jitter.

The only two instances where the jitter is very slightly higher than the original
scheme are where the number of nodes is 2 or 10, which also justifies the higher delays at
the same number of nodes in Figure 10. The overall improvement in jitter counting all the
number of nodes (where jitter is slightly higher than the original) was found to be 50.1 ms
on average, while the highest difference or performance gain was recorded for 14 nodes
where the jitter was 87.57 ms less as compared to original hop penalty.

6. Conclusions
Most of the routing protocols for ad hoc networks suffer from low throughput and

overhead, especially in large network scenarios where the number of nodes per area is
high. BATMAN, a layer-2 routing protocol for ad hoc networks, defines transmission
quality as a metric that comprises link quality, path quality, asymmetric link penalty, and
hop penalty. The analytical analysis presented in this paper points out that the hop pen-
alty used in BATMAN suffers from TQ metric decrement as the number of hops is in-
creased. Therefore, to balance the heavy impact imposed by the hop penalty, a split hop
penalty is proposed to improve the network’s performance, especially delays, through-
put, and jitter. The improvement is achieved by splitting the hop penalty into two
branches: one where wireless links are utilized and the same radio is used for the recep-
tion and transmission of the data packets, and into a wired medium where transmitter
and receiver are separated internally. The results presented show an average improve-
ment of 11% in end-to-end delay, increased average throughput by 52%, and a 45% im-
provement in jitter as compared to the original BATMAN. The packet loss results differ
from the original hop penalty, but the overall average is similar, as the new method offers
less packet loss when the number of nodes is low, while it increases with the increasing
number of nodes. During the experimental tests, we found several duplicate packets of
acknowledgment from ICMP received at the transmitter’s end, suggesting that BATMAN
is not a loop-free routing protocol and should be investigated in the future. The future

0
2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12 14

Pa
ck

et
 lo

ss
 (%

ag
e)

Number of nodes (n)

Original

Split

0

50

100

150

200

250

300

2 4 6 8 10 12 14

Av
er

ag
e

Ji
tte

r (
m

se
c)

Number of nodes (n)

Original
Split

Figure 16. Comparison of packet loss vs. number of nodes.

Figure 17 shows the performance improvement in the jitter as plotted with averages
over all transmit powers. Most of the time, the jitter is less than the original hop penalty.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 20

Figure 16. Comparison of packet loss vs. number of nodes.

Figure 17 shows the performance improvement in the jitter as plotted with averages
over all transmit powers. Most of the time, the jitter is less than the original hop penalty.

Figure 17. Comparison of average jitter.

The only two instances where the jitter is very slightly higher than the original
scheme are where the number of nodes is 2 or 10, which also justifies the higher delays at
the same number of nodes in Figure 10. The overall improvement in jitter counting all the
number of nodes (where jitter is slightly higher than the original) was found to be 50.1 ms
on average, while the highest difference or performance gain was recorded for 14 nodes
where the jitter was 87.57 ms less as compared to original hop penalty.

6. Conclusions
Most of the routing protocols for ad hoc networks suffer from low throughput and

overhead, especially in large network scenarios where the number of nodes per area is
high. BATMAN, a layer-2 routing protocol for ad hoc networks, defines transmission
quality as a metric that comprises link quality, path quality, asymmetric link penalty, and
hop penalty. The analytical analysis presented in this paper points out that the hop pen-
alty used in BATMAN suffers from TQ metric decrement as the number of hops is in-
creased. Therefore, to balance the heavy impact imposed by the hop penalty, a split hop
penalty is proposed to improve the network’s performance, especially delays, through-
put, and jitter. The improvement is achieved by splitting the hop penalty into two
branches: one where wireless links are utilized and the same radio is used for the recep-
tion and transmission of the data packets, and into a wired medium where transmitter
and receiver are separated internally. The results presented show an average improve-
ment of 11% in end-to-end delay, increased average throughput by 52%, and a 45% im-
provement in jitter as compared to the original BATMAN. The packet loss results differ
from the original hop penalty, but the overall average is similar, as the new method offers
less packet loss when the number of nodes is low, while it increases with the increasing
number of nodes. During the experimental tests, we found several duplicate packets of
acknowledgment from ICMP received at the transmitter’s end, suggesting that BATMAN
is not a loop-free routing protocol and should be investigated in the future. The future

0
2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12 14

Pa
ck

et
 lo

ss
 (%

ag
e)

Number of nodes (n)

Original

Split

0

50

100

150

200

250

300

2 4 6 8 10 12 14

Av
er

ag
e

Ji
tte

r (
m

se
c)

Number of nodes (n)

Original
Split

Figure 17. Comparison of average jitter.

The only two instances where the jitter is very slightly higher than the original scheme
are where the number of nodes is 2 or 10, which also justifies the higher delays at the same
number of nodes in Figure 10. The overall improvement in jitter counting all the number of
nodes (where jitter is slightly higher than the original) was found to be 50.1 ms on average,
while the highest difference or performance gain was recorded for 14 nodes where the jitter
was 87.57 ms less as compared to original hop penalty.

6. Conclusions

Most of the routing protocols for ad hoc networks suffer from low throughput and
overhead, especially in large network scenarios where the number of nodes per area is high.
BATMAN, a layer-2 routing protocol for ad hoc networks, defines transmission quality
as a metric that comprises link quality, path quality, asymmetric link penalty, and hop
penalty. The analytical analysis presented in this paper points out that the hop penalty
used in BATMAN suffers from TQ metric decrement as the number of hops is increased.
Therefore, to balance the heavy impact imposed by the hop penalty, a split hop penalty is
proposed to improve the network’s performance, especially delays, throughput, and jitter.
The improvement is achieved by splitting the hop penalty into two branches: one where
wireless links are utilized and the same radio is used for the reception and transmission of
the data packets, and into a wired medium where transmitter and receiver are separated

Symmetry 2023, 15, 969 19 of 22

internally. The results presented show an average improvement of 11% in end-to-end
delay, increased average throughput by 52%, and a 45% improvement in jitter as compared
to the original BATMAN. The packet loss results differ from the original hop penalty,
but the overall average is similar, as the new method offers less packet loss when the
number of nodes is low, while it increases with the increasing number of nodes. During
the experimental tests, we found several duplicate packets of acknowledgment from ICMP
received at the transmitter’s end, suggesting that BATMAN is not a loop-free routing
protocol and should be investigated in the future. The future work resides in improving
the TQ metric of BATMAN as the current method involves receiving echoes of sent packets,
which takes more time in determining the link quality.

Author Contributions: Conceptualization: S.T.A.J. and F.Q.; Methodology: S.T.A.J. and I.A.; visual-
ization: S.A., J.Y. and F.Q.; writing—original draft preparation: S.T.A.J. and I.A.; writing—review and
editing: S.A. and Z.H.A.; funding acquisition: F.Q. and J.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper is supported by Universiti Kebangsaan Malaysia Fundamental Research Grant
Scheme Code # FRGS/1/2019/ICT01/UKM/02/1 and Geran Galakan Penyelidik Muda (GGPM)
with Scheme Code # GGPM-2021-040. The research project is partially supported by the Ministry of
Science and Technology (MoST), Pakistan.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would also like to thank the respected Editor and Reviewer for
their support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Experimental Data and Frequently Used Notations

Table A1. End-to-end delay (ms) data for original hop penalty and split hop penalty.

Original Hop Penalty Split Hop Penalty

Nodes 0 dBm 10 dBm 20 dBm 30 dBm Average 0 dBm 10 dBm 20 dBm 30 dBm Average

2 3.08 2.713 2.362 2.271 2.6065 4.824 4.429 2.953 2.889 3.77375
4 9.166 13.3 4.067 3.289 7.4555 6.925 7.439 2.45 2.472 4.8215
6 12.255 10.973 8.83 4.965 9.25575 11.083 7.284 5.351 6.336 7.5135
8 32.451 11.013 12.085 11.567 16.779 23.051 15.465 11.03 10.505 15.01275

10 24.007 14.974 20.242 10.957 17.545 21.54 20.87 19.07 18.371 19.96275
12 52.882 28.833 26.794 26.235 33.686 52.331 22.962 29.407 26.36 32.765
14 91.921 55.618 70.127 48.75 66.604 84.867 51.644 50.4 31.3 54.55275

Table A2. Throughput (kbps) data for original hop penalty and split hop penalty.

Original Hop Penalty Split Hop Penalty

Nodes 0 dBm 10 dBm 20 dBm 30 dBm Average 0 dBm 10 dBm 20 dBm 30 dBm Average

2 10,560 213,600 320,800 355,200 112,960 853 24,720 267,200 265,600 13,9593.3
4 247 14,400 64,560 112,000 40,478.25 27,200 73,680 129,600 217,600 112,020
6 409 27,440 38,000 55,760 16,477.75 371 60,480 87,200 88,800 59,212.75
8 8240 15,280 15,840 17,120 2940 269 16,000 27,120 32,080 18,867.25

10 8240 20,320 28,480 29,280 7300 891 28,960 40,000 10,240 20,022.75
12 226 549 555 704 141.25 490 9520 16,000 21,280 11,822.5
14 358 675 946 923 209 401 8160 10,160 20,640 9840.25

Symmetry 2023, 15, 969 20 of 22

Table A3. Packet loss data for original hop penalty and split hop penalty.

Original Hop Penalty Split Hop Penalty

Nodes 0 dBm 10 dBm 20 dBm 30 dBm Average 0 dBm 10 dBm 20 dBm 30 dBm Average

2 0 0 0 0 0 7 0 0 0 1.75
4 12 9 0.014 0.0083 5.255575 3 1 1 0 1.25
6 8 3.4 2 1.5 3.725 4 0 0 0 1
8 15 7 6 3 7.75 18 5 3 1 6.75

10 19 16 12 2 12.25 33 16 7 10 16.5
12 19 13 10 3 11.25 26 7 8 15 14
14 37 15 4 3 14.75 45 11 12 5 18.25

Table A4. Jitter (ms) data for original hop penalty and split hop penalty.

Original Hop Penalty Split Hop Penalty

Nodes 0 dBm 10 dBm 20 dBm 30 dBm Average 0 dBm 10 dBm 20 dBm 30 dBm Average

2 37.382 1.37 0.846 0.223 9.95525 39.54 33.47 8.17 2.185 20.84125
4 288.837 32.584 3.536 5.086 82.51075 8.471 6.219 5.25 2.642 5.6455
6 277.429 10.224 5.956 5.362 74.74275 27.04 9.998 3.319 3.355 10.928
8 336.471 41.286 57.972 52.222 121.9878 265 22.48 7.15 9.677 76.07675

10 280.294 37.195 103.707 74.321 123.8793 359 39.9 74.842 24.143 124.4713
12 276.673 142.024 51.124 80.323 137.536 130 27.7 22.064 18.08 49.461
14 625.815 119.25 125.921 103.531 243.6293 311 109 124.42 79.812 156.058

Table A5. Frequently used notations.

OGM Originator message

TQ Transmission quality metric

EQ Echo quality

RQ Receive quality

TQpath Transmission quality for a specific destination

TQlocal Transmission quality calculated for own node

TQrecieved Transmission quality received from neighbor

HP Hop penalty value specified by network designer (default 30)

TQmax Maximum transmission quality for 8-bit value (255)

TQHP Transmission quality calculated for hop penalty

References
1. Al-Absi, M.A.; Al-Absi, A.A.; Sain, M.; Lee, H. Moving ad hoc networks—A comparative study. Sustainability 2021, 13, 6187.

[CrossRef]
2. Abbas, T.; Qamar, F.; Ahmed, I.; Dimyati, K.; Majed, M.B. Propagation channel characterization for 28 and 73 GHz millimeter-wave

5G frequency band. In Proceedings of the 2017 IEEE 15th student conference on research and development (SCOReD), Wilayah
Persekutuan Putrajaya, Malaysia, 13–14 December 2017; pp. 297–302.

3. Ibrahim, M.Z.; Hassan, R. The implementation of internet of things using test bed in the UKMnet environment. Asia Pac. J. Inf.
Technol. Multimed 2019, 8, 1–17. [CrossRef]

4. Hassan, R.; Qamar, F.; Hasan, M.; Aman, A.; Ahmed, A. Internet of Things and its applications: A comprehensive survey.
Symmetry 2020, 12, 1674. [CrossRef]

5. Qamar, F.; Hindia, M.N.; Abbas, T.; Dimyati, K.B.; Amiri, I.S. Investigation of QoS performance evaluation over 5G network for
indoor environment at millimeter wave bands. Int. J. Electron. Telecommun. 2019, 65, 95–101.

6. Malathy, S.; Jayarajan, P.; Ojukwu, H.; Qamar, F.; Hindia, M.; Dimyati, K.; Noordin, K.A.; Amiri, I.S. A review on energy
management issues for future 5G and beyond network. Wirel. Netw. 2021, 27, 2691–2718. [CrossRef]

http://doi.org/10.3390/su13116187
http://doi.org/10.17576/apjitm-2019-0802-01
http://doi.org/10.3390/sym12101674
http://doi.org/10.1007/s11276-021-02616-z

Symmetry 2023, 15, 969 21 of 22

7. Bocu, R.; Iavich, M.; Tabirca, S. A real-time intrusion detection system for software defined 5G networks. In Proceedings of
the International Conference on Advanced Information Networking and Applications, Toronto, ON, Canada, 12–14 May 2021;
pp. 436–446.

8. Quy, V.K.; Ban, N.T.; Nam, V.H.; Tuan, D.M.; Han, N.D. Survey of Recent Routing Metrics and Protocols for Mobile Ad-Hoc
Networks. J. Commun. 2019, 14, 110–120. [CrossRef]

9. Muniyandi, R.C.; Qamar, F.; Jasim, A.N. Genetic optimized location aided routing protocol for VANET based on rectangular
estimation of position. Appl. Sci. 2020, 10, 5759. [CrossRef]

10. Talukdar, M.I.; Hassan, R.; Hossen, M.S.; Ahmad, K.; Qamar, F.; Ahmed, A.S. Performance improvements of AODV by black hole
attack detection using IDS and digital signature. Wirel. Commun. Mob. Comput. 2021, 2021, 6693316. [CrossRef]

11. Jafri, S.T.A.; Ahmed, I.; Ali, S. Queue-Buffer Optimization Based on Aggressive Random Early Detection in Massive NB-IoT
MANET for 5G Applications. Electronics 2022, 11, 2955. [CrossRef]

12. Sadeq, A.S.; Hassan, R.; Aman, A.H.M.; Sallehudin, H.; Allehaibi, K.; Albogami, N.; Prabuwono, A.S. MAC protocol with
grouping awareness GMAC for large scale Internet-of-Things network. PeerJ Comput. Sci. 2021, 7, e733. [CrossRef]

13. Tilwari, V.; Bani-Bakr, A.; Qamar, F.; Hindia, M.N.; Jayakody, D.N.K.; Hassan, R. Mobility and queue length aware routing
approach for network stability and load balancing in MANET. In Proceedings of the 2021 International Conference on Electrical
Engineering and Informatics (ICEEI), Kuala Terengganu, Malaysia, 12–13 October 2021; pp. 1–5.

14. Kapur, R.K.; Khatri, S.K. Secure data transfer in MANET using symmetric and asymmetric cryptography. In Porceedings of the
4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions)
IEEE, Osaka, Japan, 27–30 October 2015, pp. 1–5.

15. Neumann, A.; Aichele, C.; Lindner, M.; Wunderlich, S. Better approach to mobile ad-hoc networking (BATMAN). IETF Draft 2008,
1–24.

16. Zheng, Z.; Yong, T.; Li, J.; Wen, Z. Simulation Research of UAANET Based on BATMAN-ADV Routing Protocol. In Proceedings
of the 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 28–30 October 2022; pp. 232–236.

17. Lindner, S.W.M. Open-Mesh, BATMAN Official Homepage. Available online: https://www.open-mesh.org (accessed on 1
December 2022).

18. Liu, L.; Liu, J.; Qian, H.; Zhu, J. Performance evaluation of BATMAN-Adv wireless mesh network routing algorithms. In
Proceedings of the 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE
International Conference on Edge Computing and Scalable Cloud (EdgeCom), Shanghai, China, 22–24 June 2018; pp. 122–127.

19. Sanchez-Iborra, R.; Cano, M.-D.; Garcia-Haro, J. Performance evaluation of BATMAN routing protocol for VoIP services: A QoE
perspective. IEEE Trans. Wirel. Commun. 2014, 13, 4947–4958. [CrossRef]

20. Abbas, T.; Qamar, F.; Hindia, M.N.; Hassan, R.; Ahmed, I.; Aslam, M.I. Performance analysis of ad hoc on-demand distance vector
routing protocol for MANET. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD),
Batu Pahat, Malaysia, 27–29 September 2020; pp. 194–199.

21. Chache, F.M.; Maxon, S.; Narayanan, R.M.; Bharadwaj, R. Distributed network communication using BATMAN algorithm over
LoRa. In Proceedings of the Radar Sensor Technology XXV, Online, 12–17 April 2021; pp. 47–55.

22. Powell, N.H., III. BATSEN: Modifying the BATMAN Routing Protocol for Wireless Sensor Networks. Masters’ Thesis, Rochester
Institute of Technology, New York, NY, USA, 2018.

23. Al Mojamed, M. Integrating mobile ad hoc networks with the internet based on OLSR. Wirel. Commun. Mob. Comput. 2020,
2020, 8810761. [CrossRef]

24. Kiran, K.; Kaushik, N.; Sharath, S.; Shenoy, P.D.; Venugopal, K.; Prabhu, V.T. Experimental evaluation of BATMAN and BATMAN-
Adv routing protocols in a mobile testbed. In Proceedings of the TENCON 2018–2018 IEEE Region 10 Conference, Jeju, Republic
of Korea, 28–31 October 2018; pp. 1538–1543.

25. Guillen-Perez, A.; Montoya, A.-M.; Sanchez-Aarnoutse, J.-C.; Cano, M.-D. A comparative performance evaluation of routing
protocols for flying Ad-Hoc networks in real conditions. Appl. Sci. 2021, 11, 4363. [CrossRef]

26. Sanchez-Iborra, R.; Cano, M.-D. JOKER: A novel opportunistic routing protocol. IEEE J. Sel. Areas Commun. 2016, 34, 1690–1703.
[CrossRef]

27. Sliwa, B.; Behnke, D.; Ide, C.; Wietfeld, C. BAT Mobile: Leveraging mobility control knowledge for efficient routing in mobile
robotic networks. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December
2016; pp. 1–6.

28. Cigno, R.; Furlan, D. Improving BATMAN Routing Stability and Performance. Ph.D. Thesis, University of Trento, Trento,
Italy, 2011.

29. Raffelsberger, C.; Hellwagner, H. A hybrid MANET-DTN routing scheme for emergency response scenarios. In Proceedings of
the 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), San
Diego, CA, USA, 18–22 March 2013; pp. 505–510.

30. Delosieres, L.; Nadjm-Tehrani, S. Batman store-and-forward: The best of the two worlds. In Proceedings of the 2012 IEEE
International Conference on Pervasive Computing and Communications Workshops, Lugano, Switzerland, 19–23 March 2012;
pp. 721–727.

31. Davoli, L.; Cilfone, A.; Belli, L.; Ferrari, G. Design and experimental performance analysis of a BATMAN-based double Wi-Fi
interface mesh network. Future Gener. Comput. Syst. 2019, 92, 593–603. [CrossRef]

http://doi.org/10.12720/jcm.14.2.110-120
http://doi.org/10.3390/app10175759
http://doi.org/10.1155/2021/6693316
http://doi.org/10.3390/electronics11182955
http://doi.org/10.7717/peerj-cs.733
https://www.open-mesh.org
http://doi.org/10.1109/TWC.2014.2321576
http://doi.org/10.1155/2020/8810761
http://doi.org/10.3390/app11104363
http://doi.org/10.1109/JSAC.2016.2545439
http://doi.org/10.1016/j.future.2018.02.015

Symmetry 2023, 15, 969 22 of 22

32. Abdali, T.-A.N.; Hassan, R.; Muniyandi, R.C.; Mohd Aman, A.H.; Nguyen, Q.N.; Al-Khaleefa, A.S. Optimized particle swarm
optimization algorithm for the realization of an enhanced energy-aware location-aided routing protocol in MANET. Information
2020, 11, 529. [CrossRef]

33. Gehreke, L.; Kientopf, K.; Güneş, M. BATMAN in the IoT. In Proceedings of the NOMS 2022–2022 IEEE/IFIP Network Operations
and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–6.

34. Quartulli, A.; Lo Cigno, R. Client Announcement and Fast Roaming in a Layer-2 Mesh Network; Technical Report # DISI-11-472
Version 1; Universitá di trento: Trento, Italy, 2011.

35. Jun, T.; Julien, C. Delay analysis for symmetric nodes in mobile ad hoc networks. In Proceedings of the 4th ACM Workshop on
Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, Canary Islands, Spain, 26 October
2009; pp. 191–200.

36. Tipparaju, V.V.; Mallires, K.R.; Wang, D.; Tsow, F.; Xian, X. Mitigation of Data Packet Loss in Bluetooth Low Energy-Based
Wearable Healthcare Ecosystem. Biosensors 2021, 11, 350. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/info11110529
http://doi.org/10.3390/bios11100350
http://www.ncbi.nlm.nih.gov/pubmed/34677306

	Introduction
	Problem Statement
	Contribution of the Paper

	Literature Review
	Methodology
	BATMAN Algorithm
	Path Transmission Quality
	Penalty for Asymmetric links
	Hop Penalty

	Impact of Hop Penalty Value on the Performance of BATMAN
	Split Hop Penalty for Unidirectional Links
	Overall Transmission Quality

	Test-Bed Implementation Setup
	Hardware Setup
	Software Configuration
	Test-Bed Parameters
	Assumptions

	Experimental Results
	BATMAN IV with Split Hop Penalty
	Comparison of Original Hop Penalty and Split Hop Penalty

	Conclusions
	Appendix A
	References

